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ABSTRACT 

A two-dimensional variant of connected nonlinear equations of electrodynamics of the current—carrying orthotropic 
rotation shells, under no stationary loads is presented. A procedure for solution of asymmetrical problems of magneto 
elasticity of flexible current-carrying orthotropic rotation shells under no stationary actions of mechanical and electro-
magnetic forces is plotted. A stress-strained state of flexible current-carrying orthotropic rotation shells is geometrically 
nonlinear statement. 
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1. Introduction 

The development of the theory of conjugate fields, and in 
particular the theory of electromagnetic interaction with 
deformable medium is considered as one of the main 
directions of development of modern solid mechanics. 
The mechanism of interaction of elastic medium with the 
electromagnetic field due to various and geometrical 
characteristics and physical properties of the body is in 
question. In particular, this mechanism gets some special 
features when considering the problem of relative thin 
shells having anisotropic conductive. Often the interaction 
of electromagnetic fields with a resilient body occurs in 
the presence of an external electric current (e.g., elastic- 
carrying body) in a magnetic field, or in its absence. In this 
case, we have a problem electro-magneto-elasticity. 

In modern technology rational constructions and com- 
ponents used shell. They are in most cases naturally or 
structurally anisotropic. The problem of interaction of 
structural elements such as shells and plates with the 
electromagnetic field can arise in many areas of mo- 
dern technology. The impact of time-dependent magnetic 
fields on the metal structures causes the bulk of electro- 
dynamics forces. Particularly significant impacts on the 
electrodynamics forces are thin-walled elements, plates 
and shells. This in turn requires the study of the stress- 
strain state of plates and shells to take into account the 
geometric nonlinearity. Therefore, the study of unsteady 
problems of deformation of flexible current-carrying 
plates and shells in a magnetic field on the basis of a 

nonlinear system of magneto elasticity represents actual 
scientific task. 

2. Nonlinear Formulation of the Problem 

We will consider flexible current-carrying conical shell 
with variable thickness along the meridian under the 
influence of transient electromagnetic and mechanical 
fields. Neglecting the influence of the processes of pola- 
rization and magnetization, and thermal stresses believe 
that the shell is brought to the edge of an alternating 
electrical current from an external source. Presupposes 
that the electric current in the unperturbed state is evenly 
distributed throughout the body (current density does not 
depend on the origin). The elastic properties of the 
coating material are considered orthotropic, the main 
directions of elasticity which coincide with the corres- 
ponding coordinate lines, the electromagnetic properties 
of the material are characterized by tensors of electrical 
conductivity i j , magnetic permeability i j , dielectric 
constant i j . Thus, on the basis of crystal physics, for the 
class of conducting orthotropic media with orthorhombic 
crystal structure believe that the tensors i j , i j  and 

i j  take diagonal. In this case, any second-order surface 
has three mutually perpendicular axes of the second order, 
and you can position the axes are parallel to the crystallo- 
graphic axes of the second order and second order char- 
acteristic surface has all the elements of symmetry, which 
can be a class orthorhombic system. Assume that the 
geometrical and mechanical characteristics of the body 

Copyright © 2013 SciRes.                                                                               OJAppS 



R. S. INDIAMINOV 319

such that the description of the deformation process is 
applicable version of the geometrically nonlinear theory 
of thin shells in the quadratic approximation. Also assume 
that the relative strength of the electric field E  and 
magnetic field are H  performed electromagnetic hy- 
pothesis [1]: 
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These assumptions are somewhat analogous to the 
electrodynamics hypothesis of no deformable normals 
and together with the latter hypothesis are magneto elas- 
ticity thin bodies. The adoption of these hypotheses can 
reduce the problem of three-dimensional deformation of 
the body to the problem of deformation chosen arbitrarily 
coordinate surface. Coordinate surface in the unreformed 
state belongs to the curvilinear orthogonal coordinate 
system s  and  , where  —the length of the arc gen-
erator (meridian), measured from a fixed point, a cen- 
tral angle in a parallel circle, measured from the selected 
plane. Coordinate lines  and consts  const   are 
the lines of the principal curvatures of the coordinate 
surface. Choosing the coordinate   normal to the coor- 
dinate surface of revolution shell refer to the coordinate 
system of spatial coordinates , ,s   . We assume that 
the surface of a conical shell known vector of magnetic 
induction, as well as surface mechanical strength. 

Upon receipt of the resolution of the system in the 
normal Cauchy form chosen as the basic functions of 
selecting these functions in the future  

, , , , , , ,S S S Su w N Q M B E   

you can choose different combinations of fixing the cone. 
Differential system of equations in core functions, de- 

scribing the stress-strain state of the current-carrying 
shells in a magnetic field, taking into account the geo- 
metric nonlinearity and orthotropic conductivity, solved 
for the first derivative of the required functions for one of 
the coordinates. We assume that all the components of 
the excited electromagnetic field and the displacement 
field in the equations of the problem magneto elasticity is 
independent coordinates  , believe that the elastic pro- 
perties of the material and electromagnet elasticity me- 
chanical shells do not vary along the parallels. After 
some transformations [2], we obtain a complete system 
of nonlinear differential equations magneto elasticity in 

the Cauchy form, which describes the stress-strain state 
of a current-carrying orthotropic conical shell under un- 
steady effects of mechanical and magnetic fields. 
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Used in the conventional (1), (2) shell theory and the 
theory of electromagnet elasticity notation. In addition, 
the following notation is introduced: S —the tangential 
components of the magnetic field on the surface of the 
current-carrying conical shell. The solution of boundary 
value problems magneto elasticity associated with certain 
difficulties. This is because the resolution of the system 
(2) is a system of differential equations of hyperbolic- 
parabolic type of the eighth order with variable coeffi- 
cients. Ponder motive Lorentz force components include 
nonlinear terms, taking into account the displacement 
caused by the shell when it is deformed. 

B
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Developed methods to the numerical solution of the 
new class of related problems magneto elasticity theory 
of orthotropic conical shells of revolution having or- 
thotropic conductivity, based on the consistent applica- 
tion of the finite-difference scheme of Numark, quasilin- 
earization method and discrete orthogonalization [2-5]. 

For effective use of the proposed method suggest that 
the appearance of the external magnetic field does not 
appear sharp skin effect on the shell thickness and the 
electromagnetic process is moving fast to coordinate   
mode close to steady. Note that, using the scheme of 
Numark, the entire range of variation of the time will be 
divided into separate small time intervals and trace the 
history of deformation, consistently solving the problem 
at each time step. 

As an example, consider the nonlinear behavior of 
the current-carrying orthotropic conical shell of variable 
thickness  
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and magnetic field 
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and that the shell has a finite orthotropic electrical con- 
ductivity  

 1 2 3, ,    . 

Investigate the behavior of orthotropic shell of variable 
thickness depending on the alteration of the electric cur- 
rent, which is changed as follows (5 versions):  
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Solution of the problem is defined on a time interval of 
time  integration step was chosen equal 

. Maximum values obtained at time step 
. Note that in this case, the anisotropy of the 

electrical resistance is 

210 c 
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t  
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3 1 .     4.07
In Figures 1 and 2, respectively, given the distribution 

of the maximum values of the tangential SF   and 
normal components F   of the Lorentz force as a 
function of time 0.05мs   at all options for changing 
the external current СТJ . As can be seen from the fig- 
ures, with an increase in value of an external electric 
current value of the tangential and normal components of 
the Lorentz force increases, the normal component of the 
Lorentz force for Options 2 and 3 changes symmetri- 
cally on time and has about the same absolute values 
(Figure 2). 

3. Conclusions 

We note that the numerical example illustrates the possi- 
bility of using our methods for solution of geometrically 
nonlinear problems on magneto-elastisity of shells. The 
above equations together with the solution procedure are 
capable of describing the anisotropy of the material, the 
anisotropy of the internal electromagnetic field of the 
shell, and the effect of strains on the electromagnetic 
properties of the body.  

The above results make it possible to evaluate the im- 
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pact on the external shell of the electric current and the 
magnetic induction, and their combined effects. Thus, by 
choosing the direction and magnitude of external electric 
current density, it is possible to optimize the stress state 
of the shell. 
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Figure 2. Change in the normal component of the Lorentz 
force depending on the time when  all op- 

tions for changing the external electric current
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