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ABSTRACT

In this paper, we considered linear block codes over R, =F, +uF, +VvF, +qu],u2 =v* =0,uv=vu where ¢=p",
m € N. First we looked at the structure of the ring. It was shown that R, is neither a finite chain ring nor a principal

ideal ring but is a local ring. We then established a generator matrix for the linear block codes and equipped it with a
homogeneous weight function. Field codes were then constructed as images of these codes by using a basis of R, over

F,, . Bounds on the minimum Hamming distance of the image codes were then derived. A code meeting such bounds is

given as an example.
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1. Introduction

Let p be a prime number, meN, ¢=p" and F, de-
note the Galois field with ¢ elements. During the late
1990s, C. Bachoc used linear block codes over F, +uF,,
u> =0 for constructing modular lattices. Its success
motivated the study of linear block codes over the finite
chainring F, +uF,. And many of the results from these
studies have been extended over finite chain rings of the
form
F,+uF, +u2Fq +...+uHF(],u’ =0,reN.

Such rings can be seen as natural extensions of F, +uf, .

Another ring extension of F, +uf, is
R, =F, +uF, +VvF, +uvF,

where u* =v* =0, uv = vu. Unlike F, +uF,, R_is neither
a finite chain ring nor a principal ideal ring. B. Yildiz and
S. Karadeniz introduced linear block codes over the ring
F, +uF, +vF, +uvF, in [6]. Self-dual codes, cyclic codes
and constacyclic codes over this ring were also studied
by these authors in [3,7,8]. In 2011, X. Xu and X. Liu
studied the structure of cyclic codes over R, in [5].

In this work, we will analyze linear block codes over
R, . The structure of the ring will be discussed in Section
2. The generator matrix of linear block codes over R,
and weight functions defined on R, will be tackled in
Section 3. The ¢ -ary images of these linear block codes
and bounds on its minimum Hamming distance will be
presented in Sections 4 and 5, respectively. Lastly, a
code meeting these bounds is given in Section 6.
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2. Preliminaries and Definitions
Structure of the Ring F, +uF, +vF, +uvF,

Let R, denote the ring F, +uF, +vF, +uvF, whose

elements can be uniquely written as a+bu+cv+duv
where a,b,c,d € F,. An element of R, is a unit if and

only if a#0. The ring has ¢+5 ideals namely (0),
(uv),(v),(u,v),R,,(u+ jv) where jeF,. R, isnota
principal ideal ring since the maximal ideal (u,v) is
generated by u# and v. The cardinality of the ideals are
|(uv)| =q, |(v)| = |(u + jv)| =q°, |(u,v)| =¢’, and |Rq| =q*.
Its lattice of ideals is shown in Figure 1. As can be seen
in the lattice of ideals, R, is not a finite chain ring. But

it is a local, Noetherian and Artinian ring. All zero divi-
sors are the elements of (u,v)\(0) and its units are the
elements of R \(u,v).

Fpm + ulfpm 4 vFpm + uvFpm

|
(w,v)

A

(w) (v) (u+v)-(u+jv)

\\|/

(uw)

|
(0)

Figure 1. Lattice of ideals of F, +uF, +vF, +uvF,.
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Clearly, the ring is isomorphic to
Ei[x,y]/(xz,yz,xy —yx) . It is also isomorphic to the
ring of all 4x4 matrices of the form

a b ¢ d
0 a 0 ¢
0 0 a b
0 0 0 a

Moreover, R, is Frobenius with generating character

ﬂz‘r d

YR, > T,atbutcv+duvise” where tr denotes
the trace map on F, and T is the multiplicative group of

unit complex numbers.
Further, R, is a vector space over F, with dimension

4. A basis of R, over F, is given by the set {l,u,v, uv}
which we will refer to as the polynomial basis of R, .
Another basis considered in this work is

{I+u+v+u,1+v+uv,l+u+uv,l+u+v}.

3. Linear Block Codes over EI"’”E; +vEI +qu1

Any linear block code over a finite commutative ring R
has a generator matrix which can be put in the following
form

allkl 4, A5 A

a21k2 a2A2,3 azA2,1+|

Q)
azlk, alAl,Hl
where 4, ; are binary matrices for i>1 and are matrices

!
over R for i=1. A code of this form has H|aiR|ki
i=1

elements, where the a,'s define the nonzero equiva-
lence classes [q,].[a, ], --,[a,] under the equivalence

relation on R defined by

a~b<sifa=bu foraunitu in R

aR= {x|x = q,r for some r eR} ; and the blanks in G are

[k] AI,Z A1,3 A1,4 A1,5
vl,, vD,; vD,, vD,
ul ks uD, , uD;

(u+I,, (u+v)D, 5

(u +jv)Ikr (u +jv)D

to be filled with zeros.

A linear block code B of length n over R, is an
R, -submodule of R. B has a generator matrix which
can be put in the form shown in Figure 2 where 4 ;
are k, xk;, matrices over R, D, are k xk, matri-
ces over F, and the blank parts of G[B] are to be

filled with zeros. Moreover, B has ¢ -¢*-¢""
q+2

codewords where ¢= )k . A linear block code over
i=2
R, is free ifand only if k, =0 forall i=2,---,¢g+3.

Now, we equip B with two weight functions namely
the usual Hamming metric and a homogeneous weight
function.

Lemma 2.1. (7. Honold, [2]) Let R be a Frobenius
ring with generating character y , then every homoge-
neous weight wy,, on R can be expressed in terms of y
as follows

IR% > 2(w) (1)

yeR®

Wyom =1 | 1=

where R* is the group of units of R.
Theorem 2.1. A homogeneous weight wyom on R, is
given by

r if xeR, \(uv)
Whom (X) = % if xe(uv)\(0) 2)
0 otherwise

Proof: Let x=a+bu+cv+duve R . Now, using the
previous lemma, every homogeneous weight on R, can
be expressed as

1
Wiom = 1=—= 2 7 (wy
=T\ =i 20

Case 1. Let xeR’. Thereare (¢—1)g° units having

m—1

the same d, for any d e F,. But there are p ele-

ments of F), that has trace j, for any j e F, . Hence,

Al,q+4
vD.

2,q+4

uD.

3,q+4

(u+v)D, .4

ror+l r,q+4

‘(u+jv)D

uvlkq+3 uvD, 5 .4

Figure 2. Generator Matrix of Linear Block Codes over F,+uF, +vF, + uvF,.
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> x(w)=(¢-D)a* (") X er’

yER; Jer,

27i .
-
But > e” =0.So, wy,=I.
jer
Case 2. Let xe(uv)\(0). For every acF,, there
are ¢’ units of the form y=a+bu+cv+duv. Now,

m—1

)4 of these have the same trace value j, for any

J € F, while there are p""' =1 of them with trace zero.

Hence,
27
Y alw)=¢(p") e’ +q' (pm 1),
yeRry JjeFy

27i
But Y e’ =-1.So, w,, =—LT.
jquX q_l
Case 3. Let xe(u,v)\(uv). There are g-—1 ele-
ments of (u,v)\(uv) that have the same coefficient for
uv. For each element x e (u,v)\(uv) appears g copies

in the multiset {xy|y €R,xe (u,v)\(uv)} . Moreover,

there are p"~' elements of F, that has trace j, for any
J € F, . Hence
27i .
-
> 2(w)=(¢-Dq(p"") e’ =T.
yeR; JeFy,

We extend this to R) naturally: if x=(x,x,,"-,x,)
then W, (x) =Y W (x,). The homogeneous (resp.
i1

Hamming) distance between any distinct vectors x,y € R/,
denoted by d,,, (x,») (resp. d, (x,y)), is defined as
Whom (x - y) (resp. wy, (x - y) ). We will denote the mini-
mum homogeneous distance (resp. Hamming) distance

o(1,)  o(4.)  4(4)
p(vI,) #(va,)  B(v4y)
p(uly,)  #(ud,)  4(ud,s)
p(uvl,) ¢ (uvd,,) ¢(uvd,y)
p(vi,,) #(vD,s)

¢(uv1kz) ¢(uvD2’3)

¢(uv1k1)

¢((” + j")[k,) ¢((” + jV)D1.1+1)
¢(”VD1‘1+1)

by a linear block code over R, by d,,, (resp. dj).

4. The g-ary Images of Linear Block Codes
over F +uF, +vF +wk,

Let b,,b,,b;,b, be distinct elements of an ordered basis
of R, . Then any element of R, can be written in the
4
form ) ab,,a, € F,. Define the mapping
i=1

g:R, —>F,
4
> ab > (ay,a,,ay,a,)
i=1

We then extend ¢ to R/ coordinate-wise: if

4
x=(x,%,,x,) and x, =) a b, then
=

¢(x) :(al,ls‘”»amsaz,la"'»02,4»”'aan,la”‘aan,4)~

It is easy to show that ¢ is an F, -module isomor-
phism.

Theorem 4.1. If B is a linear block code over R
of length n, then ¢(B)= {¢(x)|x € B} is a linear block
code over F, withlength 4n.

Proof: First we show that for every x e B,¢(x)e F;" .
Let x=(x,x,,-x,)€B, Since #(x,)eF, for any
i=1,2,---,n, then ¢(x) e F,". Next we show that ¢(B)
is a subspace of F"".Let seF, andlet y,y, €¢(B).
Then there exist x,x, € B such that y=¢(x) and
v =¢(x). But sy+y, =¢@(sx+x) since ¢ is a mod-
ule homomorphism. Since sx+x, € B, sy+y, € ¢(B).
Thus, $(B) isa subspaceof F,".

Theorem 4.2. Let G[B] be the generator matrix of B
given in Figure 2. Then G[¢(B)] has a generator ma-
trix that is permutation-equivalent to the matrix given in
Figure 3.

¢(44)
$(va, ,..)
(ud,,..)
¢ (uvd, ,.,)
$(vD,,.s)
¢ (uvD,,.,)

¢((” + jV)D1,1+1)
¢(”VD1‘1+1)

¢ (uv[,%3 ) ¢ (uVDq+3,q+4)

Figure 3. Generator Matrix of ¢(B).
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Proof: Let B have a generator matrix given in Figure
2. Then for every ce B, c¢ can be expressed as yG

4 k
where ye R;‘ , k=Y k , that is, ¢=) sz where
i i1
s;€R, and the z,'s are the k rows of G[B]. Using
any basis of R,, ¢ can further be written

k4
ci,jvzi +szi,/’uvzi
1 i=1 j=1

spans ¢(B).But
e vz, =0 whenever i=k +1,---,k +k, or
i=k—k ,+1,....k;

q+3
e uz,=0 whenever i=k +k,+1,---,k +k,+k, or
i=k-k ,+1,....k;

q+3
e uvz, =0 whenever i>k; ;and

* uz, = jvz,forsome jeF, whenever

-1 /
i=>k+1..,> k forsome /.

i=1 i=1
Define the set £ as the resulting set once the unde-
sirable cases listed above are deducted from the set S.
Notice that the elements of £ are the rows of the ma-
trix given in Figure 3 we will denote by M. Now, define
B, as the matrix that consists of the rows

-1 :
4k, +22kl. +1,...,4k +22k, of M so that M can be

i=2 i=2

B 1
written in the form
Bq+3

We wish to show that the rows of M are linearly inde-
pendent. Without loss of generality, let &, =1 for all i.
Consider a row of B, . Clearly, it cannot be expressed as
a linear combination of rows from any of the B;'s ,
j>i. We know that ¢(1),¢(u),¢(v),4(uv) are line-
arly independent and so any nonzero linear combination
of these vectors is not the zero vector. Thus, any row of
B, cannot be written as a linear combination of rows of
any of the B,'s, j<i.Hence, the rows of M are line-
arly independent.

The succeeding theorems are direct consequences of
Theorem 4.2.
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Corollary 4.3. If B is free with rank £, then ¢(B) is
free with rank 4x.

Corollary 4.4. Let B be a free rate-k/n linear block
code over R, with generator matrix (/ A), then the
generator matrix of the g-ary image of B with respect to
the basis {I+u+v+uv,l+v+uv,l+u+uv,l+u+v} is
permutation-equivalent to

0 I, I, I, ExF+H D+E D+F D+H
I, 0 I, 0 D+E 0 D E
I, I, 0 0 D+F D 0 F
I, 0 0 I, D 0 0 D

where A=D+FEu+Fv+Huv.

5. Distance Bounds of the Images of Linear
Block Codes over F,+uF, +vF,+uvF,

The minimum distance of a code gives a simple indica-
tion of the goodness of a code. A field code can correct at

most LTJ errors where J is its minimum Hamming

distance. Hence, we are interested with upper bounds of
the minimum Hamming distance of the images of the
linear block codes over R, . For the succeeding discus-
sions, we let B be a rate- k/n linear block code over R, .
Also, we denote by o the minimum Hamming distance
of ¢(B)

Theorem 5.1. (Singleton-type Bound) Let B be free.
Then

S<4(n—k)+1. 3)

The above theorem is a direct consequence of Corol-
lary 4.3 and the Singleton Bound for codes over fields
while the next theorem is a direct consequence of the
Plotkin Bound for codes over fields.

Theorem 5.2. (Plotkin-type Bound) Let B be free.
Then

5< Lﬂzkjl(q—l)@n)J. “

The next bound is in terms of the average homogene-
ous weight I' on F, and the minimum Hamming dis-
tance of B.

Theorem 5.3. (Rains-type bound) For a code B,

d,<6<4d,. “

Proof: Note that ¢ is bounded above by 4n. If for
every xeB,w, (B)=d, then §<4d, . Now, & is
bounded below by d,, since 1 is the minimum nonzero
value of the Hamming weight on F, . Thus, inequality (4)
holds.

Now, we use the concept of subcodes of B generated
by x as defined by V. Sison and P. Sole in [4]. The sub-
code of B generated by x e B, denoted by B,_, is the set
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{ax|a € R} . A generalization of the Rabizzoni bound
was derived in [4]. Here we prove a parallel bound for
linear block codes over R, . The proof presented here is
based on the proof in [4].

Lemma 5.4. Let xe B,x#0. B_ is free if and only
B|=4q".

Proof: (=) Let B, be free then the equation ax =0 has
only the trivial solution. In particular, (a—b)x=0=
a=b,thatis, a#b implies ax# bx. Thus, |BX| =q".
(<) Let [B|=¢". Then for any nonzero a and b,
a#b= ax#bx. That is, (a—b)x:0:>a=b. But x
generates B_ by definition. So, B, is free.

The next statement is a direct consequence of the car-
dinality of the ideals of R,

Corollary 5.5. Let x € B. Then
o xe(uw)"\(0)" ifandonlyif [B|=p";

if

n

o xe(u+v) \(w) or xe(v) \(uv)" ifand only
B

X

2m

=p
. xe(u,v)"\S if and only if
S=U (u+jv) u(v).
jqu

if

B.|=p’" where

x

Theorem 5.5. (Rabizzoni-type Bound) Let x be a
minimum Hamming weight codeword. Then

BX q—l
0L, | —F———4d, | (5)
B |-1 ¢
Moreover, if |B | is free, then
3
5g5x{ a 1(61,—1)401,,J. (6)
gt -

Proof: Let x be a minimum Hamming weight code-
word in B then consider subcode B, .Let o, denote the
minimum Hamming distance of ¢(B,). The minimum
Hamming distance of B, is still “# since B, is a
subcode of B. Also ¢(B,) is a subcode of ¢(B) with
5 <6, The effective length of ¢(B,) is 4d, coming
from the d, nonzero positions in x. Direct application
of the Rabizzoni bound results to inequality (5) holds. By
Lemma 5.4, inequality (6) follows.

6. Example

Consider the free rate-1/4 self-orthogonal code B over
R, generated by G=(1 1+v l+u+v l+u+uv). If
G=(I 4) then I, =1,D=(1 1 1),E=(0 1 1),
F=(1 1 0) and H=(0 0 1). A codeword in B
either has homogeneous weight 0,4 or 8. The minimum
Hamming distance of B is 4. The binary image of B was
obtained with respect to the basis

{1+u+v+uv,1+v+uv,l+u+uv,1+u+v}.

Copyright © 2013 SciRes.

Table 1. Comparison of bounds for § .

Singleton-type 6=8<13
Plotkin-type 8<8=[8.53]
Rains-type 4<8<16
Rabizzoni-type
|B,|=16 8<8
B|=4 8<10.6
|B,|=2 8<16

Using Corollary 4.4, G[¢(B)] is permutation-
equivalent to

0 0
1 1
1 0
1

- o o O
_ = o o

0
0
1
0

c o = ~
- o o =
—_ o = =
(= - =]
o o = o
c o = ~
—_—_ s o~
—_ =
- o = o

1
0
1
0 0

o = o =

The image code has a minimum Hamming distance of
8 and is self-orthogonal. In Table 1, we can see that B
meets the upper bound of the Plotkin-type and Rabiz-
zoni-type bound.
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