Images of Linear Block Codes over $F_{q}+u F_{q}+v F_{q}+u v F_{q}$

Jane D. Palacio, Virgilio P. Sison
Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna, Philippines
Email: jdpalacio@uplb.edu.ph, vpsison@uplb.edu.ph

Received 2013

Abstract

In this paper, we considered linear block codes over $R_{q}=F_{q}+u F_{q}+v F_{q}+u v F_{q}, u^{2}=v^{2}=0, u v=v u$ where $q=p^{m}$, $m \in \mathbb{N}$. First we looked at the structure of the ring. It was shown that R_{q} is neither a finite chain ring nor a principal ideal ring but is a local ring. We then established a generator matrix for the linear block codes and equipped it with a homogeneous weight function. Field codes were then constructed as images of these codes by using a basis of R_{q} over F_{q}. Bounds on the minimum Hamming distance of the image codes were then derived. A code meeting such bounds is given as an example.

Keywords: q-ary Images; Distance Bounds

1. Introduction

Let p be a prime number, $m \in \mathbb{N}, q=p^{m}$ and F_{q} denote the Galois field with q elements. During the late 1990s, C. Bachoc used linear block codes over $F_{p}+u F_{p}$, $u^{2}=0$ for constructing modular lattices. Its success motivated the study of linear block codes over the finite chain ring $F_{p}+u F_{p}$. And many of the results from these studies have been extended over finite chain rings of the form

$$
F_{q}+u F_{q}+u^{2} F_{q}+\ldots+u^{r-1} F_{q}, u^{r}=0, r \in \mathbb{N} .
$$

Such rings can be seen as natural extensions of $F_{q}+u F_{q}$. Another ring extension of $F_{q}+u F_{q}$ is

$$
R_{q}=F_{q}+u F_{q}+v F_{q}+u v F_{q}
$$

where $u^{2}=v^{2}=0, u v=v u$. Unlike $F_{q}+u F_{q}, R_{q}$ is neither a finite chain ring nor a principal ideal ring. B. Yildiz and S. Karadeniz introduced linear block codes over the ring $F_{2}+u F_{2}+v F_{2}+u v F_{2}$ in [6]. Self-dual codes, cyclic codes and constacyclic codes over this ring were also studied by these authors in [3,7,8]. In 2011, X. Xu and X. Liu studied the structure of cyclic codes over R_{q} in [5].
In this work, we will analyze linear block codes over R_{q}. The structure of the ring will be discussed in Section 2. The generator matrix of linear block codes over R_{q} and weight functions defined on R_{q} will be tackled in Section 3. The q-ary images of these linear block codes and bounds on its minimum Hamming distance will be presented in Sections 4 and 5, respectively. Lastly, a code meeting these bounds is given in Section 6.

2. Preliminaries and Definitions

Structure of the Ring $\boldsymbol{F}_{q}+\boldsymbol{u} \boldsymbol{F}_{q}+\boldsymbol{v} \boldsymbol{F}_{q}+\boldsymbol{u} \boldsymbol{\nu} \boldsymbol{F}_{q}$
Let R_{q} denote the ring $F_{q}+u F_{q}+v F_{q}+u v F_{q}$ whose elements can be uniquely written as $a+b u+c v+d u v$ where $a, b, c, d \in F_{q}$. An element of R_{q} is a unit if and only if $a \neq 0$. The ring has $q+5$ ideals namely (0), $(u v),(v),(u, v), R_{q},(u+j v)$ where $j \in F_{q} . R_{q}$ is not a principal ideal ring since the maximal ideal (u, v) is generated by u and v. The cardinality of the ideals are $|(u v)|=q,|(v)|=|(u+j v)|=q^{2},|(u, v)|=q^{3}$, and $\left|R_{q}\right|=q^{4}$. Its lattice of ideals is shown in Figure 1. As can be seen in the lattice of ideals, R_{q} is not a finite chain ring. But it is a local, Noetherian and Artinian ring. All zero divisors are the elements of $(u, v) \backslash(0)$ and its units are the elements of $R_{q} \backslash(u, v)$.

Figure 1. Lattice of ideals of $\boldsymbol{F}_{q}+\boldsymbol{u} \boldsymbol{F}_{q}+\boldsymbol{v} \boldsymbol{F}_{q}+\boldsymbol{u v} \boldsymbol{F}_{q}$.

Clearly, the ring is isomorphic to
$F_{q}[x, y] /\left(x^{2}, y^{2}, x y-y x\right)$. It is also isomorphic to the ring of all 4×4 matrices of the form

$$
\left(\begin{array}{llll}
a & b & c & d \\
0 & a & 0 & c \\
0 & 0 & a & b \\
0 & 0 & 0 & a
\end{array}\right)
$$

Moreover, R_{q} is Frobenius with generating character $\chi: R_{q} \rightarrow T, a+b u+c v+d u v \mapsto e^{\frac{2 \pi i}{p} t r(d)}$ where tr denotes the trace map on F_{q} and T is the multiplicative group of unit complex numbers.

Further, R_{q} is a vector space over F_{q} with dimension 4. A basis of R_{q} over F_{q} is given by the set $\{1, u, v, u v\}$ which we will refer to as the polynomial basis of R_{q}. Another basis considered in this work is

$$
\{1+u+v+u v, 1+v+u v, 1+u+u v, 1+u+v\}
$$

3. Linear Block Codes over $\boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{u} \boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{v} \boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{u} \boldsymbol{v} \boldsymbol{F}_{\boldsymbol{q}}$

Any linear block code over a finite commutative ring R has a generator matrix which can be put in the following form

$$
G=\left(\begin{array}{lllll}
a_{1} I_{k_{1}} & A_{1,2} & A_{1,3} & \cdots & A_{1, l+1} \tag{1}\\
& a_{2} I_{k_{2}} & a_{2} A_{2,3} & \cdots & a_{2} A_{2, l+1} \\
& & \ddots & \cdots & \vdots \\
& & & a_{l} I_{k_{l}} & a_{l} A_{l, l+1}
\end{array}\right)
$$

where $A_{i, j}$ are binary matrices for $i>1$ and are matrices over R_{q} for $i=1$. A code of this form has $\prod_{i=1}^{l}\left|a_{i} R\right|^{k_{i}}$ elements, where the $a_{i} ' s$ define the nonzero equivalence classes $\left[a_{1}\right],\left[a_{2}\right], \cdots,\left[a_{l}\right]$ under the equivalence relation on R defined by

$$
a \sim b \Leftrightarrow \text { if } a=b u \text { for a unit } u \text { in } R
$$

$a_{i} R=\left\{x \mid x=a_{i} r\right.$ for some $\left.r \in R\right\} ;$ and the blanks in G are

$$
G[B]=\left(\begin{array}{lllllllll}
I_{k_{1}} & A_{1,2} & A_{1,3} & A_{1,4} & A_{1,5} & \ldots & \ldots & \ldots & A_{1, q+4} \\
& v I_{k_{2}} & v D_{2,3} & v D_{2,4} & v D_{2,5} & \ldots & \ldots & \ldots & v D_{2, q+4} \\
& & u I_{k_{3}} & u D_{3,4} & u D_{3,5} & \ldots & \ldots & \ldots & u D_{3, q+4} \\
& & & (u+v) I_{k_{4}} & (u+v) D_{4,5} & \ldots & \ldots & \ldots & (u+v) D_{4, q+4} \\
& & & \ddots & \ldots & \cdots & \ldots & \vdots \\
& & & & (u+j v) I_{k_{r}} & (u+j v) D_{r, r+1} & \cdots & (u+j v) D_{r, q+4} \\
& & & & & & \ddots & \cdots & \vdots \\
& & & & & & & u v I_{k_{q+3}} & u v D_{q+3, q+4}
\end{array}\right)
$$

Figure 2. Generator Matrix of Linear Block Codes over $\boldsymbol{F}_{q}+\boldsymbol{u} \boldsymbol{F}_{q}+\boldsymbol{v} \boldsymbol{F}_{q}+\boldsymbol{u} \boldsymbol{\nu} \boldsymbol{F}_{q}$.

$$
\sum_{y \in R_{q}^{\star}} \chi(x y)=(q-1) q^{2}\left(p^{m-1}\right) \sum_{j \in F_{p}} e^{\frac{2 \pi i}{p} j}
$$

But $\sum_{j \in F_{p}} e^{\frac{2 \pi i}{p} j}=0$. So, $w_{\text {hom }}=\Gamma$.
Case 2. Let $x \in(u v) \backslash(0)$. For every $a \in F_{q}^{\times}$, there are q^{3} units of the form $y=a+b u+c v+d u v$. Now, p^{m-1} of these have the same trace value j, for any $j \in F_{p}$ while there are $p^{m-1}-1$ of them with trace zero. Hence,

$$
\sum_{y \in R_{q}^{\star}} \chi(x y)=q^{3}\left(p^{m-1}\right) \sum_{j \in F_{q}^{\star}} e^{\frac{2 \pi i}{p} j}+q^{3}\left(p^{m-1}-1\right) .
$$

But $\sum_{j \in F_{q}^{\star}} e^{\frac{2 \pi i}{p} j}=-1$. So, $w_{\text {hom }}=\frac{q}{q-1} \Gamma$.
Case 3. Let $x \in(u, v) \backslash(u v)$. There are $q-1$ elements of $(u, v) \backslash(u v)$ that have the same coefficient for $u v$. For each element $x \in(u, v) \backslash(u v)$ appears q copies in the multiset $\left\{x y \mid y \in R_{q}^{\times}, x \in(u, v) \backslash(u v)\right\}$. Moreover, there are p^{m-1} elements of F_{q} that has trace j, for any $j \in F_{p}$. Hence

$$
\sum_{y \in R_{q}^{\times}} \chi(x y)=(q-1) q\left(p^{m-1}\right) \sum_{j \in F_{q}} e^{\frac{2 \pi i}{p} j}=\Gamma .
$$

We extend this to R_{q}^{n} naturally: if $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ then $w_{\text {hom }}(x)=\sum_{i=1}^{n} w_{\text {hom }}\left(x_{i}\right)$. The homogeneous (resp. Hamming) distance between any distinct vectors $x, y \in R_{q}^{n}$, denoted by $d_{\text {hom }}(x, y)$ (resp. $d_{H}(x, y)$), is defined as $w_{\text {hom }}(x-y)$ (resp. $w_{H}(x-y)$). We will denote the minimum homogeneous distance (resp. Hamming) distance
by a linear block code over R_{q} by $d_{\text {hom }}\left(\right.$ resp. $\left.d_{H}\right)$.

4. The q-ary Images of Linear Block Codes
 over $\boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{u} \boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{v} \boldsymbol{F}_{\boldsymbol{q}}+\boldsymbol{u} \boldsymbol{v} \boldsymbol{F}_{\boldsymbol{q}}$

Let $b_{1}, b_{2}, b_{3}, b_{4}$ be distinct elements of an ordered basis of R_{q}. Then any element of R_{q} can be written in the form $\sum_{i=1}^{4} a_{i} b_{i}, a_{i} \in F_{q}$. Define the mapping

$$
\begin{gathered}
\phi: R_{q} \rightarrow F_{q} \\
\sum_{i=1}^{4} a_{i} b_{i} \mapsto\left(a_{1}, a_{2}, a_{3}, a_{4}\right)
\end{gathered}
$$

We then extend ϕ to R_{q}^{n} coordinate-wise: if $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $x_{i}=\sum_{j=1}^{4} a_{i, j} b_{j}$ then

$$
\phi(x)=\left(a_{1,1}, \cdots, a_{1,4}, a_{2,1}, \cdots, a_{2,4}, \cdots, a_{n, 1}, \cdots, a_{n, 4}\right) .
$$

It is easy to show that ϕ is an F_{q}-module isomorphism.

Theorem 4.1. If B is a linear block code over R_{q} of length n, then $\phi(B)=\{\phi(x) \mid x \in B\}$ is a linear block code over F_{q} with length $4 n$.

Proof: First we show that for every $x \in B, \phi(x) \in F_{q}^{4 n}$. Let $x=\left(x_{1}, x_{2}, \cdots x_{n}\right) \in B$, Since $\phi\left(x_{i}\right) \in F_{q}^{4}$ for any $i=1,2, \cdots, n$, then $\phi(x) \in F_{q}^{4 n}$. Next we show that $\phi(B)$ is a subspace of $F_{q}^{4 n}$. Let $s \in F_{q}$ and let $y, y_{1} \in \phi(B)$. Then there exist $x, x_{1} \in B$ such that $y=\phi(x)$ and $y_{1}=\phi\left(x_{1}\right)$. But $s y+y_{1}=\phi\left(s x+x_{1}\right)$ since ϕ is a module homomorphism. Since $s x+x_{1} \in B, s y+y_{1} \in \phi(B)$. Thus, $\phi(B)$ is a subspace of $F_{q}^{4 n}$.

Theorem 4.2. Let $G[B]$ be the generator matrix of B given in Figure 2. Then $G[\phi(B)]$ has a generator matrix that is permutation-equivalent to the matrix given in Figure 3.

$$
\left(\begin{array}{lllllll}
\phi\left(I_{k_{1}}\right) & \phi\left(A_{1,2}\right) & \phi\left(A_{1,3}\right) & \ldots & \ldots & \ldots & \phi\left(A_{1, q+4}\right) \\
\phi\left(v I_{k_{1}}\right) & \phi\left(v A_{1,2}\right) & \phi\left(v A_{1,3}\right) & \ldots & \ldots & \ldots & \phi\left(v A_{1, q+4}\right) \\
\phi\left(u I_{k_{1}}\right) & \phi\left(u A_{1,2}\right) & \phi\left(u A_{1,3}\right) & \ldots & \ldots & \ldots & \phi\left(u A_{1, q+4}\right) \\
\phi\left(u v I_{k_{1}}\right) & \phi\left(u v A_{l_{2,2}}\right) & \phi\left(u v A_{1,3}\right) & \ldots & \ldots & \ldots & \phi\left(u v A_{1, q+4}\right) \\
& \phi\left(v I_{k_{2}}\right) & \phi\left(v D_{2,3}\right) & \ldots & \ldots & \ldots & \phi\left(v D_{2, q+4}\right) \\
& \phi\left(u v I_{k_{2}}\right) & \phi\left(u v D_{2,3}\right) & \ldots & \ldots & \ldots & \phi\left(u v D_{2, q+4}\right) \\
& \ddots & \ldots & \ldots & \ldots & \vdots \\
& & & \phi\left((u+j v) I_{k_{l}}\right) & \phi\left((u+j v) D_{l, l+1}\right) & \ldots & \phi\left((u+j v) D_{l, l+1}\right) \\
& & \phi\left(u v I_{k_{l}}\right) & \phi\left(u v D_{l, l+1}\right) & \ldots & \phi\left(u v D_{l, l+1}\right) \\
& & & \ddots & \ldots & \vdots \\
& & & & \phi\left(u v I_{k_{q+3}}\right) & \phi\left(u v D_{q+3, q+4}\right)
\end{array}\right)
$$

Figure 3. Generator Matrix of $\phi(B)$.

Proof: Let B have a generator matrix given in Figure 2. Then for every $c \in B, c$ can be expressed as $y G$ where $y \in R_{q}^{k}, k=\sum_{i=1}^{4} k_{i}$, that is, $c=\sum_{i=1}^{k} s_{i} z_{i}$ where $s_{i} \in R_{q}$ and the $z_{i}{ }^{\prime} s$ are the k rows of $G[B]$. Using any basis of R_{q}, c can further be written

$$
\sum_{i=1}^{k} \sum_{j=1}^{4} a_{i, j, l} z_{i}+\sum_{i=1}^{k} \sum_{j=1}^{4} b_{i, j} u z_{i}+\sum_{i=1}^{k} \sum_{j=1}^{4} c_{i, j} v z_{i}+\sum_{i=1}^{k} \sum_{j=1}^{4} d_{i, j} u v z_{i}
$$

Now,

$$
\begin{aligned}
\phi(c) & =\sum_{i=1}^{k} \sum_{j=1}^{4} a_{i, j} \phi\left(z_{i}\right)+\sum_{i=1}^{k} \sum_{j=1}^{4} b_{i, j} \phi\left(u z_{i}\right) \\
& +\sum_{i=1}^{k} \sum_{j=1}^{4} c_{i, j} \phi\left(v z_{i}\right)+\sum_{i=1}^{k} \sum_{j=1}^{4} d_{i, j} \phi\left(u v z_{i}\right) .
\end{aligned}
$$

Hence, $S=\left\{\phi\left(z_{i}\right), \phi\left(u z_{i}\right), \phi\left(v z_{i}\right), \phi\left(u v z_{i}\right) \mid i=1,2, \cdots, k\right\}$ spans $\phi(B)$. But

- $v z_{i}=0$ whenever $i=k_{1}+1, \cdots, k_{1}+k_{2}$ or
$i=k-k_{q+3}+1, \ldots, k$;
- $u z_{i}=0$ whenever $i=k_{1}+k_{2}+1, \cdots, k_{1}+k_{2}+k_{3}$ or $i=k-k_{q+3}+1, \ldots, k$;
- $u v z_{i}=0$ whenever $i>k_{1}$; and
- $u z_{i}=j v z_{i}$ for some $j \in F_{q}^{\times}$whenever
$i=\sum_{i=1}^{l-1} k_{i}+1, \ldots, \sum_{i=1}^{l} k_{i}$ for some l.
Define the set β as the resulting set once the undesirable cases listed above are deducted from the set S. Notice that the elements of β are the rows of the matrix given in Figure 3 we will denote by M. Now, define B_{l} as the matrix that consists of the rows $4 k_{1}+2 \sum_{i=2}^{l-1} k_{i}+1, \ldots, 4 k_{1}+2 \sum_{i=2}^{l} k_{i}$ of M so that M can be written in the form $\left(\begin{array}{l}B_{1} \\ B_{2} \\ \vdots \\ B_{q+3}\end{array}\right)$.

We wish to show that the rows of M are linearly independent. Without loss of generality, let $k_{i}=1$ for all i. Consider a row of B_{i}. Clearly, it cannot be expressed as a linear combination of rows from any of the $B_{j}{ }^{\prime} s$, $j>i$. We know that $\phi(1), \phi(u), \phi(v), \phi(u v)$ are linearly independent and so any nonzero linear combination of these vectors is not the zero vector. Thus, any row of B_{i} cannot be written as a linear combination of rows of any of the $B_{j} ' s, j \leq i$. Hence, the rows of M are linearly independent.
The succeeding theorems are direct consequences of Theorem 4.2.

Corollary 4.3. If B is free with rank k, then $\phi(B)$ is free with rank $4 k$.

Corollary 4.4. Let B be a free rate- k / n linear block code over R_{2} with generator matrix $\left(\begin{array}{ll}I & A\end{array}\right)$, then the generator matrix of the q-ary image of B with respect to the basis $\{1+u+v+u v, 1+v+u v, 1+u+u v, 1+u+v\}$ is permutation-equivalent to
$\left(\begin{array}{llllllll}0 & I_{k} & I_{k} & I_{k} & E+F+H & D+E & D+F & D+H \\ I_{k} & 0 & I_{k} & 0 & D+E & 0 & D & E \\ I_{k} & I_{k} & 0 & 0 & D+F & D & 0 & F \\ I_{k} & 0 & 0 & I_{k} & D & 0 & 0 & D\end{array}\right)$
where $A=D+E u+F v+H u v$.

5. Distance Bounds of the Images of Linear Block Codes over $F_{q}+\boldsymbol{u} F_{q}+\boldsymbol{v} F_{q}+\boldsymbol{u v} \boldsymbol{F}_{q}$

The minimum distance of a code gives a simple indication of the goodness of a code. A field code can correct at most $\left\lfloor\frac{\delta-1}{2}\right\rfloor$ errors where δ is its minimum Hamming distance. Hence, we are interested with upper bounds of the minimum Hamming distance of the images of the linear block codes over R_{q}. For the succeeding discussions, we let B be a rate- k / n linear block code over R_{q}. Also, we denote by δ the minimum Hamming distance of $\phi(B)$.

Theorem 5.1. (Singleton-type Bound) Let B be free. Then

$$
\begin{equation*}
\delta \leq 4(n-k)+1 . \tag{3}
\end{equation*}
$$

The above theorem is a direct consequence of Corollary 4.3 and the Singleton Bound for codes over fields while the next theorem is a direct consequence of the Plotkin Bound for codes over fields.

Theorem 5.2. (Plotkin-type Bound) Let B be free. Then

$$
\begin{equation*}
\delta \leq\left\lfloor\frac{q^{4 k-1}}{q^{4 k}-1}(q-1)(4 n)\right\rfloor . \tag{4}
\end{equation*}
$$

The next bound is in terms of the average homogeneous weight Γ on F_{q} and the minimum Hamming distance of B.

Theorem 5.3. (Rains-type bound) For a code B,

$$
\begin{equation*}
d_{H} \leq \delta \leq 4 d_{H} \tag{4}
\end{equation*}
$$

Proof: Note that δ is bounded above by $4 n$. If for every $x \in B, w_{H}(B)=d_{H}$ then $\delta \leq 4 d_{H}$. Now, δ is bounded below by d_{H} since 1 is the minimum nonzero value of the Hamming weight on F_{q}. Thus, inequality (4) holds.

Now, we use the concept of subcodes of B generated by x as defined by V. Sison and P. Sole in [4]. The subcode of B generated by $x \in B$, denoted by B_{x}, is the set
$\{a x \mid a \in R\}$. A generalization of the Rabizzoni bound was derived in [4]. Here we prove a parallel bound for linear block codes over R_{q}. The proof presented here is based on the proof in [4].

Lemma 5.4. Let $x \in B, x \neq 0 . B_{x}$ is free if and only if $\left|B_{x}\right|=q^{4}$.
Proof: (\Rightarrow) Let B_{x} be free then the equation $a x=0$ has only the trivial solution. In particular, $(a-b) x=0 \Rightarrow$ $a=b$, that is, $a \neq b$ implies $a x \neq b x$. Thus, $\left|B_{x}\right|=q^{4}$. (\Leftarrow) Let $\left|B_{x}\right|=q^{4}$. Then for any nonzero a and b, $a \neq b \Rightarrow a x \neq b x$. That is, $(a-b) x=0 \Rightarrow a=b$. But x generates B_{x} by definition. So, B_{x} is free.

The next statement is a direct consequence of the cardinality of the ideals of R_{q}

Corollary 5.5. Let $x \in B$. Then

- $x \in(u v)^{n} \backslash(0)^{n}$ if and only if $\left|B_{x}\right|=p^{m}$;
- $x \in(u+j v)^{n} \backslash(u v)^{n}$ or $x \in(v)^{n} \backslash(u v)^{n}$ if and only if $\left|B_{x}\right|=p^{2 m}$;
- $x \in(u, v)^{n} \backslash S$ if and only if $\left|B_{x}\right|=p^{3 m}$ where $S=\bigcup_{j \in F_{q}}(u+j v)^{n} \cup(v)^{n}$.
Theorem 5.5. (Rabizzoni-type Bound) Let x be a minimum Hamming weight codeword. Then

$$
\begin{equation*}
\delta \leq \delta_{x} \leq\left\lfloor\frac{\left|B_{x}\right|}{\left|B_{x}\right|-1} \frac{q-1}{q} 4 d_{H}\right\rfloor \tag{5}
\end{equation*}
$$

Moreover, if $\left|B_{x}\right|$ is free, then

$$
\begin{equation*}
\delta \leq \delta_{x} \leq\left\lfloor\frac{q^{3}}{q^{4}-1}(q-1) 4 d_{H}\right\rfloor . \tag{6}
\end{equation*}
$$

Proof: Let x be a minimum Hamming weight codeword in B then consider subcode B_{x}. Let δ_{x} denote the minimum Hamming distance of $\phi\left(B_{d^{x}}\right)$. The minimum Hamming distance of B_{x} is still d_{H} since B_{x} is a subcode of B. Also $\phi\left(B_{x}\right)$ is a subcode of $\phi(B)$ with $\delta \leq \delta_{x}$. The effective length of $\phi\left(B_{x}\right)$ is $4 d_{H}$ coming from the d_{H} nonzero positions in x. Direct application of the Rabizzoni bound results to inequality (5) holds. By Lemma 5.4, inequality (6) follows.

6. Example

Consider the free rate- $1 / 4$ self-orthogonal code B over R_{2} generated by $G=\left(\begin{array}{lll}1 & 1+v & 1+u+v \\ 1+u+u v\end{array}\right)$. If $G=\left(\begin{array}{ll}I & A\end{array}\right)$ then $I_{k}=1, D=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right), E=\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$, $F=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ and $H=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$. A codeword in B either has homogeneous weight 0,4 or 8 . The minimum Hamming distance of B is 4 . The binary image of B was obtained with respect to the basis

$$
\{1+u+v+u v, 1+v+u v, 1+u+u v, 1+u+v\} .
$$

Table 1. Comparison of bounds for $\boldsymbol{\delta}$.

Singleton-type	$\delta=8 \leq 13$
Plotkin-type	$8 \leq 8=\lfloor 8.5 \overline{3}\rfloor$
Rains-type	$4 \leq 8 \leq 16$
Rabizzoni-type	
$\left\|B_{x}\right\|=16$	$8 \leq 8$
$\left\|B_{x}\right\|=4$	$8 \leq 10 . \overline{6}$
$\left\|B_{x}\right\|=2$	$8 \leq 16$

Using Corollary 4.4, $G[\phi(B)]$ is permutationequivalent to
$\left(\begin{array}{llllllllllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right)$.
The image code has a minimum Hamming distance of 8 and is self-orthogonal. In Table 1, we can see that B meets the upper bound of the Plotkin-type and Rabiz-zoni-type bound.

REFERENCES

[1] S. T. Dougherty, M. K. Gupta and K. Shiromoto, "On Generalized Weights for Codes over Finite Rings," preprint, 2002.
[2] T. Honold, "A Characterization of Finite Frobenius Rings," Archiv der Mathematik, Vol. 40, No. 6, 2001, pp. 406-415. doi: 10.1007/PL00000451
[3] S. Karadeniz and B. Yildiz, " $(1+v)$-Constacyclic Codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$," Journal of the Franklin Institute, Vol. 347, 2011, pp. 2652-2632.
[4] V. Sison and P. Solè, "Bounds on the Minimum Homogeneous Distance of the p^{r}-ary Image of Linear Block Codes over the Galois Ring $G R\left(p^{r}, m\right)$," IEEE transactions on Information Theory, Vol. 53, No. 6, 2007, pp. 2270-2273. doi: 10.1109/TIT.2007.896891
[5] X. Xu and X. Liu, "On the Structure of Cyclic Codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$," Wuhan University Journal of Natural Sciences, Vol. 16, No. 5, 2011, pp. 457-460. doi:10.1007/s11859-011-0780-5
[6] B. Yildizand S. Karadeniz, "Linear Codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$," Designs Codes Cryptography, Vol. 54, No. 1, 2010, pp. 61-81. doi:10.1007/s10623-009-9309-8
[7] B. Yildiz and S. Karadeniz, "Self-dual Codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$," Journal of the Franklin Institute, Vol. 347, 2010, No. 10, pp. 1888-1894. doi:10.1016/j.jfranklin.2010.10.007
[8] B. Yildiz and S. Karadeniz, "Cyclic Codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$," Designs Codes Cryptography, Vol. 58, No. 3, 2011, pp. 221-234. doi:10.1007/s $10623-010-9399-3$

