

Images of Linear Block Codes over $F_q + uF_q + vF_q + uvF_q$

Jane D. Palacio, Virgilio P. Sison

Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna, Philippines Email: jdpalacio@uplb.edu.ph, vpsison@uplb.edu.ph

Received 2013

ABSTRACT

In this paper, we considered linear block codes over $R_q = F_q + uF_q + vF_q + uvF_q$, $u^2 = v^2 = 0$, uv = vu where $q = p^m$, $m \in \mathbb{N}$. First we looked at the structure of the ring. It was shown that R_q is neither a finite chain ring nor a principal ideal ring but is a local ring. We then established a generator matrix for the linear block codes and equipped it with a homogeneous weight function. Field codes were then constructed as images of these codes by using a basis of R_q over

 F_q . Bounds on the minimum Hamming distance of the image codes were then derived. A code meeting such bounds is given as an example.

Keywords: q -ary Images; Distance Bounds

1. Introduction

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and F_q denote the Galois field with q elements. During the late 1990s, C. Bachoc used linear block codes over $F_p + uF_p$, $u^2 = 0$ for constructing modular lattices. Its success motivated the study of linear block codes over the finite chain ring $F_p + uF_p$. And many of the results from these studies have been extended over finite chain rings of the form

$$F_{q} + uF_{q} + u^{2}F_{q} + \dots + u^{r-1}F_{q}, u^{r} = 0, r \in \mathbb{N}.$$

Such rings can be seen as natural extensions of $F_q + uF_q$. Another ring extension of $F_q + uF_q$ is

$$R_q = F_q + uF_q + vF_q + uvF_q$$

where $u^2 = v^2 = 0$, uv = vu. Unlike $F_q + uF_q$, R_q is neither a finite chain ring nor a principal ideal ring. B. Yildiz and S. Karadeniz introduced linear block codes over the ring $F_2 + uF_2 + vF_2 + uvF_2$ in [6]. Self-dual codes, cyclic codes and constacyclic codes over this ring were also studied by these authors in [3,7,8]. In 2011, X. Xu and X. Liu studied the structure of cyclic codes over R_q in [5].

In this work, we will analyze linear block codes over R_q . The structure of the ring will be discussed in Section 2. The generator matrix of linear block codes over R_q and weight functions defined on R_q will be tackled in Section 3. The q-ary images of these linear block codes and bounds on its minimum Hamming distance will be presented in Sections 4 and 5, respectively. Lastly, a code meeting these bounds is given in Section 6.

2. Preliminaries and Definitions

Structure of the Ring $F_q + uF_q + vF_q + uvF_q$

Let R_q denote the ring $F_q + uF_q + vF_q + uvF_q$ whose elements can be uniquely written as a + bu + cv + duvwhere $a, b, c, d \in F_q$. An element of R_q is a unit if and only if $a \neq 0$. The ring has q + 5 ideals namely (0), $(uv), (v), (u, v), R_q, (u + jv)$ where $j \in F_q$. R_q is not a principal ideal ring since the maximal ideal (u, v) is generated by u and v. The cardinality of the ideals are $|(uv)| = q, |(v)| = |(u + jv)| = q^2, |(u, v)| = q^3$, and $|R_q| = q^4$. Its lattice of ideals is shown in **Figure 1**. As can be seen in the lattice of ideals, R_q is not a finite chain ring. But it is a local, Noetherian and Artinian ring. All zero divisors are the elements of $(u, v) \setminus (0)$ and its units are the elements of $R_q \setminus (u, v)$.

Figure 1. Lattice of ideals of $F_q + uF_q + vF_q + uvF_q$.

Clearly, the ring is isomorphic to

 $F_q[x,y]/(x^2, y^2, xy - yx)$. It is also isomorphic to the ring of all 4×4 matrices of the form

$$\begin{pmatrix} a & b & c & d \\ 0 & a & 0 & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$$

Moreover, R_q is Frobenius with generating character

 $\chi: R_q \to T, a + bu + cv + duv \mapsto e^{\frac{2\pi i}{p}r(d)}$ where tr denotes the trace map on F_q and T is the multiplicative group of unit complex numbers.

Further, R_q is a vector space over F_q with dimension 4. A basis of R_q over F_q is given by the set $\{1, u, v, uv\}$ which we will refer to as the polynomial basis of R_q . Another basis considered in this work is

$$\{1+u+v+uv, 1+v+uv, 1+u+uv, 1+u+v\}.$$

3. Linear Block Codes over $F_q + uF_q + vF_q + uvF_q$

Any linear block code over a finite commutative ring R has a generator matrix which can be put in the following form

$$G = \begin{pmatrix} a_1 I_{k_1} & A_{1,2} & A_{1,3} & \cdots & A_{1,l+1} \\ & a_2 I_{k_2} & a_2 A_{2,3} & \cdots & a_2 A_{2,l+1} \\ & \ddots & \ddots & \vdots \\ & & & a_l I_{k_l} & a_l A_{l,l+1} \end{pmatrix}$$
(1)

where $A_{i,j}$ are binary matrices for i > 1 and are matrices over R_q for i = 1. A code of this form has $\prod_{i=1}^{l} |a_i R|^{k_i}$ elements, where the a_i 's define the nonzero equivalence classes $[a_1], [a_2], \dots, [a_i]$ under the equivalence relation on R defined by

$$a \sim b \Leftrightarrow \text{if } a = bu \text{ for a unit } u \text{ in } R$$

 $a_i R = \{x | x = a_i r \text{ for some } r \in R\}$; and the blanks in G are

to be filled with zeros.

A linear block code *B* of length *n* over R_q is an R_q -submodule of R_q^n . *B* has a generator matrix which can be put in the form shown in **Figure 2** where $A_{i,j}$ are $k_i \times k_j$ matrices over R_q , $D_{i,j}$ are $k_i \times k_j$ matrices over F_2 and the blank parts of G[B] are to be filled with zeros. Moreover, *B* has $q^{4k_1} \cdot q^{2t} \cdot q^{k_{q+3}}$ codewords where $t = \sum_{i=2}^{q+2} k_i$. A linear block code over R_q is free if and only if $k_i = 0$ for all $i = 2, \dots, q+3$.

Now, we equip B with two weight functions namely the usual Hamming metric and a homogeneous weight function.

Lemma 2.1. (*T. Honold, [2]*) Let *R* be a Frobenius ring with generating character χ , then every homogeneous weight w_{hom} on *R* can be expressed in terms of χ as follows

$$w_{\text{hom}} = \Gamma \left[1 - \frac{1}{\left| R^{\times} \right|} \sum_{y \in R^{\times}} \chi(xy) \right]$$
(1)

where R^{\times} is the group of units of *R*.

Theorem 2.1. A homogeneous weight w_{hom} on R_q is given by

$$w_{\text{hom}}(x) = \begin{cases} \Gamma & \text{if } x \in R_q \setminus (uv) \\ \frac{q}{q-1} \Gamma & \text{if } x \in (uv) \setminus (0) \\ 0 & \text{otherwise} \end{cases}$$
(2)

Proof: Let $x = a + bu + cv + duv \in R_q$. Now, using the previous lemma, every homogeneous weight on R_q can be expressed as

$$w_{\text{hom}} = \Gamma \left[1 - \frac{1}{(q-1)q^3} \sum_{y \in R^{\times}} \chi(xy) \right]$$

Case 1. Let $x \in R_q^{\times}$. There are $(q-1)q^2$ units having the same *d*, for any $d \in F_q$. But there are p^{m-1} elements of F_q that has trace *j*, for any $j \in F_p$. Hence,

$$G[B] = \begin{pmatrix} I_{k_1} & A_{1,2} & A_{1,3} & A_{1,4} & A_{1,5} & \cdots & \cdots & \cdots & A_{1,q+4} \\ & vI_{k_2} & vD_{2,3} & vD_{2,4} & vD_{2,5} & \cdots & \cdots & vD_{2,q+4} \\ & & uI_{k_3} & uD_{3,4} & uD_{3,5} & \cdots & \cdots & uD_{3,q+4} \\ & & & (u+v)I_{k_4} & (u+v)D_{4,5} & \cdots & \cdots & \cdots & (u+v)D_{4,q+4} \\ & & & \ddots & \cdots & \cdots & \cdots & \vdots \\ & & & & (u+jv)I_{k_r} & (u+jv)D_{r,r+1} & \cdots & (u+jv)D_{r,q+4} \\ & & & & \ddots & \cdots & \vdots \\ & & & & & uVI_{k_{q+3}} & uvD_{q+3,q+4} \end{pmatrix}$$

Figure 2. Generator Matrix of Linear Block Codes over $F_q + uF_q + vF_q + uvF_q$.

$$\sum_{y \in R_q^{\times}} \chi(xy) = (q-1)q^2 \left(p^{m-1}\right) \sum_{j \in F_p} e^{\frac{2\pi i}{p}}.$$

But
$$\sum_{j \in F_p} e^{\frac{2\pi i}{p}j} = 0.$$
 So, $w_{\text{hom}} = \Gamma.$

Case 2. Let $x \in (uv) \setminus (0)$. For every $a \in F_q^{\times}$, there are q^3 units of the form y = a + bu + cv + duv. Now, p^{m-1} of these have the same trace value *j*, for any $j \in F_p$ while there are $p^{m-1} - 1$ of them with trace zero. Hence,

$$\sum_{y \in R_q^{\times}} \chi(xy) = q^3 \left(p^{m-1} \right) \sum_{j \in F_q^{\times}} e^{\frac{2\pi i}{p}j} + q^3 \left(p^{m-1} - 1 \right)$$

But $\sum_{j \in F_q^{\times}} e^{\frac{2\pi i}{p}j} = -1$. So, $w_{\text{hom}} = \frac{q}{q-1} \Gamma$.

Case 3. Let $x \in (u,v) \setminus (uv)$. There are q-1 elements of $(u,v) \setminus (uv)$ that have the same coefficient for uv. For each element $x \in (u,v) \setminus (uv)$ appears q copies in the multiset $\{xy | y \in R_q^{\times}, x \in (u,v) \setminus (uv)\}$. Moreover, there are p^{m-1} elements of F_q that has trace j, for any $j \in F_p$. Hence

$$\sum_{y \in R_q^{\times}} \chi(xy) = (q-1)q(p^{m-1})\sum_{j \in F_q} e^{\frac{2\pi i}{p}j} = \Gamma$$

We extend this to R_q^n naturally: if $x = (x_1, x_2, \dots, x_n)$ then $w_{\text{hom}}(x) = \sum_{i=1}^n w_{\text{hom}}(x_i)$. The homogeneous (resp. Hamming) distance between any distinct vectors $x, y \in R_q^n$, denoted by $d_{\text{hom}}(x, y)$ (resp. $d_H(x, y)$), is defined as $w_{\text{hom}}(x-y)$ (resp. $w_H(x-y)$). We will denote the minimum homogeneous distance (resp. Hamming) distance by a linear block code over R_q by d_{hom} (resp. d_H).

4. The *q*-ary Images of Linear Block Codes over $F_a + uF_a + vF_a + uvF_a$

Let b_1, b_2, b_3, b_4 be distinct elements of an ordered basis of R_q . Then any element of R_q can be written in the form $\sum_{i=1}^{4} a_i b_i, a_i \in F_q$. Define the mapping

$$\phi: R_q \to F_q$$

$$\sum_{i=1}^4 a_i b_i \mapsto (a_1, a_2, a_3, a_4)$$

We then extend ϕ to R_q^n coordinate-wise: if

$$x = (x_1, x_2, \dots, x_n) \text{ and } x_i = \sum_{j=1}^4 a_{i,j} b_j \text{ then}$$
$$\phi(x) = (a_{1,1}, \dots, a_{1,4}, a_{2,1}, \dots, a_{2,4}, \dots, a_{n,1}, \dots, a_{n,4})$$

It is easy to show that ϕ is an F_q -module isomorphism.

Theorem 4.1. If *B* is a linear block code over R_q of length *n*, then $\phi(B) = \{\phi(x) | x \in B\}$ is a linear block code over F_q with length 4n.

Proof: First we show that for every $x \in B, \phi(x) \in F_q^{4n}$. Let $x = (x_1, x_2, \dots, x_n) \in B$, Since $\phi(x_i) \in F_q^4$ for any $i = 1, 2, \dots, n$, then $\phi(x) \in F_q^{4n}$. Next we show that $\phi(B)$ is a subspace of F_q^{4n} . Let $s \in F_q$ and let $y, y_1 \in \phi(B)$. Then there exist $x, x_1 \in B$ such that $y = \phi(x)$ and $y_1 = \phi(x_1)$. But $sy + y_1 = \phi(sx + x_1)$ since ϕ is a module homomorphism. Since $sx + x_1 \in B$, $sy + y_1 \in \phi(B)$. Thus, $\phi(B)$ is a subspace of F_q^{4n} .

Theorem 4.2. Let G[B] be the generator matrix of *B* given in Figure 2. Then $G[\phi(B)]$ has a generator matrix that is permutation-equivalent to the matrix given in Figure 3.

$$\begin{pmatrix} \phi(I_{k_{1}}) & \phi(A_{1,2}) & \phi(A_{1,3}) & \cdots & \cdots & \cdots & \cdots & \phi(A_{1,q+4}) \\ \phi(vI_{k_{1}}) & \phi(vA_{1,2}) & \phi(vA_{1,3}) & \cdots & \cdots & \cdots & \phi(vA_{1,q+4}) \\ \phi(uI_{k_{1}}) & \phi(uA_{1,2}) & \phi(uA_{1,3}) & \cdots & \cdots & \cdots & \phi(uA_{1,q+4}) \\ \phi(vI_{k_{1}}) & \phi(vVA_{1,2}) & \phi(vVA_{1,3}) & \cdots & \cdots & \cdots & \phi(vVA_{1,q+4}) \\ \phi(vI_{k_{2}}) & \phi(vD_{2,3}) & \cdots & \cdots & \cdots & \phi(vD_{2,q+4}) \\ \phi(uvI_{k_{2}}) & \phi(uvD_{2,3}) & \cdots & \cdots & \cdots & \phi(uvD_{2,q+4}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi((u+jv)I_{k_{l}}) & \phi((u+jv)D_{l,l+1}) & \cdots & \phi((u+jv)D_{l,l+1}) \\ \phi(uvI_{k_{l}}) & \phi(uvD_{l,l+1}) & \cdots & \phi(uvD_{l,l+1}) \\ \vdots & \vdots & \vdots \\ \phi(uvI_{k_{l}}) & \phi(uvD_{l,l+1}) & \cdots & \phi(uvD_{l,l+1}) \\ \vdots & \vdots & \vdots \\ \phi(uvI_{k_{q+3}}) & \phi(uvD_{q+3,q+4}) \end{pmatrix}$$

Figure 3. Generator Matrix of $\phi(B)$.

Proof: Let *B* have a generator matrix given in **Figure** 2. Then for every $c \in B$, *c* can be expressed as *yG* where $y \in R_q^k$, $k = \sum_{i=1}^4 k_i$, that is, $c = \sum_{i=1}^k s_i z_i$ where $s_i \in R_q$ and the z_i 's are the *k* rows of G[B]. Using any basis of R_q , *c* can further be written

$$\sum_{i=1}^{k} \sum_{j=1}^{4} a_{i,j,l} z_{i} + \sum_{i=1}^{k} \sum_{j=1}^{4} b_{i,j} u z_{i} + \sum_{i=1}^{k} \sum_{j=1}^{4} c_{i,j} v z_{i} + \sum_{i=1}^{k} \sum_{j=1}^{4} d_{i,j} u v z_{i}$$

Now,

$$\phi(c) = \sum_{i=1}^{k} \sum_{j=1}^{4} a_{i,j} \phi(z_i) + \sum_{i=1}^{k} \sum_{j=1}^{4} b_{i,j} \phi(uz_i) + \sum_{i=1}^{k} \sum_{j=1}^{4} c_{i,j} \phi(vz_i) + \sum_{i=1}^{k} \sum_{j=1}^{4} d_{i,j} \phi(uvz_i).$$

Hence, $S = \{\phi(z_i), \phi(uz_i), \phi(vz_i), \phi(uvz_i) | i = 1, 2, \dots, k\}$ spans $\phi(B)$. But

• $vz_i = 0$ whenever $i = k_1 + 1, \dots, k_1 + k_2$ or $i = k - k_{a+3} + 1, \dots, k$;

• $uz_i = 0$ whenever $i = k_1 + k_2 + 1, \dots, k_1 + k_2 + k_3$ or $i = k - k_{a+3} + 1, \dots, k$;

- $uvz_i = 0$ whenever $i > k_1$; and
- $uz_i = jvz_i$ for some $j \in F_a^{\times}$ whenever

$$i = \sum_{i=1}^{l-1} k_i + 1, \dots, \sum_{i=1}^{l} k_i$$
 for some l .

Define the set β as the resulting set once the undesirable cases listed above are deducted from the set *S*. Notice that the elements of β are the rows of the matrix given in **Figure 3** we will denote by *M*. Now, define B_i as the matrix that consists of the rows

$$4k_{1} + 2\sum_{i=2}^{l-1} k_{i} + 1, \dots, 4k_{1} + 2\sum_{i=2}^{l} k_{i} \quad \text{of } M \text{ so that } M \text{ can be}$$

written in the form
$$\begin{pmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{q+3} \end{pmatrix}.$$

We wish to show that the rows of *M* are linearly independent. Without loss of generality, let $k_i = 1$ for all *i*. Consider a row of B_i . Clearly, it cannot be expressed as a linear combination of rows from any of the B_j 's, j > i. We know that $\phi(1), \phi(u), \phi(v), \phi(uv)$ are linearly independent and so any nonzero linear combination of these vectors is not the zero vector. Thus, any row of B_i cannot be written as a linear combination of rows of *M* are linearly of the B_j 's, $j \le i$. Hence, the rows of *M* are linearly independent.

The succeeding theorems are direct consequences of Theorem 4.2.

Corollary 4.3. If *B* is free with rank *k*, then $\phi(B)$ is free with rank 4k.

Corollary 4.4. Let *B* be a free rate-k/n linear block code over R_2 with generator matrix $(I \ A)$, then the generator matrix of the *q*-ary image of *B* with respect to the basis $\{1+u+v+uv,1+v+uv,1+u+uv,1+u+v\}$ is permutation-equivalent to

(0	I_k	I_k	I_k	E + F + H	D + E	D+F	D+H	1
I_k	0	I_k	0	D + E	0	D	Ε	i
				D + F	D	0	F	
I_k	0	0	I_k	D	0	0	D)	

where A = D + Eu + Fv + Huv.

5. Distance Bounds of the Images of Linear Block Codes over $F_a + uF_a + vF_a + uvF_a$

The minimum distance of a code gives a simple indication of the *goodness* of a code. A field code can correct at

most $\left\lfloor \frac{\delta - 1}{2} \right\rfloor$ errors where δ is its minimum Hamming

distance. Hence, we are interested with upper bounds of the minimum Hamming distance of the images of the linear block codes over R_q . For the succeeding discussions, we let *B* be a rate-k/n linear block code over R_q . Also, we denote by δ the minimum Hamming distance of $\phi(B)$.

Theorem 5.1. (*Singleton-type Bound*) Let *B* be free. Then

$$\delta \le 4(n-k)+1. \tag{3}$$

The above theorem is a direct consequence of **Corollary 4.3** and the Singleton Bound for codes over fields while the next theorem is a direct consequence of the Plotkin Bound for codes over fields.

Theorem 5.2. (*Plotkin-type Bound*) Let B be free. Then

$$\delta \leq \left\lfloor \frac{q^{4k-1}}{q^{4k}-1} (q-1)(4n) \right\rfloor. \tag{4}$$

The next bound is in terms of the average homogeneous weight Γ on F_q and the minimum Hamming distance of B.

Theorem 5.3. (Rains-type bound) For a code B,

$$d_H \le \delta \le 4d_H. \tag{4}$$

Proof: Note that δ is bounded above by 4n. If for every $x \in B$, $w_H(B) = d_H$ then $\delta \le 4d_H$. Now, δ is bounded below by d_H since 1 is the minimum nonzero value of the Hamming weight on F_q . Thus, inequality (4) holds.

Now, we use the concept of subcodes of *B* generated by *x* as defined by V. Sison and P. Sole in [4]. The subcode of *B* generated by $x \in B$, denoted by B_x , is the set $\{ax | a \in R\}$. A generalization of the Rabizzoni bound was derived in [4]. Here we prove a parallel bound for linear block codes over R_q . The proof presented here is based on the proof in [4].

Lemma 5.4. Let $x \in B, x \neq 0$. B_x is free if and only if $|B_x| = q^4$.

Proof: (\Rightarrow) Let B_x be free then the equation ax = 0 has only the trivial solution. In particular, $(a-b)x = 0 \Rightarrow$ a = b, that is, $a \neq b$ implies $ax \neq bx$. Thus, $|B_x| = q^4$. (\Leftarrow) Let $|B_x| = q^4$. Then for any nonzero a and b, $a \neq b \Rightarrow ax \neq bx$. That is, $(a-b)x = 0 \Rightarrow a = b$. But xgenerates B_x by definition. So, B_x is free.

The next statement is a direct consequence of the cardinality of the ideals of R_a

- **Corollary 5.5.** Let $x \in B$. Then
- $x \in (uv)^n \setminus (0)^n$ if and only if $|B_x| = p^m$;

•
$$x \in (u + jv)^n \setminus (uv)^n$$
 or $x \in (v)^n \setminus (uv)^n$ if and only
if $|B_x| = p^{2m}$;

•
$$x \in (u, v)^n \setminus S$$
 if and only if $|B_x| = p^{3m}$ where
 $S = \bigcup_{j \in F_n} (u + jv)^n \cup (v)^n$.

Theorem 5.5. (*Rabizzoni-type Bound*) Let x be a minimum Hamming weight codeword. Then

$$\delta \le \delta_x \le \left\lfloor \frac{|B_x|}{|B_x| - 1} \frac{q - 1}{q} 4 d_H \right\rfloor.$$
(5)

Moreover, if $|B_x|$ is free, then

$$\delta \le \delta_x \le \left\lfloor \frac{q^3}{q^4 - 1} (q - 1) 4 d_H \right\rfloor. \tag{6}$$

Proof: Let *x* be a minimum Hamming weight codeword in *B* then consider subcode B_x . Let δ_x denote the minimum Hamming distance of $\phi(B_x)$. The minimum Hamming distance of B_x is still d_H^{H} since B_x is a subcode of *B*. Also $\phi(B_x)$ is a subcode of $\phi(B)$ with $\delta \leq \delta_x$. The effective length of $\phi(B_x)$ is $4d_H$ coming from the d_H nonzero positions in *x*. Direct application of the Rabizzoni bound results to inequality (5) holds. By Lemma 5.4, inequality (6) follows.

6. Example

Consider the free rate-1/4 self-orthogonal code *B* over R_2 generated by $G = (1 \ 1+v \ 1+u+v \ 1+u+uv)$. If $G = (I \ A)$ then $I_k = 1, D = (1 \ 1 \ 1), E = (0 \ 1 \ 1), F = (1 \ 1 \ 0)$ and $H = (0 \ 0 \ 1)$. A codeword in *B* either has homogeneous weight 0,4 or 8. The minimum Hamming distance of *B* is 4. The binary image of *B* was obtained with respect to the basis

$$\{1+u+v+uv, 1+v+uv, 1+u+uv, 1+u+v\}$$

Table 1. Comparison of bounds for δ .

Singleton-type	$\delta = 8 \le 13$
Plotkin-type	$8 \le 8 = \lfloor 8.5\overline{3} \rfloor$
Rains-type	$4 \le 8 \le 16$
Rabizzoni-type	
$ B_x =16$	$8 \le 8$
$ B_x = 4$	$8 \le 10.\overline{6}$
$ B_x =2$	8 ≤ 16

Using Corollary 4.4, $G[\phi(B)]$ is permutationequivalent to

															0)	
1	0	1	0	1	0	0	0	0	0	1	1	1	0	1	1	
1	1	0	0	0	0	1	1	1	1	0	0	0	1	1	0	
1	0	0	1	1	1	1	0	0	0	0	0	0	1	1	1)	

The image code has a minimum Hamming distance of 8 and is self-orthogonal. In **Table 1**, we can see that B meets the upper bound of the Plotkin-type and Rabiz-zoni-type bound.

REFERENCES

- S. T. Dougherty, M. K. Gupta and K. Shiromoto, "On Generalized Weights for Codes over Finite Rings," *preprint*, 2002.
- [2] T. Honold, "A Characterization of Finite Frobenius Rings," Archiv der Mathematik, Vol. 40, No. 6, 2001, pp. 406-415. doi: 10.1007/PL00000451
- [3] S. Karadeniz and B. Yildiz, "(1+v)-Constacyclic Codes over $F_2 + uF_2 + vF_2 + uvF_2$," *Journal of the Franklin Institute*, Vol. 347, 2011, pp. 2652-2632.
- [4] V. Sison and P. Solè, "Bounds on the Minimum Homogeneous Distance of the p^r -ary Image of Linear Block Codes over the Galois Ring $GR(p^r,m)$," *IEEE transactions on Information Theory*, Vol. 53, No. 6, 2007, pp. 2270-2273. <u>doi: 10.1109/TIT.2007.896891</u>
- [5] X. Xu and X. Liu, "On the Structure of Cyclic Codes over F₂ + uF₂ + vF₂ + uvF₂," Wuhan University Journal of Natural Sciences, Vol. 16, No. 5, 2011, pp. 457-460. doi:10.1007/s11859-011-0780-5
- [6] B. Yildizand S. Karadeniz, "Linear Codes over $F_2 + uF_2 + vF_2 + uvF_2$," *Designs Codes Cryptography*, Vol. 54, No. 1, 2010, pp. 61-81. doi:10.1007/s10623-009-9309-8
- B. Yildiz and S. Karadeniz, "Self-dual Codes over F₂ + uF₂ + vF₂ + uvF₂," Journal of the Franklin Institute, Vol. 347, 2010, No. 10, pp. 1888-1894. doi:10.1016/j.jfranklin.2010.10.007
- [8] B. Yildiz and S. Karadeniz, "Cyclic Codes over F₂ + uF₂ + vF₂ + uvF₂," Designs Codes Cryptography, Vol. 58, No. 3, 2011, pp. 221-234. doi:10.1007/s10623-010-9399-3