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ABSTRACT 

In this paper, we considered linear block codes over 2 2, 0,q q q q qR F uF vF uvF u v uv vu        where  ,mq p

m. First we looked at the structure of the ring. It was shown that  is neither a finite chain ring nor a principal 

ideal ring but is a local ring. We then established a generator matrix for the linear block codes and equipped it with a 
homogeneous weight function. Field codes were then constructed as images of these codes by using a basis of  over 

qR

qR

qF . Bounds on the minimum Hamming distance of the image codes were then derived. A code meeting such bounds is 

given as an example. 
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1. Introduction 

Let  be a prime number, p ,m   and q
mq p F  de-

note the Galois field with  elements. During the late 
1990s, C. Bachoc used linear block codes over ,

q

p pF uF   
2u 0  for constructing modular lattices. Its success 

motivated the study of linear block codes over the finite 
chain ring p pF uF . And many of the results from these 

studies have been extended over finite chain rings of the 
form 

2 1... , 0,r r
q q q qF uF u F u F u r     . 

Such rings can be seen as natural extensions of q qF uF . 
Another ring extension of q qF uF  is 

q q q qR F uF vF uvF    q  

where  Unlike 2 2 0,  .u v uv vu   ,q qF uF   is neither qR
a finite chain ring nor a principal ideal ring. B. Yildiz and 
S. Karadeniz introduced linear block codes over the ring 
 2 2 2 2F uF vF uvF    in [6]. Self-dual codes, cyclic codes 
and constacyclic codes over this ring were also studied 
by these authors in [3,7,8]. In 2011, X. Xu and X. Liu 
studied the structure of cyclic codes over  in [5]. qR

In this work, we will analyze linear block codes over 
qR . The structure of the ring will be discussed in Section 

2. The generator matrix of linear block codes over  
and weight functions defined on  will be tackled in 

qR

qR
Section 3. The -ary images of these linear block codes 
and bounds on its minimum Hamming distance will be 
presented in Sections 4 and 5, respectively. Lastly, a 
code meeting these bounds is given in Section 6. 

2. Preliminaries and Definitions 

q

Structure of the Ring q q qF uF vF  quvF  

Let qR  denote the ring q q q qF uF vF uvF    
a bu 

w  
ents can be uniquely written as 

hose
elem cv duv  
where , , , qa b c d F . An element of qR   is a unit if and
only if 0a  . The ring has 5q   ideals namely  0 ,  
       , , ,quv v R u jv  w qj F . qR  is not  , ,u v here a
principal ideal ring since the maxi emal id al  ,u v  is 
generated by u  and v . The cardinality of the i are deals 
  ,uv q      2 ,v u j q     3, ,u v q  and 4.qR q  v

Its lattice of ideals is shown in Figur  1. As can be 
in the lattice of ideals, is not a finite chain ring. But 

 

e seen 
 qR  

it is a local, Noetherian and Artinian ring. All zero divi- 
sors are the elements of    , \ 0u v  and its units are the 
elements of  \ ,qR u v . 
 

 

Figure 1. Lattice of ideals of q  q q qF uF vF uvF   .
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Clearly, the ring is isomorphic to 

 2 2[ , ] , ,qF x y x y xy yx
ring of all 4 4  ma

. It is also isomorphic to the 
trices of the form 

Moreover,  is Frobenius with generating character 

0 0
.

0 0

0 0 0

a b c d

a c

a b

a

 
 
 
 
 
 

 

qR

 2

: ,
i
tr d

p
q T a bu cv duv 

trace map on 

R e


     wher r denotes 

the 

e t

qF  and T is the multiplicative group of 
un lex num

Further, is a vector
it comp bers. 

qR   space over qF  with dimension 

4. A basis  over qof Rq F  is given by the

 is 

 set 
which  the polynomial 
Another sidere n this work

3. lo

Any linear block code over a fi
has a generator matrix which can be pu

l 





  (1

where 

 1, , ,u v uv  
basis of qR . we will refer to as

conbasis d i

 1 ,1 ,1 ,1u v uv v uv u uv u v         . 

 Linear B ck Codes over q q q qF uF vF uvF    

nite commutative ring R  
t in the following 

form 

11 1,2ka I A

2

1,3 1, 1

1

, 1



l l l

A A 





 
2 2 2,3 2 2,

  

l

k l

l k

a I a A a A
G

a I a A

 
  
 
 


) 

,i jA  are binary matrices for  and are trices 

over  for . A code of this form has 

1i  ma

qR  1i 
1

i
l k

i
i

a R

  

elements, where the 'ia s  define th  e nonzero equiva-
lence classes      1 2, , , la a a  under the equivalen  

relation on R defined by 

ce

if  for a unit  in a b a bu u R   

 for some i ia R x x a r r R   ; and the blanks in G are 

 zeros.  
B of length n over  is an 

-submodule of . B has a generator m which 
be put in  shown in Figure 2 e 

to be filled with
A linear block code  qR

 wher
qR

can 
 n

qR
the form

atrix 

,i jA  
are i jk k  matr over , ices qR ,i jD  are i jk k  matri-
ces over 2F  and the blank parts of  G B

4k

 are to be 
k

filled with zeros. Moreover, B has 31 qq q q2t    

dewords where 
2

2

q

i
i

k




t co  . A linear block code over 

qR  i  if and only if 0ik   r all 3i q  . 
Now, w  equip B with two weight fu ns namely 

the usual Hamming metric and a homogeneous wei  
function. 

s free fo
e

ght

Honold
ring with generating character 

2, ,
nctio

Lemma 2.1. (T. , [2]) Let R be a Frobenius 
 , then every homoge-

ne an be  in terms of ous weight whom on R c  expressed   
as follows 

 hom 1
y R

w xy
R







1 
   
  

             (1) 

where R  is the group of units of R. 
Theorem 2.1. A homogeneous weight whom on Rq is 

given by 

 

 

   hom 1
w x if x

q
  



\q uv

\ 0

if x R

q
uv

 



      (2) 

Proof: Let 

0 otherwise

qx a bu cv duv R    
ma, every homogeneous wei

. Now, using the 
previous lem ght on Rq can 
be expressed as 

 
 hom 3

1
1

1 y R

w x
q q




y
 

   
  

  

Case 1. Let qx R . There are   21q q  units having 

the same d, for any qd F 1mp . But there are  ele-

ments of Fq r an that has trace j, fo y pj F . He

 

r q

Figure 2. Generator Matrix of Linear Block Codes over 
q

nce, 

  4G B 
 

 
3

( )u v I u  

2, 4q

uD









 

   

1

3

1,2 1,3 1,4 1,5 1, 4

2,4

3,4 3,5 3, 4

4,5 4, 4

, 1 , 4

3, 4

( )
r

q

k q

k q

k q

k r r

k q q

I A A A A A

vI vD vD vD vD

uD

v D u v D

u jv I u jv D u jv D

uvI uvD










 

 

 




  
 


 

   
 
 
 
 

  

 



  

   


  

 

2 2,3 2,5k

uI uD




 
q q qF uF vF uvF   .

Copyright © 2013 SciRes.                                                                               OJAppS 



J. D. PALACIO, V. P. SISON 29

 

     
2

2 11 .
pq

i
j

m p

j Fy R

xy q q p e









    

But 
2

0
p

i
j

p

j F

e




 . So, 

Case 2. Let . For every 

homw   . 

    \ 0x uv qa F
cv duv

, there  
are 3q  units of the form y a bu  

e trace value j, f
 . Now, 

of these have the sam or any 1  mp

pj F   while there are 1 1mp   of them with trace zero. 
Hence, 

     
2 i

j


3 1 3 1 1 .
q q

m mp

y R j F

xy q p e q p
 

 

 

     

But 
2

1
q

i
j

p

j F

e




  . So, hom 1

q
w

q
 


. 

Case 3. Let    , \x u v uv . There are 1q   ele-
m oe


ents of  , \u v ve the same c ent for  uv  that ha

, \
ffici

uv. For each element   x u v  appears  copies 
e multiset    

uv q
in th  , , \qxy y R x u v uv  . Moreover, 
there are 1mp   elements of qF  that has trace j, for any 

pj F . Hence 

     
2

11 .


qq

i
j

m p

j Fy R

xy q q p e









           

xtend this to turally: if We e n
qR  na  1 2, , , nx x x x   

then . The homogeneous (resp.    hom hom
1

n

iw x w x


 
 distance be

i

Hamming) tween any distinct vectors , ,n
qx y R  

denoted by  hom ,d x y  (resp. y ), is defined as 
 homw x y  (resp. w e ote the mini-

mum homogeneo ng) distance  

  ,Hd x
  We will d

resp. Ham
H

us
x y )

 distance 
. n
( mi

by a linear block code over  by  (resp.qR  homd  Hd ). 

4. The q-ary Images of Linear Block Codes 
over qq q qF uF vF uvF    

Let ents of an ordered basis 
of y element of can be written in the 

form 

1b b

qR . Then an
4

2 3 4, , ,b b  be distinct elem
 qR  

1

,i i i q
i

a b a F


 . Define the mapping 

 
4

1 2 4
1

:

, , ,

q q

i i
i

R F

a b a a a a3







   

We then extend   t n
qR  dinate-w : o coor ise if 

 1 2, , , nx x x x   and ,
1

i i j j

4

j

x a b


   then 

   1,1, , , , , , , , ,1,4 2,1 2,4 ,1 ,4n nx a a a a a a     . 

It is easy to show that   is n q a F -module isomor-
phism

The B  is a linear block c
. 
orem 4.1. If ode over

of length n, then 
 
 

 qR  
  B x x    B is a linear block 

code over qF  with 
Proof: First we show that for every 

length 4n . 
 , q

4nx B x F . 
 1 2, , nx x x x B  , Since   4

i qx F  for any Let 
1,2, , ,ni    then   4 .n

qx F  Ne t we show that x  B  

qis a subspace of 4nF . Let qs F  and let  1,y y B . 
Then there exist 1,x x B  such that  y x  and 

 1 1y x . But   1 1sy y  s x  x  since   is a mod-
ule homomorphism. Since 1sx x B ,    1sy y B  . 
Thus,  B  is a subspace f 4n

q o F . 
Theorem 4.2. Let 

 
 G B  be the ge

gi
nerator matrix of B 

ven in Figure 2. Th n  G B    has a generator m -
trix that is permuta e matrix given in 
Figure 3. 

e
on-equi

a
ti hvalent to t

 

       
     
     

  

1

1

1

1

2

2

1 , 2 1 , 3 1 , 4

1 , 2 1 , 3 4

1 , 2 1 , 3 4

1 , 2 1 , 3 1 , 4

2 , 4

2 , 3

, 1 , 1

k q

k

k q

k q

k q

k

l l

k

I A A A

v I v A v A

u I u A u A

v I

u jv D

u v I

   

  

   



 













 

  

 

  

  









     

   
3

, 1 , 1

3 , 4

l

q

l l l l

k q q

u v D u v D

u v I u v D

 

 


 

 


 
 
 



 







 
 
 
 
  
 



  

 

 
 
 


1 ,

1 ,

qv A

u A

u v A

v D













     u v I u v A u v A  

 2 , 3v D 



   

l l

Figure 3. Generator Matrix of 

 

     

2 , 4qu v D

u jv D



 



 



 





  lk

u v I u v D

u jv I

 

 



 








 B . 
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Proof: Let B have a generator matrix given in Figure 

2. Then for every c can be expressed as yG 

where , that is, z  where  

c B , 

k
qy R , 

4

1
i

i

k k


 
1

k

i i
i

c s


 

i qs R  and the  are the k rows of 'iz s  G B . Using 
sis of Rq, c further be written 

Now, 

Hence, 

any ba  can 
4 4 4 4

, , , , ,
1 1 1 1 1 1 1 1

k k k k

i j l i i j i i j i i j i
i j i j i j i j

a z b uz c vz d uvz
       

       

     

   

4 4

, ,
1 1 1 1

4 4

, ,
1 1 1 1

.

k k

i j i i j i
i j i j

k k

i j i i j i
i j i j

c a z b uz

c vz d uvz

  

 

   

   

 

 

 

 
 

        , , ,i i iS z uz vz uv   

er 

  whenever  or 

 

 for some 

1,2, ,iz i k   

spans  B . But 

 0ivz   whenev 1 1 21, , k k    or i k

3q 1, , k ; i k k  
0uz i 1 2 3

3 1, ,qi k k k    ; 

 0  whenever ; and 

1 21, ,i k k k k k    

iuvz  1i k

i iuz jvz qj F

i r some l

 whenever 

k  fo

Define the set 

1l l

i
1 1 

1, ,
i i

i k


   . 

  
sted a

m

as the resulting set once the unde-
sirable cases li bove are deducted from the set S. 
Notice that the ele ents of   are the rows of the ma-
trix given in Fi  we will denote by M. Now, define 

as the matrix that consists of the rows 
l

k  of M so that M can be 







 for all i. 
Consider a ro pressed as 
a linear com  any  , 

t

gure 3

l
1

14 2 1, ,
l

k k


  

B  

1
2 2

4 2i i
i i

k
 

 

written in the form 2




1

B

B 

. 

3q 

e wish to show that t e 

B


W  h rows of M are linearly inde-
pendent. Without loss of generality, let ik 

w of iB . Clearly, it cannot 
bination of rows from

1
be ex
 of the 'jB s

j i . We know t  ha      1 , , ,u v uv     are line-
arly independent and so any nonzero linear combination 
of these vectors is not the zero vector. Thus, any row of 

iB  cannot be written as a linear combination of rows of 
any of the 'jB s , j i . Hence, the rows of M are line-

y independent.  arl  
The succeeding theorems a of 

Theorem 4.2. 

Corollary 4.3. If B is free with rank k, then

re direct consequences 

  B  is 
free with rank 4k. 

Corollary 4.4. Let B be a free rate- k n  linear block 
code over with generator matrix  2R   I A

B 
, then the 

generator m trix of the q-ary image of with respect to 
the basis 

a
 1 ,1 ,1u v uv v uv u v,1 u uv      

uivalent to 
   is 

permutation-e

where 

q

0

0 0 0

0 0 0

0 0 0 0

k k k

k k

k k

k k

I I I E F H D E D F D H

I I D E D E

I I D F D F

I I D D

     
  
 
 
 

 

A D Eu Fv Huv    . 

5. Distance Bounds of the Images of Linear 
Block Codes over qq q qF uF vF uvF    

um distance of le indica-
tion of the goodness of a code. A field code can correct at 
The minim  a code gives a simp

most 
1 

2


  
 errors where   is its minimum Hamming 

distance. Hence, we are interested with upper bounds of 
the minimum Hamming distance of the images of the 
linear block codes over qR . For the succeeding discus-
sions, we let B be a rate- k n  linear block  over qR . 
Also, we denote by

 code
   the minimum Hamming distance 

of  B . 
eorem 5.1. (Singl B be free. 

Then 
Th eton-type Bound) Let 

 4 1.n k                   (3) 

The above theorem is a direct consequence of Corol-
lary 4.3 and the Sin ton Bound for codes over fields 
wh

gle

 f

ile the next theorem is a direct consequence of the 
Plotkin Bound for codes over fields. 

Theorem 5.2. (Plotkin-type Bound) Let B be ree. 
Then 

  
4 1

4
1 4 .

1

k

k

q
q n

q


 
   

       (4) 

The next bound is in terms of the average homogene-
ous weight 

    

 
  on qF  and is-

tance of B. 
 the minimum Hamming d

Theorem 5.3. (Rains-type bound) For a code B, 

4 .H Hd d                 (4

Proof: Note that 

) 

  is bounded above by 4n. If for 
every  , H Hx B w B d   then 4 Hd  . Now,   is 
bounded below by Hd  

ng wei
si

of the Hammi g
nce nimum ro 

value ht on
1 is the mi

 
 nonze

qF . Thus, inequality (4) 

pt of subcodes of B generated 
holds.  

Now, we use the conce
by x as defined by V. Sison and P. Sole in [4]. The sub-
code of B generated by x B , denoted by xB , is the set 

Copyright © 2013 SciRes.                                                                               OJAppS 
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 ax a R . A generalization of the Rabizzoni bound 
was d in [4]. Here w prove a parallel bound for 
linear odes over qR he proof presented here is 

erived e 
block c T. 

based on the proof in [4]. 
Lemma 5.4. Let , 0x B x  . xB  is free if and only 

if 4
xB q . 

Proof:    Let xB  be  then the equation 0axfree   s 
only the trivial solution. In particular,   0a b x    
a  a b plies ax bx . Thus, 

ha

 imb , that is, 4
xB q . 

  Let 4
xB q . Then for any nonzero a and b, 

a b ax bx   . That is,   0a b x a b    . But x 
generates xB  by definition. So, xB

t conse
 is free.  

quence of the car-The next statement is a 
di

direc
nality of the ideals of qR  
Corollary 5.5. Let x B . Then 

    \ 0
n n

x uv  if and only if m
xB p ; 

    \
n n

x u jv uv   or    \
n n

x v uv  if and only 

if 2m
xB p ; 

  , \
n

x u v S  if and only if 3m
xB p  where 

   
qj F

u jv v


   . 

Theorem 5.5. (R bizzoni-type Bound) Let x be a 
minimum H

n n
S

a
amming weight codeword. Then 

1
4 .

1
x

x Hd

           (5) 

xB q 

More

B q 
 

  


over, if xB  is free, then 

 
3

4
1 .

1x H

q
q d

q
 

 
   

          (6) 4
 

Proof: Let x be a minimum Hamming weight code-
word in B then consider subcode xB . Let x  denote the 
minimum Hamming distance of  xB . The minimum 
Hamming distance of xB  is still Hd  since xB  is a 
subcode of B. Also  xB  is a subcode of  B  with 

x  . The effective length of  xB  is 4 Hd  coming 
from the Hd  nonze  in . Direct application 
of the Rabizzoni bou  in uality (5) holds. By 
Le  i

ro posi
 resu

t
nd l

ion
ts t

4, n lit

Cons e free ra

s
o

 x
eq

mma 5. equa y (6) follows.  

6. Example 

ider th te-1 4  self-orthogonal code B over 

2   1 1G uv  . If 
 G I A  then   1, 1 1 , 0kI D E  

R

F

generated by


H B is 4 nary image of B was 
ned with

 1. Comparison of bounds for

1 1v u v u   
1 1 1

ht 0,4 or 8. The minim

,  

um 
 1 1 0  and  0 0 1H  . A codeword in B 

either has homogeneous weig
amming distance of . The bi

obtai  respect to the basis  

 1 ,1 ,1 ,1u v uv v u uv u      uv v  . 

Table .  

Singleton-type 8 13    

Plotkin-type 8 8 8.53      

4 8 16   Rains-type 

Rabizzoni-type  

16xB   8 8  

4xB   8 10.6  

2xB   8 16  

 
Using Corollary 4.4,   i

equivalent to 

as a m  dista
8 and le 1, w  se
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