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ABSTRACT 

For a two-dimensional complex vector space, the spin matrices can be calculated directly from the angular momentum 
commutator definition. The 3 Pauli matrices are retrieved and 23 other triplet solutions are found. In the three-dimen- 
sional space, we show that no matrix fulfills the spin equations and preserves the norm of the vectors. By using a Clif- 
ford geometric algebra it is possible in the four-dimensional spacetime (STA) to retrieve the 24 different spins 1/2. In 
this framework, spins 1/2 are rotations characterized by multivectors composed of 3 vectors and 3 bivectors. Spins 1 
can be defined as rotations characterized by 4 vectors, 6 bivectors and 4 trivectors which result in unit multivectors 
which preserve the norm. Let us note that this simple derivation retrieves the main spin properties of particle physics. 
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1. Introduction 0 1 0 1 0
, ,

1 0 0 0 1x y z

i

i
  

     
       

The spin of particles was discovered by Wolfgang Pauli 
toward the end of 1924 (see Fröhlich’s paper for an up- 
to-date discussion of spins [1]). In quantum mechanics 
textbooks, the matrix representation of spin is obtained 
from the commutator general definition of the angular 
momentum:  

,x y zJ J i J    

,y z x

                (1) 

J J i J                     (2) 

 ,z x yJ J i J 

2 2 2 2

                 (3) 

These 3 equations are called the spin equations. 
The general theory of quantum angular momenta [2] 

uses the operator x y zJ J J J   , the two shift op- 
erators x,xJ J iJ  


J J iJ    and the positive ei- 

genvalue 1j j    of J2. The values for j are 
0,1 2,1,3 2,2, .  For j = 0, the spin space is of dimen-
sion 1 and reduced to a scalar equal to zero. For j = 1/2, 
the spin space is of dimension 2 and the matrix represen- 
tation is given by 

1 1

2 2

1
, ,

2x x yJ J y z zJ           (4) 

where  i  are the Pauli matrices: 

     

, ,

   (5) 

These three J matrices describe the so called spin 1/2 
quantum system. 

The aim of this work is to address two questions: can 
the Pauli matrices or more generally any spin system be 
retrieved directly from the angular momentum definition 
and are the 3 Pauli matrices the only 2-dimensional quan- 
tum angular momenta? 

2. Properties of the Minimum-Dimension 
Quantum Spin System 

The smallest quantum angular momentum is of dimen- 
sion 3 because there are 3 elements x y zJ J J . As quan- 
tum mechanic acts on complex vector spaces, the mini- 
mum dimension is a two-dimensional complex space or a 
four-dimensional real space with two elements multiplied 
by 1i    which is different from a true four-dimen- 
sional real space. 

2.1. Matrix Description 

The two components of the vectors of such a space can 
be written as  1 2 3 4,x ix x ix 

1

2

1 2 1

3 4 2

i e

i e

i

i

x x r

x x r





   
      

 or in matrix notation: 

           (6) 
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which corresponds to an ordered set of four real ele- 
ments. 

An operator in such a vector space is given by  

ijM a 

1 2

3 4

v iv

v iv

     
        

2 2 2 2
1 2 3 4v v v  

   a real 2  2 matrix multiplied by a complex 
number α. It can be noticed that the two parts of α pro- 
vide the information about the position of i in the four 
real number set aij. 

Quantum mechanics only studies operators which pre- 
serve the norm, and in two dimensions this is written as: 

1 211 12

3 421 22

v iva a

v iva a

 
 
 

       (7) 

with 
2 2 2 2

1 2 3 4v v v v v            (8) 

The solution is: 

 2 2 2
11 21 1a a                 (9) 

 2 2
12 212 1a a 

12 21 22 0a a 

   †
1M M  



2              (10) 

11a a               (11) 

which corresponds to 

               (12) 

This result can be easily generalized to quantum vector 
spaces of any dimension. We see that αM is not a unitary 
matrix because it fulfills only one of the two conditions 
of a unitary matrix  † † 1UU 

11 12

21 22
k k

k k

k k


 
 
 

U U . This implies that 
quantum operators need not be unitary in order to pre- 
serve the norm in the vector space contrary to frequently 
held views. 

The problem studied was to find the 12 real elements 
of the three following matrices: 

J              (13) 

with the three αk complex numbers for k = x, y, z. The 
subscripts have presently nothing to do with the space 
coordinates. 

From Equation (1), it follows that the matrix Jz is: 

11 12

21 22

x y z z

z z

 
 
 

12 21 21 12y x y 

   12 22 11x y y 

 21 11 22x y y 

z z 

zJ
i

 



          (14) 

with 

11z x  

12 12 11 22z y x x 

 z y x x 

 

21 21 22 11

22 21 12 12 21z x y x y 

 

 

which shows that 22 11 . Mor generally it is well 
known that the commutator of two matrices results in a 

matrix with a null trace. As Jx and Jy are defined by a 
commutator, we also have 22 11x x  11y y and 22 .  

From Equation (2) it follows that the matrix Jx is: 

11 12

21 22

y z
x

x x
J

x xi

   
  

 

 

           (15) 

with 

12 21 11 11 21 12 12 21
11 2

12 21

2 2

2

y y x y x y x y
x

y y

  


 
 

2
12 21 12 11 11

12 2 2
11 12 21

2 4

4 2

y x y y x
x

y y y




  
 

2
21 12 21 11 11

21 2 2
11 12 21

2 4

4 2

y x y y x
x

y y y




  

 

 

12 21 11 11 12 21 21 12
22 2

12 21

2 2

2

y y x y x y x y
x

y y

 


 
 

From Equation (3) it follows that the matrix Jy has the 
same expression as Jx just by exchanging y and x. Calcu- 
lating 21 12 12 21x y x y  by eliminating x11 gives a relation 
between the Jy elements: 

 2 2 2 4
11 12 21 12 214 2 4 0y y y y y         (16) 

As Jy is a quantum operator we have the general con- 
straints given by Equations (9)-(11) on the Jy elements: 

2 2
11 21 2

1

x

y y K


               (17) 

2 2
12 11 2

1

x

y y K


               (18) 

 11 12 21 0y y y 

0y  0y y 
11 0y

              (19) 

where K is a positive real constant. 
Equation (19) implies that  or . 11 12 21

For  , Equations (17) and (18) imply that 
2 2
21 12 ,y y K  21 12y y 

11 0y

 therefore . 

  and 21 12y y , Equation (16) gives  For 
12 2y i  and we obtain the second Pauli matrix   

1

0

02y y

i
J J

i

 
   

 


          (20) 

or its opposite 2y y . J J 
11 0yFor  and 21 12y y  Equation (16) gives  

12 2y i  and we obtain the first Pauli matrix:   

3

0 1

1 02y xJ J
 

   
 



4 3y y

          (21) 

or its opposite J J 
11 0y

 
The case   permits to calculate the constant 

2 4  . 
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For  and , Equation (16) gives  11 0y 
2 2 2

21 12y y
2 2 4
124 0y     11 124 2y y    and using Equation (18)  

2 2 2
11 12  we obtain 4y y   2

12 0y   and 11 2y    which 
gives the third Pauli matrix: 

5y zJ J
1 0

0 12

 
    



6 5y y

           (22) 

or its opposite J J  . The 6 Jyk matrices are Jy, −Jy , 
Jx, −Jx, Jz, −Jz. 

The norm preservation and the null trace constraints 
applied to Jx give the 6 different Jxk matrices Jx, −Jx, iJy, 
−iJy, Jz, −Jz which fulfill the angular momentum criteria. 
Let us note that all are real matrices. 

All the matrix triplets which fulfill the angular mo- 
mentum definition in the two-dimensional complex vec- 
tor space are obtained with Equation (14). For each Jxk 
there are 6 Jyk which gives 36 possibilities for Jz which 
fulfill the 3 Equations (1)-(3). Out of these 36 possibili- 
ties only 24 give a nonzero matrix. Obtaining the 24 so- 
lutions is straightforward and only two examples will be 
given explicitly. The first one is the well-known Pauli 
spin 1/2 matrices: 

1 1

0 1 0
, ,

1 0 02 2x y

i
J J

i

   
     1

1 0

0 12zJ
 

     

 
 


 (23) 

and the second example is less conventional:  

13 13 13

0 1 0 1
, ,

1 0 1 02 2x yJ J
   

       

  0

02z

i
J

i

 
  

 



1 0

0 1ZJ
 

   

 (24) 

It can easily be verified that these 3 matrices fulfill the 
3 angular momentum definitions given by Equations (1)- 
(3). The 24 solutions show that the elements of the spin 
1/2 matrices can take only four values (−1, −i, i, +1) 
times ħ/2 and the corresponding real matrices: 

0 1 0 1
, ,

1 0 1 0X YJ J
   

    
   

   (25) 

Let us note that: 

     2 21 ,X YJ J  21 , 1ZJ           (26) 

and 

     † †1 , 1X x Y YJ J J J  †, 1Z ZJ J 

2 2 2 2

    (27) 

which proves that all the solutions correspond to an op- 
erator which preserves the norm of the vectors in the 
two-dimensional space. 

The 24 solutions of the general definition of the angu- 
lar momenta for spin 1/2 are given in Table 1. 

The general treatment of angular momenta uses the 
operator x y zJ J J J   . If we calculate this operator  

for the 24 solutions we find 2 2
1

3

4
J I   in 16 cases  

corresponding to the first two and last two rows of Table  

Table 1. The 24 solutions for spin 1/2 using matrices JX, JY, 
JZ, in ħ/2 units. 

J1(JX,iJY,JZ) J2(JX,−iJY,−JZ) J3(JX,JZ,−iJY) J4(JX,−JZ,iJY)

J5(−JX,iJY,−JZ) J6(−JX,−iJY,JZ) J7(−JX,JZ,−iJY) J8(−JX,−JZ,iJY)

J9(JY,JX,iJZ) J10(JY,−JX,−iJZ) J11(JY,JZ,−iJX) J12(JY,−JZ,iJX)

J13(−JY,JX,−iJZ) J14(−JY,−JX,−iJZ) J15(−JY,JZ,iJX) J16(−JY,−JZ,−iJX)

J17(JZ,iJY,−JX) J18(JZ,−iJY,JX) J19(JZ,JX,iJY) J20(JZ,−JX,−iJY)

J21(−JZ,iJY,JX) J22(−JZ,−iJY,−JX) J23(−JZ,JX,−iJY) J24(−JZ,−JX,iJY)

 
1. This result is the well-known value obtained with 
Pauli matrices. In the other 8 cases (rows 3 and 4 of Ta- 

ble 1) we obtain 2 2
1

1

4
J I  

k kx x ky y kz zJ J J

. 

We can associate the spin 1/2 with components Jkx, Jky 
and Jkz to the space coordinates in the laboratory frame 
(O,ux,uy,uz) to define the spin vector of a particle: 

  J u u u          (28) 

2.2. Dirac Equation 

It is well known [2] that the spin of a particle can be re-
trieved using an equation which satisfies the special the-
ory of relativity and quantum mechanics postulates, such 
as the Dirac equation. In Dirac’s book [3], the Pauli ma-
trices are obtained from the commutation definition with 
the additional constraint: 

2
2 2 2

4x y zJ J J  


0 e

e 0

ia

x ia




 
  
 

2

2 2 2

1, 0

, 0

x x y y x

x xm c

    

   

             (29) 

Owing to the fact that each observable has only two 
eigenvalues ħ/2 and −ħ/2. He obtained 

              (30) 

and stated that the phase  could be adequately chosen so 
as to obtain the three Pauli matrices. It is clear that Dirac 
did not consider non observable spins and he only took 
the 3 Pauli matrices as components of the spin vector. 

In his relativistic theory of the electron, he found that 
in order to obtain a linear wave equation it was necessary 
to introduce four 4  4 matrices solving the following 
equations: 

  

  

1

1

0
,

0
k k

k
k k

I

I

       (31) 

and the same relations obtained by permuting x,y and z. 
A solution given by Dirac to these four matrices was: 

 
 

 
   

       
     (32) 

with k = x, y, z, which nowadays is referenced as the 
standard form. But it is well known that any set of ma- 
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trices obtained with: 
† †U UandU U     

 † † 1UU 

      (33) 

where U is any unitary matrix , is also 
a solution to Equations (31). It can be shown that for a 
homogeneous magnetic field, the energy of the interac- 
tion of the intrinsic momentum with the magnetic field is 

U U

02s

q
E B

m



                (34) 

and the spin definition can also be retrieved as 

1

2
S                     (35) 

where   is the spin vector defined by the 3 Pauli ma-
trices as in the non relativistic case. Dirac’s equation has 
to be discussed more precisely only when time evolution 
is introduced. 

An important question is why does the general treat- 
ment of quantum angular momentum give only one solu- 
tion? This comes from the definition of 2 2 2 2

x y zJ J J J  

1 , ,

 
which is a dot product and not the matrix product of two 
angular momentum components. This definition intro-
duces some constraints which permit to eliminate the 
solutions where J2 < 0, but by taking only the positive 
values of j, also eliminates the negative components in 
the combination of the Pauli matrices. Therefore only the 
solution x y zJ     is obtained. 

3. Angular Momenta for 3-Dimensional 
Quantum System 

If we consider the extension to three dimensions, a vector 
has now 3 components and any quantum operator is de-
scribed by a real 3  3 matrix multiplied by a complex 
number 

1

2

3

0 0

0 0

0 0




. We can choose a basis for the vector space 
where one angular momentum is diagonal. If we take the 
z direction for this, the angular momentum is: 

zJ



 
 
 
 
 

J

              (36) 

where the λk are three complex numbers. 
As the angular momenta are defined by Equations 

(1)-(3) which correspond to non commuting matrices the 
trace of the 3 angular momentum matrices Jx, Jy, Jz is null. 
If we suppose that in the same basis and for the most 
general case y ij     where βij are complex numbers, 
we obtain according to Equation (2): 

   
 
  

12 2 1

21 2 1

31 3 1 32 3 2

0
1

0xJ
i

  
  
     

  
    


 


13 3 1

23 3 2

0

  
  

  
  




 

(37) 

and Equation (3) gives: 

   
   
   

2

22

12 2 1 13 3 1

22

21 2 1 23 3 2

2 2

31 3 1 32 3 2

1

0

0

0

yJ

     

     

     




    
 
     
 
     



 

(38) 
and Equation (1): 

4

1
z ijJ    

   

                 (39) 

 
    
    

   
   
   
  

33

11 12 21 1 2 13 31 1 3

33

22 12 21 2 1 23 32 2 3

3 3

33 13 31 3 1 23 32 3 2

12 13 32 3 1 2 3 1 2 3

13 12 23 2 1 3 2 2 3 2

23 21 13 1 2 3 1 2 3 1

21 23 31 3 2 1 3 1

2

2

2

2

2

2

        

        

        

         

         

         

       

   

   

   

    

    

    

    
   
    

2 3

31 21 32 1 2 2 31 1 3 2

32 31 12 1 3 2 1 2 3 1

2

2

2

   (40) 

 

         

         



    

    

0

To find the angular momenta, Equation (39) must be 
equal to Equation (36). There are several solutions ob- 
tained from the non diagonal Jz matrix elements equal to 
zero. 

If 13 31 2    , then 1   . For 1     we 
obtain a set of three matrix solutions to the spin equation: 

12

2

23
12

2

23

12

2

23
12

2

23

0 i 0
1 0 0

i
0 0 0 , 0 i ,

2
0 0 1

i
0 0

2

0 0

0
2

0 0
2

z x

y

J J

J















 
 
               

 
 
 

 
 
 
 
 
 
 
 
 
 









,  (41) 

For 1    the sign of Jz and Jx is changed but Jy is 
unchanged. If 12 23  we retrieve the con- 
ventional matrices for a spin 1: 

2i    
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1 0 0

0 0 0 ,
2

0 0 1

0 0

0
2

0 0

z x

y

J J

i

J i i

i

 
   
  

 
   
 
 





0 1 0

1 0 1 ,

0 1 0

 
 
 
 
 

0

,     (42) 

Another solution is obtained with 23 32 1    
2

, 
then     and for 2    the angular momenta are: 

12 13

0 0 ,

0 0

i i 
 
   
 
 
 
 
 
 
 

2

12

2

13

12 13

2

12

2

13

0
0 0 0

0 1 0 ,
2

0 0 1

2

1

0 0
2

0 0
2

z x

y

i
J J

i

J





 





 
   
  



 
 
 
 
 
 
 
 
 
 









,  (43) 

The third set of solutions is obtained with  

12 21 3 0     1, then     and for 1    the 
angular momenta are: 

13

23

2 2

23

0

0 ,

0

i

i




 

 
 
 
 
 
 
 
 

†

13

13

23

2 2

13 23

1 0 0 0

0 1 0 , 0

0 0 0

2 2

0 0

0 0

0
2 2

z x

y

J J

i i

J




 

 
    
   

 
 
 
 
 
 
 
 


 

 

,  (44) 

The choice of the basis of the 3-dimensional vector 
space can also be made so as to have a diagonal angular 
operator in the x or y directions, then the equivalent sets 
of solutions will be obtained by permuting the x, y and z 
subscripts. The important result of this derivation is that, 
contrary to the 2-dimensional case, there is no solution 
where the derived angular momentum operator preserves 
the norm of the vectors in the 3-dimensional vector space. 
Indeed, k kJ J  is never equal to 1. 

Therefore, the spin of any boson in particle physics 
requires a description other than the matrix representa- 

tion of the angular momentum. 
An interesting way to define the spin is to use the 

framework of a Clifford algebra defined in the quantum 
vectorial space. 

4. Clifford Algebra and Spins 

In his paper, in order to define the spin, Fröhlich [1] used 
a Clifford algebra involving 2k  2k matrices over com- 
plex numbers, which has to be compared to the geomet- 
ric algebra of spacetime initiated by Hestenes [4-6] and 
also developed by the Cambridge astrophysical group 
[7-9]. 

Grassmann and Clifford’s geometric algebra is based 
on the definition of the geometric product uv for vectors 
u, v, w obeying the following rules: 

   uv w u vw                (45) 

 u v w uv uw               (46) 

 v w u vu wu               (47) 

22
vv v

u v v u

                  (48) 

where εv is the signature of v and the magnitude |v| is a 
real positive scalar. The geometric product can be de- 
composed into a symmetric inner product: 

  

u v v u

                 (49) 

and an antisymmetric outer product: 

   

.uv u v u v

               (50) 

such that  

   

1 1 1 1

2 2 2 2

1 0

1 0

u u u u

u u u u

             (51) 

Orthonormal vectors are defined by: 

   

   

1 2 0u u

         (52) 

and  

 
2 1u

               (53) 

The signature of orthonormal vectors uk are k 

1 2 1 21, , , .

scalar, vector, vector, bivector.

u u u u i

 2 2 2
1 2 1 2 1 2 1 12u u u u u u u u   2 2

1 2 1u u

. 
The fact that real numbers can give negative squares is a 
little surprising but it is well illustrated by matrix JY of 
Equation (25). 

4.1. Basis of Geometric Algebra in Two and 
Three Dimensions 

In two dimensions we have the geometric algebra of the 
plane with four elements: 

      (54) 

The bivector u1u2 has a property such that its square 
. If the signatures    
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or 1 2 . It can be shown that 

1 2  forms a natural subalgebra equivalent to com-
plex numbers 1 2 . The bivector i is called a 
pseudoscalar which anticommutes with vectors u1 and u2. 

 2
1u u  

z x yu u 

1 2 2 3

2 2
1 2 1,u u 

u u i
nx x n

An arbitrary linear sum over the four basis elements is 
called a itmultivector: 

0 1A a a  u a u a i 

a 

i

2 2 1  

2 2
2 2 2 3 3 1

         (55) 

with components . i

The sum of two multivectors is obtained by adding 
each component and the geometric product is obtained 
from the multiplication table (Table 2). 

We can notice that the same algebraic properties are 
obtained by using the {1, u1, u2,  = u2u1} basis vectors 
(where ~ indicates a reversion of vector products). Again 

 is equal to −1 if the signatures are  
 or . 

2 2 2
1 2i u u 

2 2
1 2 1u u  1 2

The product of two multivectors AB is explicitly given 
by: 

u u

 0 0 1 1 1AB a b a b u  a b u a b     (56) 

 2 2
2 3 2 2 1u a b u u0 1 1 0 2 3a b a b a b   

 2 2
0 3 1 1 2b a b u u

 0 3 1 2 2 1 3 0a b i

 
 

2 2 2 2 2 2
0 1 1 2 2 3

0 2 2 0 3

1a a u a u a

a u a a i

   



 
 

2 2 2
0 1 2 3 1 2

2 2
2 2 3

1 1, 0 ,

1

0 2 1 3 1 2a b u a 

a b a b a b 

a b

2A

 

 

and the square of a multivector is  

0 1 12 a a u a 
      (57) 

Unit multivectors are characterized by: 

2 2 2
0 1 1or 0,

A a a a a u u

a u a

     

 a a u 

 
  (58) 

Rotation in geometric algebra is based on a theorem by 
Hamilton: given any unit vector n (n2 = 1), we can re- 
solve an arbitrary vector x into parts parallel and perpen- 
dicular to n: x x x 

nx x n 

u 2u i

  . These components are identi- 
fied algebraically through their commutation properties: 

                  (59) 

 
Table 2. Multiplication table for geometric algebra in two 
dimensions. 

1 1    

1u  2

1 1u  i  2

1 2u u

2

2 1u u

1

 

2u

i

 i  2

21u   

 2

1 2u u  2

2 1u u    

                (60)   

The vector x x  can therefore be written −nxn. 
Geometrically, the transformation x nxn   represents 
a reflection in the plane x, n. To make a rotation we need 
two such reflections:  

x mn x nm               (61) 

with mn nm = 1 [7]. The multivector R ≡ mn is called a 
rotor and R  = nm is called the “reverse” of R. R satis- 
fying R  R R = 1 is defined as “unimodular”. R =

The bilinear transformation of vectors is a very general 
way of handling rotations which can easily be general- 
ized to vector spaces of any dimension [7]. 
In three dimensions we have the geometric algebra of 
space with 8 elements: 

    1 2 31 2 3 1 2 3 1 2 31, , , , , , ,

1 scalar, 1 trivector3 vectors, 3 bivectors,

u u u iu u u u u u u u u 
 (62) 

Again the pseudoscalar  is defined by its 
property such that 1 2 3 1 2 3i u

1 2 3i u u u
2 1u u u u u   , therefore the 

signature of the orthonormal vectors must be one of the  

 2 2 2
1 2 3 1u u u    or  four possibilities: 

 2 2 2
1 2 31and 1u u u     or  

 2 2 2
1 3 21and 1u u u     or 

 2 2 2
2 3 11 and 1 .u u u     

Contrary to the 2-dimensional case, varying the order 
of bivectors does not give the same algebraic properties. 
By choosing the bivectors: 

 1 1 2 2 3 1 3 2 3, ,u u u u u u    

2 2 2
1 2 3 1 2 3 1     

    (63) 

for the basis of the 3-dimensional vector space, we have 
the relation defining the quaternion algebra: 

    

2 2 2
1 2 3 1u u u

        (64) 

which is only valid with the signatures: 

  

0 1 1 2 2 3 3 4 1

5 2 6 3 7

1R AB R R u R u R u R

R R R i

              (65) 

The important property given by Equation (64) is that 
the trivector i commutes not only with vectors but also 
with bivectors. 

The multiplication table for 3-dimensional geometric 
algebra with the signatures, in order to have the general 
case, is given in Table 3. 

The product of two multivectors is given explicitly by: 


 

     

  
     (66) 

with 
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2 3u u

 
Table 3. Multiplication table for geometric algebra in three dimensions. 

1 
1u  2u  3u  1 2u u  3 1u u   i 

1

u

u  21u1

u u

 1 2

21u

u u  3 1

u u

u u  2u u1 2

2u u

 2u u1 3 2

1 2 3u u u

2 1 2

2 3u u u

 2

3 1 2u u u

2 1   2 2

1 2 3u u u

1 1 3   2 2

1 3 2u u u

3   2 2

2 3 1u u u

   1

 i  

2

3u  

 1 2

3 1u u

 2

2 3u u

 2 3

2

31u

  i 2u u  2 3

2

3 2u u  

1  

   i 2

3 1u u   

1 2

u u

u u  2u u 1 2

2u u

 2u u  i 2 21u u1 2

2u u u

 2

1 2 3

2 21u u

u u u  2u u u  2 3 1

2u u u

 

3

2u u

  i 2u u 3 1

2

3 2u u

 1 2 3

2

2 3 1u u u

 1 3

2

3 1 2u u u

 3 1 2

2 2

2 3 1u u

  

 i 2

2 3u u       

i 2u u u1 2 3  2u u u2 3 1  2u u u3 1 2  2 2u u u1 2 3  2 2u u u1 3 2  2 2u u u2 3 1    
 

2 2 2
0 0 0 1 1 1 2 2 2 3 3 3

2 2
6 2 3 7 7

2 2
5 3

2 2 2 2
3 7 6 2 3

2
3 6 3

2
3 7 5 1

R a b a b u a b u a b u

b u u a b

u

u a b u u

a b u

u a b u

   

 



 2 2
3

0

2 2 2
2 7 4 1 2

2 2
7 3

2
7 3 3

1

2
7 2 2

u

b

u a b u u

u

a b u

a b u







2

2
7 1 1a b u

a a

2 2 2 2
4 4 1 2 5 5 1 3 6

1 0 1 1 0 2 4 2 3

2 2
4 2 2 5 3 3 6 7 2

2 2
2 0 2 1 4 1 2 0 2

2 2 2
4 1 1 5 7 1 3 6 3

a b u u a b u u a

R a b a b a b u a b

a b u a b u a b u

R a b a b u a b u

a b u a b u u a b

 

   

  

   

  
2 2

3 0 3 1 5 1 2 6 2 3

2 2 2
4 7 1 2 5 1 1 6 2

4 0 4 1 2 2 1 2 3

2 2
4 0 5 6 3 6 5 3

2
5 0 5 1 3 2 7 2 3

2 2
4 6 2 5 0 6 4 2

2
6 0 6 1 7 1 2

R a b a b u a b u a

a b u u a b u a b

R a b a b a b u a b

a b a b u a b u

R a b a b a b u a b

a b u a b a b u

R a b a b u a b

   

  

   

  

   

  

   3 3

2 2
4 5 1 5 4 1 6 0

7 0 7 1 6 2 5 3 4

4 3 5 2 6 1 7 0

a b

a b u a b u a b

R a b a b a b a b

a b a b a b a b



  

   

     

According to the previous mentioned Hamilton’s 
theorem, any multivector A can be resolved in a com-
muting (perpendicular) part: Ca and anticommuting (par-
allel) part: Ja, therefore: 

A C J 

0 71aC a a i 

2 3 3 4 1 5 2 6 3

               (67) 

with 
 

1 1 2aJ a u a u a u a a a        

because 1 and i commute with all the elements of a mul-
tivector. 

If we look at the spin definition in natural units (ħ = 1) 
given by the spin equations in a geometric algebra frame- 
work, JxJy can be considered as anticommuting mul- 
tivectors defining a rotation RZ in the x, y plane. 

To prove the validity of this unconventional definition 
of spin 1/2, we consider the first spin equation, 

x y y x zJ J J J i J    which can be easily calculated with 
Equation (66). It appears that the scalar and the pseudo- 

scalar components of Jz are equal to zero. Since this rela- 
tion applies to the other two spin equations, every Jx, Jy 
and Jz have no scalar and no pseudoscalar components. 
The first spin equation gives the following 6 equations: 

 
 
 
 
 

2 2 2 2 2 2
3 5 3 5 3 3 4 2 2 2 4 2 6 2 3

2 2 2 2 2 2
1 4 1 4 1 1 6 3 3 3 6 3 5 1 3

2 2 2 2 2 2
2 6 2 6 2 2 5 1 1 1 5 1 4 1 2

2 2 2
1 2 2 1 5 6 3 6 5 3 3 3

2 2 2
3 1 1 3 6 4 2 4 6 2 2 2

2 3 3 2

2

2

2

2

2

2

x y u x y u x y u x y u z u u

x y u x y u x y u x y u z u u

x y u x y u x y u x y u z u u

x y x y x y u x y u z u

x y x y x y u x y u z u

x y x y

    

    

    

   

   

 2 2 2
4 5 1 5 4 1 1 1x y u x y u z u  

  (68) 

Calculating the components of the product of two mul- 
tivectors z x yR J J  allows to retrieve the 6 previous rzk 
factors and two new factors rz0 and rz7 for the scalar and 
the pseudoscalar components of the product: 

0 1 1 1 2 2 3 3 4 1

5 2 6 3 7

z z z z z z

z z z

R r u r u r u r u r

r r r i


 

    

  

2 2 2 2 2
0 1 1 1 2 2 2 3 3 3 4 4 1 2

2 2 2 2
5 5 1 3 6 6 2 3

7 1 6 2 5 3 4 4 3 5 2 6 1

z

z

r x y u x y u x y u x y u u

x y u u x y u u

r x y x y x y x y x y x y

   

 

     

     (69) 

with 

 

therefore 

 0 7

0 7

1
1

2
1

1
2

z x y z x y y x z

z z z

R J J r J J J J r i

r r i iJ

    

  



     (70) 

An analogous derivation gives: 

 0 7

0 7

1
1

2
1

1
2

z y x z y x x y z

z z z

R J J r J J J J r i

r r i iJ

    

  

   

     (71) 

Therefore 

2 2 2
0 7

1
1

4z z z z z z zR R R R r r i i J   

2
k

        (72) 

J  (with k = x, y, z) have only a scalar and a where 
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pseudoscalar component. The important consequence is 
that the 2

kJ  commute. 
Hamilton’s theorem proves that there exists a unit vec- 

tor which resolves any vector into a perpendicular and a 
parrallel part and u3 is a good candidate to play this role 
for Rz because u3 is perpendicular to any multivector Jx 
and any multivector Jy. The permutation of x,y,z shows 
that there is no incompatibility in doing so for JyJz and 
JzJx. We retrieve the relation (65): 

2 2 2
1 2 3 1u u u                   (73) 

and find the 3 relations for  1k kR R 

 

: 



  
  

2 2

2 2

2 2

1
1 1

4
1

1 1
4
1

1 1
4

z

y

x

i J

i J

i J

 

 

 

, ,

0 7

0 7

0 7

z z z z

y y y y

x x x x

R R r r

R R r r

R R r r

 

 

 

      (74) 

Therefore a spin 1/2 (S1/2) can be defined in geomet- 
ric algebra as a set of 3 rotors: 

z x y y zR J J R J  x x y zJ R J J

5 2 6 3

3 1

    (75) 

As Rk are unimodular vectors, they preserve the mag- 
nitude of multivectors. Equations (68) and (69) show that 
the solution for the component values of the set of the 3 
rotors depends on the signatures of the orthonormal vec- 
tors. 

In summary, in geometric algebra a spin 1/2 is a set of 
3 rotations obtained from the product of two multivectors 
which are the linear summation of 3 orthonormal vectors 
u, u, u and 3 bivectors , , according to: 

 
1 1 2 2 3 3 4 1

2 2 2
1 2 2 1 2

, ,

with

kJ k u k u k u k

k x y z

k k  



 

 

1 2 3

    

   



  

 (76) 

which fulfill the spin equations: 

x y zJ J u u u J    

0J J J  

0x y y xJ J 

             (77) 

and the permutation of (x,y,z). 
It can be noticed that the only solution if we try to 

solve the spin equations in the two-dimensional case, is 

x y z . This result is not surprising because in 
two dimensions, rotations commute and  

. J J

4.2. Spacetime Algebra 

According to Hestenes [5], the standard model for space-
time is a real 4D Minkowski spacetime with vector addi-
tion and scalar multiplication where we can impose the 
geometric product defined by equations 45 to 51 in order 
to generate a geometric algebra called spacetime algebra 
(STA). 

A basis for STA can be generated by a frame 
 1 2 3 4  of orthonormal vectors which determines 
the pseudoscalar: 

, , ,u u u u

1 2 3 4i u u u u                (78) 

In order for the pseudoscalar i to keep the same prop- 
erties as in the two- and three-dimensional cases, i2 must 
be equal to −1, which imposes two signature combina-
tions which are called the metric of STA. One possibility 
to fulfill i2 = −1 is that three signatures should be equal to 
1 and the fourth equal to −1, the second possibility is that 
three signatures should be equal to −1 and the fourth 
equal to 1. The metrics are defined by  1,1,1, 1  and 
 1, 1, 1,1  

2 2 2 2 2 1x y z ti u u u u

. The 3 orthonormal vectors with identical 
signature will be associated with the space components 
x,y,z and the other with the time component t so that:  

  

1 1

2 2

3 3

x y y x x t t x

z x x z y t t y

y z z y z t t z

u u u u u u u u

u u u u u u u u

u u u u u u u u

           (79) 

By forming all distinct products of the four uk we ob- 
tain a complete basis for STA consisting of 24 = 16 line- 
arly independent elements. 

There are 12 bivectors obtained from the arrangement 
of 2 out of the 4 orthonormal vectors, but there are only 6 
with different magnitudes: 

 

 

 

     

     

     

    (80) 

As regards trivectors, there are 24 products to be ob- 
tained from the arrangement of 3 out of the 4 orthonor- 
mal vectors. There are 8 distinct products and only four- 
having different magnitudes: 

02

12

22

32

t
x y z x z y

t

x
y t z y z t

x

y
x t z x z t

y

z
x t y x y t

z

iu
u u u u u u

u

iu
u u u u u u

u

iu
u u u u u u

u

iu
u u u u u u

u





   

   

       (81) 

 



   

   

 
 

 

1 2 3 4

1scalar :1

4 vectors : , , ,

6 trivectors : 3 ,3

4 pseudovectors :

1 pseudoscalar :

u u u u

i

 



We can verify that i anticommutes with vectors and 
trivectors but commutes with bivectors. 

A complete basis for STA is: 

         (82) 
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According to the 3-dimensional geometric algebra 
case we have the quaternion relation (64) for the  
bivectors. By adequately choosing the bivectors of the 
vector space basis, the 3 new bivectors σk fulfill the fol- 
lowing quaternion relation: 

       22 2

1 2 3 1i i i i       2 3 1i i   

 
 

2

3

3 1

t

t

u

u



  

 1,1,1, 1

 (83) 

The four pseudovectors are: ξ0 the pseudoscalar of di- 
mension 3 and the three other ξk which, again, fulfill a 
quaternion relation between the geometric product of the 
time orthonormal vector and ξk: 

   
 

2 2

1 2

1 2

t t

t t

u u

u u

 

 

 
      (84) 

The 3 quaternion relations are verified with the metric 
 and the choice of the basis defined by Equa- 

tions (80) and (81). 
For the other metric, Equation (84) is still valid, but to 

keep the quaternion relations (63) and (83) for bivectors, 
we have to consider another basis where  

2 2


x z , which corresponds to reverse rotations 
in the x,z plane. 

u u   

 1 2 3, , ,

If we consider the geometric algebra definition of spin 
1/2 given by Equations (76) to (77) we retrieve the spin 
1/2 characterized by the 6-element multivector: 

, , ,1 , ,x y z x yS u u z zu            (85) 

but in the 4-dimensional vector space there are two other 
spins 1/2: 

 

, , ,2 1 2

2 2 2 2

, , ,i ,i ,i

, , , ,

x y z x y z

x y z z t y

S u u u

u u u u u u u

 


3

2 2
1 2 3,t x tu u



   
   (86) 

 

, , ,3 , , ,

, , ,

x y z x y z

x y z t

S u u u

u u u u 
1 2 3

2 2 2
1 2 3

, ,

, ,

t t t

t t

u u u

u u

  

  

 1,1,1, 1

 
         (87) 

for the metric . For the other metric with the 
other basis there are three new spins 1/2 obtained from 
the 3 vectors ux, uy and uz: 

 1 2 3, , ,zu, , ,4 , ,x y z x yS u u   



              (88) 

 2 2 2 2
, , ,5 1, , , ,x y z x y z z t y tS u u u u u u u 2 2

2 3, x tu u   

 2
2 3, ,t tu u

 (89) 

2 2
, , ,6 1, , ,x y z x y z tS u u u u   

, , ,1..6 , , ,1..6, ,z t y z tS S S

 

4 4 4 4 4 4 4 4 4

1 1 2 2 3 3 4 4 5 1

6 2 7 3 8 1 9 2 10 3 11 0

12 1 13 2 14 3

, ,

with

, ,

        (90) 

There are 18 other spins 1/2 obtained with the different 
vectors of the 4-dimensional case and the same bivectors: 

, , ,1..6x y t x          (91) 

Therefore the 24 spins 1/2 found with the matrix deri- 
vation are retrieved in the STA description but here with 
a clear distinction between spins 1/2 which fall in two 

metric-dependent categories. If the 12 spins 1/2 of each 
category were sorted as a function of bivectors we would 
find 3 families of 4 spins 1/2 as in elementary particle 
physics. 

As the definition of rotation given by Equation (61) 
applies whatever the dimension of the vector space, in 
four dimensions the spin 1 can be defined by set of 3 
rotors: 

z x y y z y x y z

k

R J J R J J R J J

J k u k u k u k u k

k k k k k k

k k k k x y z


     
  

  

    

     

   

2 2 2 1u u u

   (92) 

where the Jk fulfill the spin equations. From the gener- 
alization to 4 dimensions of the vector product given by 
Equation (66), it is easy to see that the scalar component 
is null because real components commute and the pseudo 
scalar component is null because its parts are independ- 
ent of the signatures. As the Rk are unimodular vectors, 
they induce rotations which preserve the norm of any 
vector. Again the solution to the equations which deter-
mine the components of the multivectors Jk is dependent 
on the signature of the orthonormal vectors. Therefore 
there are 4 different solutions with space-like signatures 

x y z   2 1u and time-like signature t    and 
12 different solutions if we consider each signature in-
dependently. 

5. Conclusion 

We have shown that for the two-dimensional complex 
vector space, the spin matrices can be calculated directly 
from the angular momentum commutator definition. We 
have retrieved the 3 Pauli matrices and found 23 other 
triplet solutions. When extended to the three-dimensional 
space, we have shown that there is no matrix which pre- 
serves the norm of the vectors and fulfills the spin equa- 
tions. By using a geometric algebra with a vector prod- 
uct which combines a commuting product and an anti- 
commuting product it has been possible in four-dimen- 
sional spacetime to retrieve the 24 different spins 1/2 
defined as 12 clockwise and 12 counter-clockwise rota- 
tions. These rotations are characterized by anticommut- 
ing parts composed of 3 vectors and 3 bivectors which 
fulfill the spin equations. Spin 1 can be defined as 3 rota- 
tions characterized by 4 vectors, 6 bivectors and 4 
trivectors which fulfill the spin equations. These uni- 
modular spin 1 rotations preserve the magnitude of mul- 
tivectors. There are 12 different spins 1 depending on the 
signature of the 4 orthonormal vectors of the four-di- 
mensional vector space. The correspondence between 
this derivation and particle physics is perhaps fortuitous 
but the use of STA offers the advantage of formulating 
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conventional relativistic physics in invariant form with- 
out reference to a coordinate system [5] and it seems 
promising to analyze how time evolution and spin inter- 
action can be used in order to predict the gyromagnetic 
ratio of the proton and the neutron. 
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