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ABSTRACT 

A standardized, self-similar, multiresolution algorithm is developed for scaling infrasonic signal time, frequency, and 
power within the framework of fractional octave bands. This work extends accepted fractional octave band schemas to 
0.001 Hz (1000 s periods) to facilitate the analysis of broadband signals as well as the deep acoustic-gravity and Lamb 
waves captured by the global infrasound network. The Infrasonic Energy, Nth Octave (INFERNO) multiresolution En-
ergy Estimator is applied to computing the total acoustic energy of the Russian meteor signature recorded in the 45 mHz 
- 9 Hz frequency band by IMS array 131 KZ, Kazakhstan. 
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1. Overture 

Infrasound is used to characterize manifold natural and 
anthropogenic sources, from tsunamigenesis in the mHz 
frequency range to wind turbines near the audio range. 
The spectrum of atmospheric waves propagating at in-
frasonic speeds can span over four orders of magnitude 
(2 mHz - 20 Hz), a decade broader than the audio range 
(20 Hz - 20 kHz). Signals can be nearly continuous or 
transitory, and their energy spectrum can vary by more 
than twelve orders of magnitude (120 dB). The spatial 
distribution of infrasonic sensing systems may vary from 
meters to kilometers. Due to these diverse spatial, tem-
poral, spectral, and intensity scales, it can be challenging 
to process infrasonic signals using consistent, reproduci-
ble parameters. 

This paper is an invitation to standardize infrasound 
metrics using historical and ongoing efforts by diverse 
communities as a compass, and an entreaty to extend 
familiar algorithms and accepted standards into a slightly 
different, more transportable framework. It proposes a 
scaling of time, frequency and amplitude that may permit 
comparative calibrations, data quality assessments, and 
tests on sensing systems, as well as the benchmarking 
and validation of propagation models, detection algo- 
rithms, and classification taxonomies. Although this 
work presupposes a familiarity with digital signal proc- 

essing of waveform signatures and some intimacy with 
spectral analysis, it does not require expertise in infra- 
sound. This paper should provide sufficient information 
to permit the computational implementation of the pro- 
posed methodology and algorithms for further evaluation 
and improvement. 

2. Infrasonic Pressure Signatures 

Most infrasound data in the 21st century consists of 24- 
bit digital pressure waveforms with precise GPS time 
stamps, fixed station locations, and stable sampling rates. 
These data, with channel code BDF, are readily available 
through the IRIS DMC (http://www.iris.edu/dms/dmc/). 
A waveform associated with a source or event of interest 
is referred to as a signal. Its signature usually consists of 
the temporal, spectral, amplitude, and phase relationships 
that help identify the signal. 

In general, we wish to detect, characterize, locate, and 
identify a signal of interest within an infrasonic pressure 
record. Yet these signals are often emergent, transient, 
immersed in ambient noise, and have distinguishing fea-
tures that are not evident in raw pressure waveforms. In 
addition, a source signature can be significantly altered 
by atmospheric variability. 

In practice, the first step in the inspection of a record is 
the assessment of waveform data quality and its statisti-

Copyright © 2013 SciRes.                                                                            InfraMatics 



M. A. GARCES 14 

cal properties in the time domain. This step identifies 
data gaps, electronic noise, timing issues, clipping, or  
any other system problems that will degrade the usability 
of the data. If data are worthy of further processing, the 
next step in characterizing a signature is to compute its 
time-varying spectral amplitude. Figure 1 shows the 
broadband infrasonic signature of the Russian meteor 
captured by International Monitoring System (IMS) 
infrasound array I31KZ in Kazakhstan. This exploding 
fireball produced one of the most intense broadband sig-
nals captured by the IMS network, with sound radiated 
beyond the 4.5 mHz - 9 Hz passband shown in Figure 1. 
With properly scaled spectral parameters, the frequency 
domain representation is often more useful than the raw 
pressure record for identifying robust infrasonic signal 
features specific to an event of interest. 

One of the keys in signal detection and identification is 
the ability to separate the signal spectrum from the noise 
spectrum, and eliminate as much of the noise as possible 
from subsequent analyses. A network of single micro-
phones can readily identify energetic impulsive signals 
where the amplitude is much higher than the ambient 
noise within a given passband. By defining the total en-
ergy per frequency bin over the record duration in Figure 
1 as the ambient intensity levels, it is possible to readily 
estimate a signal-to-noise (S/N) intensity ratio per time- 

frequency bin (Figure 2). A more sophisticated approach 
to estimating S/N is discussed in Section 7. However, a 
single sensor cannot differentiate between wind noise or 
competing acoustic sources, so the signal should be loud 
and clear for single-sensor or network processing. 

At distances from tens to thousands of kilometers, or 
in situations where competing acoustic sources are pre-
sent, more sophisticated systems are preferable. Four or 
more calibrated sensors precisely time-stamped and de-
ployed as arrays can provide reliable signal detection 
within a designated frequency (f) band, or wavelength ( 
= cs/f) range, where cs is the (infrasonic, seismic, hy-
droacoustic, or gravity wave) signal speed at the array. 
An excellent review of array design criteria is given by 
[1]. A single array yields the direction of arrival 
(backazimuth) and the apparent signal velocity across the 
array aperture and can discriminate between dissimilar 
but simultaneous competing sources. With the notable 
exception of overhead regional sources, most infrasonic 
arrivals have an apparent acoustic signal speed close to 
that of the sound speed (c) at the array site. By using in- 
tersecting backazimuths, two properly sited arrays can 
locate and identify a source. Although infrasound arrays 
are used routinely by the international infrasound com- 
munity for detection, location, and identification of natu- 
ral and man-made events (e.g. [2]), there are no stan-  

 

 

Figure 1. Russian meteor waveform and its spectral features at I31KZ observed on 15 February 2013 at a range of ~600 km 
from the source. This is one of the most broadband signals captured by the IMS network, and a bandwidth of 0.0045 Hz (4.5 
mHz) to 9 Hz is shown in the logarthmic frequency axis. The upper panel is the bandpassed waveform, and the panel below it 
is the FFT spectrogram with a fixed time window duration (Equation (1)) and units of Pa2/Hz. The third panel from top is the 
sound pressure level (SPL) with the same time window as the spectrogram but in 1/3 octave bands. Since the FFT window 
duration is set by the lowest frequency, the temporal resolution is very coarse and there is substantial energy leakage between 
overlapped time windows, reducing signal onset precision. The lowermost panel is the SPL using the INFERNO multiresolu-
tion energy estimator described in Section 6, with a substantial increase in the accuracy and temporal resolution of the signal 
energy distribution. 
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Figure 2. Close up of beamformed waveform and its S/N ratio in dB relative to the averaged intensity over the record, with-
out instrument correction. 
 
dardized detection parameters for the validation and 
benchmarking of array processing algorithms. 

To optimize array performance, the signal wavelength 
should be neither excessively large nor small relative to 
the array aperture L [3]. If the wavelength is too large, 
the errors in trace velocity and azimuth increase. If the 
wavelength is too small, we have spatial aliasing. For a 
typical four-element tripartite (centered triangle) array, 
the aperture can be approximately by the longest distance 
between elements, which is (generally) approximately 
twice the smallest inter-element distance. Aliasing would 
become prominent when  < L, but would be somewhat 
tolerable between the main lobe and the first grating lobe 
(L/2 <  < L). When  > L (with 12L as an empirical 
limit), oversampling [3] yields degraded precision in 
arrival azimuth and velocity estimates. In practice, we 
have much better performance than anticipated with high 
signal-to-noise (S/N) broadband transients, but if the S/N 
ratio decreases or the signal is more tonal one must be 
mindful of the reliability of array results. Taking L/2 <  
< 12L as a practical array wavelength range leads to an 
array bandwidth of c/(12L) < f < c (2/L). Thus array 
I59US, Hawaii, with an aperture of 2 km, would have a 
bandwidth of [0.014 Hz - 0.34 Hz]. However,I59US rou-
tinely detects surf signals with a high S/N up to 4 Hz, 
with good performance at 1 Hz (~ L/6), where aliasing 
is predicted to be prominent but there is a decrease in 
ambient noise levels and a corresponding increase in 
S/N. 

In contrast, array UH MENE in Volcano, Hawaii, with 
an aperture of 0.1 km, would have a detection bandwidth 
of [0.3 Hz - 6.8 Hz], yet also routinely detects signals 
well outside the band when the S/N is sufficiently high. 
Infrasound data for both I59US and MENE are available 
through the IRIS DMC. Note that a network can turn into 
an array if the frequency or propagation velocity are  

within the aforementioned optimal array bandwidth, for 
example when considering deep infrasound recorded by 
the IRIS US Array [4]. 

Array and network processing can separate signal from 
noise, although sometimes a signature is sufficiently dis-
tinct in amplitude and frequency to permit ready extrac-
tion with a single sensor. Signal detection parameters can 
be tuned to a known source signature, yet in exploratory 
research we don’t always have a priori knowledge of a 
signal’s signature and it is useful to have a robust, 
broadband detection parameter set that permits the iden-
tification of anomalous signals relative to an ambient 
sound field. 

3. Conservation Principles 

It is essential to identify parameters that can robustly and 
consistently characterize infrasonic signatures. Both con- 
tinuous and transient signals and their combinations 
compose the ambient field, and should be considered. 

In a linear acoustic system, the signal spectrum is pre- 
served from source to the receiver, and no frequency 
component absent in the source can be observed at the 
receiver. However, Earth’s complex atmosphere and di- 
verse topography conspire against linearity, which leaves 
the more interesting problem of quantifying how the 
source energy spectrum is repartitioned along the propa- 
gation path to the receiver. To consistently account for 
this energy repartitioning, it is useful to define a stan- 
dardized set of frequency bins tuned to the signal of in- 
terest. The design of such frequency banks will be dis- 
cussed in Section 5. 

The conservation of apparent horizontal phase velocity, 
or ray parameter, during propagation in heterogeneous 
anisotropic atmospheres (e.g. [5,6]) is applicable for ver- 
tically stratified propagation environments. Most tele- 
sonic signals of interest arrive at the array with a nearly-  
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horizontal incidence angle, with an apparent velocity 
corresponding to the local sound speed at the receiver. 
The observed signal velocity across the array is valuable 
for identifying coherent signals and can be useful for the 
discrimination of overhead sources at close ranges. 
However, horizontal refraction near Earth’s surface, het- 
erogeneities along the propagation path, multipathing, 
and simultaneous arrivals from competing sources can 
lead to low robustness in using the apparent horizontal 
phase velocity as an unambiguous arrival identifier. The 
apparent speed, or celerity, defined as the ratio of the 
total propagation range to the total travel time, was in- 
troduced in [7,8] as a more stable parameter for identify- 
ing multipath arrivals and locating telesonic ( >250 km) 
sources [9]. If the origin time and location of an event is 
well known, it is useful to plot the waveform celerity 
along the time axis for phase identification [10]. Winds 
transverse to the propagation direction will introduce an 
angular deviation from the expected arrival azimuth, 
which is often estimated with ray tracing algorithms [5]. 
Observed azimuth deviations can vary substantially (up 
to ±15 degrees) due in large part to the variability of at-
mospheric winds. 

Causality is a fundamental requirement, one of the 
primary discriminants for signal association, and the 
main reason why the celerity estimates are useful. A sig-
nal associated with an event must not arrive before its 
fastest predicted propagation time, and not much later 
than permitted by the slowest propagation speed along a 
prescribed path. One can readily estimate the expected 
arrival times by using a nominal celerity range of Cel ~ 
[0.21 - 0.34] km/s, with propagation times of TCel = R/Cel, 
where R is the range (km) of the great circle path from 
the source to the receiver. However, temporal correlation 
does not imply causation, and assuming a signal corre-
sponds to a known source only because of its time of 
arrival will lead to an overabundance of false detections 
and misidentifications. Furthermore, reradiation of sound 
by topography and bathymetry presents a coupled wave 
problem that may shift the expected sound reception 
window earlier or later, depending on the final source- 
receiver path [11]. 

Substantial effort has also been placed on amplitude 
scaling relationships (e.g. [12]). Sach’s scaling [13] ex-
emplifies a robust set of scaling relationships between 
source pressures, period, yield, and range representative 
of the hydrodynamics of explosive detonations, but 
should only be applied to the near-field regime and 
physical processes for which they were designed. At-
tempts have been made at deriving scaling laws using 
either peak overpressure or peak period applicable to 
distances extending well beyond the hydrodynamic re-
gime where the Sach’s scaling is valid. However, due to 
nonlinearities inherent in finite amplitude effects at high  

altitudes, atmospheric attenuation, and scattering, neither 
peak period (frequency) or amplitude (overpressure) 
have a physical conservation law that justifies their pres- 
ervation during telesonic propagation. 

In summary, in infrasonic propagation the transfer 
function between the source and receiver is nonlinear and 
anisotropic. The source spectrum is not always preserved, 
the apparent horizontal velocity is not a reliable dis-
criminant for infrasonic arrivals, azimuth deviations are 
temperamental, causality is essential but ambiguous, and 
existing scaling laws can be fickle. Conservation of mo- 
mentum is already used in the governing acoustic-gravity 
wave equations, and the only remaining, reliably invari- 
ant principle is the conservation of energy, with the ca- 
veat that it is necessary to isolate the system in consid- 
eration. This could include, but not be limited to, geo- 
magnetic perturbations, gravity wave fields, solar tides, 
severe weather disturbances, and wave coupling in 
Earth’s solids, liquids, gases, and plasmas, and combina-
tions thereof. 

The next sections focus on developing a standardized 
methods for estimating the energy, or intensity, of an 
observed infrasonic pressure signature with substantial 
energy below 20 Hz. Due to the aforementioned compli-
cations introduced by the source physics and propagation 
environment, it will be instructive to accurately track the 
changes in the statistical properties of a signal as a func-
tion of time and frequency as it travels across a network 
of sensors or arrays. These statistical properties provide a 
measure of the variability of the source processes and 
propagation media. 

4. Scaling Time 

Acoustics is a branch of fluid mechanics, where scaling 
and nondimensionalized numbers are routinely used to 
create numerical and laboratory models of complex fluid 
behavior. For systems with intrinsic characteristic fre-
quencies, dimensions, speeds, or time constants, it is of-
ten possible to identify a flow regime for which these 
intrinsic values are interrelated. Self-similar relationships 
reproduce themselves at different scales in such a way 
that they replicate nondimensionalized attributes [14]. 

This section develops self-similar time window dura- 
tions for processing and characterizing waveform data 
using pre-existing standards for reference and validation. 
Although this paper concentrates on infrasonic pressure 
in Pascals (Pa), the proposed methodology is transport- 
able to other measurements amenable to Fourier synthe- 
sis, such as displacement, velocity and acceleration, or 
even counts in the absence of a calibration value. The 
primary scaling variables would be the effective array 
aperture L and either the lowest frequency (for Fourier 
synthesis) or the center frequencies (for filter banks)  
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within a prescribed signal bandwidth. In doing so, it is 
possible to extend the basic principles of Fourier synthe-
sis to high-resolution multispectral analysis techniques in 
logarithmic-frequency space with time-window auto-
scaling. 

Spectral decomposition using the Fast Fourier Trans- 
form (FFT) is routine in the acoustics community. Power 
spectral densities and spectrograms are commonly ap- 
plied to sound records, with the probability density func- 
tion of the power spectral density providing a useful 
measure of confidence levels. Not surprisingly, Fourier 
synthesis performs well on tones and harmonics that can 
be accurately represented as discrete sinusoids, although 
eigenvalue-based superresolution algorithms can outper- 
form FFTs (e.g. MUSIC [3]). These algorithms are an 
essential part of the sound hunter quiver, and the reader 
should be familiar with them. Well-established algo- 
rithms and standards in the geophysical infrasound and 
seismic communities are described in [15]. However, 
these geophysical algorithms usually use arbitrary spec- 
tral computation parameters that are generally not trans- 
portable to other applications of infrasound, such as his- 
torical studies, noise and vibration control, and other 
research in low-frequency acoustics which adhere to 
ANSI and ISO standards for noise characterizations.  

A limitation of Fourier synthesis is that the minimum 
window duration TW for array processing is fixed (Figure 
1) and set by the lowest frequency (fci, in Hz), or the 
longest period (Tci = 1/fci) of interest, 

W ci L
ci

NP L
T NP T MT M

f c
     ,      (1) 

where NP is the number of periods in the window, L (km) 
is the array aperture or maximum element distance under 
consideration, and c (km/s) is the slowest speed of 
propagation of the wave type of interest, so that TL = L/c 
is the maximum time a signal may take to arrive at all the 
sensors. M is a scaling coefficient that compensates for 
window edge effects, filter ringing, and signal duration. 
M has a recommended range of 2 - 4, with a minimum of 
M = 2 when using a tapering window. If the microphones 
are collocated, or very close relative to a wavelength, 
then L = 0 and this contribution vanishes. 

Fourier analysis is well suited for narrowband signals 
and linearly-spaced tones, when a high spectral resolu- 
tion is desirable. However, the FFT fixed window dura- 
tion does not generally provide a sufficiently fine tem- 
poral resolution. When analyzing a time-varying sound 
field over four decades in frequency, this type of win- 
dowing often leads to signal undersampling in the low 
frequency bands and oversampling at high frequencies 
(Figure 1). For commonly encountered non-stationary 
infrasonic signals, this often leads to unreliable statistics 
at both ends of the bandpass as well as unacceptable lev- 

els of ambiguity in arrival times and phase discrimination. 
For broadband non-stationary signals it is useful to con- 
sider alternative processing techniques that improve the 
temporal resolution in the characterization of signal and 
noise variability. 

Fractional octave bands (Section 5) are traditionally 
used in environmental acoustics, sound and vibration 
[16]. Fractional octave schemas divide a bandpass of 
interest into overlapping, narrow bandpassed filter banks. 
For a narrowly bandpassed signal with a center fre-
quency fc (with period Tc = 1/fc), a scaleable time window 
length for that passband may be defined as: 

W c
c

NP L
T M NP T

f c
     LMT        (2) 

where NP represents the number of periods per band. In 
the absence of any preexisting knowledge about the tar-
get signature NP could have a range of 5 - 15, with NP = 
10 (ten center periods per time window) a reasonable 
compromise. TL represents the minimum window length 
needed for the signal to traverse across the array at a 
speed c, and often sets the finest time resolution at high 
frequencies. 

Using c = c·fc, this expression can be nondimension- 
alized as 

W c

c c

T Lf L
NP M NP M

T c 
             (3) 

The second term in Equation (3) shows explicitly the 
effects of spatial aliasing and oversampling. From Sec- 
tion 2, this second term will be increasingly important in 
the spatially aliased wavenumber region where  < L. 

As an example, for an array aperture of 2 km, a sound 
velocity of 0.34 km/s, NP = 10, and M = 4, Equation (2) 
can be simplified to: 

10
24W

c

T
f

  s .               (4) 

Note that as fc increases, TW approaches a constant 
value of 24 s. In effect, there is a cutoff frequency for 
which the 1/f scaling given by Equation (2) is not useful. 
This cutoff frequency is defined by 

cut

NP c
f

M L
              (5) 

Let fci and fcf be the lowest and highest center frequen-
cies in a filter bank. If fci > fcut, there is not much point in 
using 1/f scaling as it only makes the windows longer 
and degrades temporal resolution. In this case it is useful 
to set NP = 0 and use a constant window duration given by 

 W ci cut

L
T f f M

c
               (6) 

If fcf < fcut, it is counterproductive to use the constant  
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array correction TL as this also degrades temporal resolu-
tion. In this case it is practical to set TL = 0 and use a 
window duration given by 

 W cf cut c
c

NP
T f f NP T

f
             (7) 

This corresponds to perfect 1/f scaling, and is the de-
fault solution to the case of L = 0 for processing single, 
adjacent sensors or networked sensors far from each 
other. For rapidly changing source processes, such as 
moving sources, TW should we minimized and could 
theoretically be lowered to the Gabor limit (Section 5). 

These expressions provide a self-consistent method to 
autoscale a time window TW to the lowest frequency of 
interest fci when using standard FFTs with fixed window 
lengths, or to a center frequency fc when using filter 
banks. For the purposes of comparison, it is useful to 
select fci so that it matches the lowest third octave center 
frequency in a bandpass of interest. 

Some array processing algorithms, such as Progressive 
Multiple Channel Correlation (PMCC), version 4 [17, 
18], have already incorporated time window algorithms 
compatible with Equations (1)-(7) (Appendix A). Al-
though the number of periods is here assumed to be an 
integer, this is not a requirement. For 1/f scaling, constant 
values for NP and M can be recovered from the relation-
ships in Appendix A, where for fci < fcut 

1 1
wf wi

cf ci

T T
NP

f f





,              (8) 

and for fcut < fcf, 

wf
cf

L N
M T

c f

 
 

  

P
 ,            (9) 

where Twi, fci are first and Twf, fcf are the last window du-
rations and center frequency bands of interest. The 
aforementioned relationships can help an analyst reduce 
the number of free parameters and facilitate comparisons 
when designing detection configurations for a particular 
signal type and array geometry. More sophisticated ex-
pression with NP as a function of frequency could be 
developed, but are beyond the scope of this paper. 

5. Scaling Frequency: Logarithmic  
Filter Banks 

As mentioned in Section 3, to reproducibly track signal 
features over time and frequency along a propagation 
path it is useful to design a standardized set of frequency 
bins. In the case of classic Fourier synthesis the fre- 
quency bin size is fixed and is set by the fixed time dura- 
tion, f = 1/Twi (Equation (1)). However, in the case of  

filter banks the bandwidth increases with the center fre-
quency, and it is possible to either have a constant time 
window or scale the time window so that it shrinks with 
increasing center frequency (Figure 1). 

To standardize bandwidth scaling, this work extends 
fractional-octave band schemas [19,20] down to 0.001 
Hz (1000 s periods), which includes some of the deepest 
acoustic-gravity and interface waves captured by the 
global IMS infrasound network [21]. However, some of 
these relationships could be applicable to the analysis of 
other propagating perturbations, such as barometric 
pressure [22] and surface wave height and wind speeds 
[23], whose records may extend over periods of months, 
years, or decades. 

Filter banks in linear frequency spaces are used exten-
sively in analogue and digital signal processing. Audio 
equalizers are examples of applied filter banks, with 
value placed on the ability to reconstruct the original 
sound. Filter banks in audio applications usually apply 
the discrete Fourier or continuous wavelet transforms, 
which are optimized with window lengths of 2n points. 
Although some software packages can create fractional 
octave bands in the audio range with ease, the algorithms 
in this section permit the ready construction of con-
stant-quality-factor fractional octave filter banks with an 
arbitrary level of overlap down to the deep infrasound 
range. 

Infrasonic 1/3 octave band central frequencies are 
specified in [20], which builds on the accepted 1/3 octave 
filter specifications given in [19, 24]. One advantage of 
the 1/3 octave filter is that 210/3 = 10.0794 ~ 10, so with 
some minor adjustments in the intervals it is possible to 
repeat the same schema every decade. Table 1 defines 
the preferred (nominal) central 1/3 octave band fre- 
quency (fc), lower half-power frequency (f1), and upper 
half-power frequency (f2). When the lower and upper 
half-power levels intersect, total power is recoverable by 
considering adjacent bands, with a possible overestima-
tion of energy if the filter does not roll off sufficiently 
fast. 

The band number, also referred to as the frequency 
level, is used to compute the exact band frequencies. In a 
strictly-defined 1/3-octave band, f2 = 21/3f1 and fc = 2n/3, 
where n is the band number and n = 0 yields the pre-
ferred reference frequency of 1 Hz [19]. The problem 
with using a binary base is that deviations from the 
computed and nominal frequencies increase as one 
moves away from the reference frequency. Instead, the 
preferred decimal base interval between exact frequencies 
is recommended, where 100.3 = 1.995 ~ 2. By setting: 

0.310G                 (10) 

and defining the center frequency of an Nth octave band 
n the infrasound range as i  
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Table 1. Preferred frequencies (fcN, f1N, f2N) for nominal 1/3 octave bands and computed 1/3 octave bands (fc, f1, f2) extended 
to the infrasound range using G = 100.3. The scaled bandwidth bN1 and the percent error (e) between nominal and exact fre-
quencies are shown in the last three columns. Note exact recurrence with every decade of frequency, so that this schema can 
be extended as deep in frequency as desired. 

Band fcN f1N f2N Bandwidth fc f1 f2 Bandwidth e(fc) e(f1) e(f2)

# Hz Hz Hz Re fcN Hz Hz Hz Re fc % % % 

−10 1.00E−01 9.00E−02 1.12E−01 2.20E−01 1.00E−01 8.91E−02 1.12E−01 2.31E−01 0.0 −1.0 0.2 

−9 1.25E−01 1.12E−01 1.40E−01 2.24E−01 1.26E−01 1.12E−01 1.41E−01 2.31E−01 0.7 0.2 0.9 

−8 1.60E−01 1.40E−01 1.80E−01 2.50E−01 1.58E−01 1.41E−01 1.78E−01 2.31E−01 − 0.9 0.9 −1.2

−7 2.00E−01 1.80E−01 2.24E−01 2.20E−01 2.00E−01 1.78E−01 2.24E−01 2.31E−01 − 0.2 −1.2 −0.1

−6 2.50E−01 2.24E−01 2.80E−01 2.24E−01 2.51E−01 2.24E−01 2.82E−01 2.31E−01 0.5 −0.1 0.7 

−5 3.15E−01 2.80E−01 3.55E−01 2.38E−01 3.16E−01 2.82E−01 3.55E−01 2.31E−01 0.4 0.7 −0.1

−4 4.00E−01 3.55E−01 4.50E−01 2.38E−01 3.98E−01 3.55E−01 4.47E−01 2.31E−01 − 0.5 −0.1 −0.7

−3 5.00E−01 4.50E−01 5.60E−01 2.20E−01 5.01E−01 4.47E−01 5.62E−01 2.31E−01 0.2 −0.7 0.4 

−2 6.30E−01 5.60E−01 7.10E−01 2.38E−01 6.31E−01 5.62E−01 7.08E−01 2.31E−01 0.2 0.4 −0.3

−1 8.00E−01 7.10E−01 9.00E−01 2.38E−01 7.94E−01 7.08E−01 8.91E−01 2.31E−01 − 0.7 −0.3 −1.0

0 1.00E+00 9.00E−01 1.12E+00 2.20E−01 1.00E+00 8.91E−01 1.12E+00 2.31E−01 0.0 −1.0 0.2 

1 1.25E+00 1.12E+00 1.40E+00 2.24E−01 1.26E+00 1.12E+00 1.41E+00 2.31E−01 0.7 0.2 0.9 

2 1.60E+00 1.40E+00 1.80E+00 2.50E−01 1.58E+00 1.41E+00 1.78E+00 2.31E−01 − 0.9 0.9 −1.2

3 2.00E+00 1.80E+00 2.24E+00 2.20E−01 2.00E+00 1.78E+00 2.24E+00 2.31E−01 − 0.2 −1.2 −0.1

4 2.50E+00 2.24E+00 2.80E+00 2.24E−01 2.51E+00 2.24E+00 2.82E+00 2.31E−01 0.5 − 0.1 0.7 

5 3.15E+00 2.80E+00 3.55E+00 2.38E−01 3.16E+00 2.82E+00 3.55E+00 2.31E−01 0.4 0.7 −0.1

6 4.00E+00 3.55E+00 4.50E+00 2.38E−01 3.98E+00 3.55E+00 4.47E+00 2.31E−01 − 0.5 − 0.1 −0.7

7 5.00E+00 4.50E+00 5.60E+00 2.20E−01 5.01E+00 4.47E+00 5.62E+00 2.31E−01 0.2 − 0.7 0.4 

8 6.30E+00 5.60E+00 7.10E+00 2.38E−01 6.31E+00 5.62E+00 7.08E+00 2.31E−01 0.2 0.4 −0.3

9 8.00E+00 7.10E+00 9.00E+00 2.38E−01 7.94E+00 7.08E+00 8.91E+00 2.31E−01 − 0.7 − 0.3 −1.0

10 1.00E+01 9.00E+00 1.12E+01 2.20E−01 1.00E+01 8.91E+00 1.12E+01 2.31E−01 0.0 − 1.0 0.2 

 
(Appendix 3). The central frequency fc of the propor-
tional frequency band is the geometric mean of the lower 
(f1) and upper (f2) bandedge frequencies of the partition-
ing, 

0

n

N
cf f G                (11) 

where n = [‒30, 13] for N = 3 and  0 0 1 Hzcf f n   , 
yields a frequency range of 0.001 - 20 Hz. Note that n 
will rescale with N so that it matches the number of 
bands per octave, but it is always centered around f0 at n 
= 0. 

1 2cf f f                 (14) 

with 

Defining 2
2 N 1f k f                 (15) 

1

2N
Nk G ,               (12) 

Yielding a constant-bandwidth filter set with scaled 
bandwidth 

the half-power (bandedge) frequencies are  2
2 1 1 1N

N N
c N

kf f
b

N

k
f k k


    .       (16) 

1 c Nf f k               (13a) 

2 c Nf f k                (13b) These stable, scalable properties make Nth octave  
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bands useful building blocks. Unless otherwise stated, 
throughout the rest of this paper, fc, f1, f2 refer to the cen-
ter frequency and upper and lower half-power bandedge 
frequencies for Nth octave bands. When referring to a 
specific band number n, the notation fcn or fc(n) is used. 

Table 1 shows the computed 1/3 octave bands in the 
infrasound range, as well as the errors relative to the 
nominal bands. Errors are at most on the order of 1% 
from nominal, and both the computed frequencies as well 
as the errors recur every decade, as expected. This fractal 
schema can be propagated as deep into the infrasound 
range as desired with predictable results. Due to the 
small errors, it is preferable to use the exact rather than 
the nominal frequencies in computations. However, as 
per [24,30], the nominal rounded values should be used 
in labeling for simplicity.  

For 1/3 octave bands, kN = 1.12 and bN = 0.0231, as 
shown in Table 1. Note these formulations can be used 
for any Nth octave band, but are particularly well suited 
for intervals of thirds, where  1,3,6,9,12,N   . Table 
2 shows the fractal nature of logarithmically spaced frac-
tional octave bands and how this schema imbeds a recur-
ring binary system within a decimal system. When N is 
an odd multiple of three we can contract from higher to 
lower orders quite exactly, whereas when N is even we 
have to split bands to recover an octave. 

When designing fractional octave band filters in loga-
rithmic frequency spaces it is desirable to use evenly- 
spaced center frequencies as they yield the most stable 
and self-similar filter amplitude and phase responses. 
This can be readily accomplished by using Equations 
(10)-(16). However, an alternative method, used in 
PMCC4 and consistent with the aforementioned intervals, 
defines the lowest and highest frequency of interest, as 
well as the number of bands NF (Appendix B). 

Figure 3 shows evenly log-spaced 1/3 octave bands 
with −3dB (half-power) bandedgeoverlap using 2nd order 
Chebyshev bandpass filters, which may not yield the 
highest precision on energy estimates but are stable over 
the 0.01 - 5 Hz IMS monitoring band (Appendix C). An 
assessment of detector performance using various filter 
banks with varying bandedge overlap is beyond the 
scope of this paper, although preliminary tests demon-
strated that the accuracy of the infrasonic energy esti-
mates will depend on these filter bank properties. 

5.1. Some Practical Considerations 

From the practical standpoint of numerical evaluation, 
the number of points (Nw) in a time window could be 
estimated from 

 W wN ceil T F s ,            (17) 

where Fs is the sampling frequency and ceil(x) denotes 

the operation of rounding up x to nearest integer. If there 
is no requirement to minimize the number of points in a 
window, or use powers of two, Equation (2) can be read-
ily implemented as is. 

However, there are many instances where it is desir-
able to minimize the window duration so as to improve 
the temporal resolution of rapidly varying signals. The 
theoretical minimum window duration in relation to the 
spectral resolution f can be estimated from the Gabor 
limit [25], also known as the time-frequency uncertainty 
principle  

1

2WT f  .             (18) 

This condition is always satisfied by appropriately 
scaled FFT windows, where f = 1/Tw. Although there 
are various expressions for this version of the uncertainty 
principle, the original Gabor [25] exposition is clear, 
simple, and beautiful. 

For fractional octave bands where fc = f2 − f1, this 
yields 

 2

1 1

2 2 2 1
N

WG
c N c N

k
T

1

cf b f fk
  

 
.     (19) 

By using Equations (2)-(18) for the case fci < fc < fcf 

 2

1

2 1
N

G c

N

k ML
NP f

ck
 


.         (20) 

Although at first glance the minimum number of peri-
ods appears to diminish with increasing center frequency 
and array aperture, this is an artifact of the way Equation 
(2) compensates for the array aperture contribution, 
which is most pronounced with spatially aliased frequen- 
 

 

Figure 3. Third-octave, 2nd order Chebyshev filter sets from 
5 mHz to 8 Hz (33 bands) with 1/2 power bandedge overlap. 
This filter set meets and exceeds the IMS bandpass of 0.02 - 
5 Hz. Note that for the IMS sample rate of 20 Hz the 
response of the highest bands steepens as the Nyquist 
frequency is approached. This filter bank also becomes 

umerically unstable below 4 mHz without decimation. n 

Copyright © 2013 SciRes.                                                                            InfraMatics 



M. A. GARCES 

Copyright © 2013 SciRes.                                                                            InfraMatics 

21

 
Table 2. Octave and fractional octave bands between 0.316 and 3.16 Hz. Pattern repeats every decade with G = 1.9953, ref-
erence frequency of 1 Hz. 

                 
1/12th Octave Bands 

(Hz) 

                Band fc f1 f2 

                −20 0.316 0.307 0.325

                −19 0.335 0.325 0.345

                −18 0.355 0.345 0.365

             
1/9th Octave  
Bands (Hz) 

−17 0.376 0.365 0.387

            Band fc f1 f2 −16 0.398 0.387 0.410

            −15 0.316 0.304 0.329 −15 0.422 0.410 0.434

            −14 0.341 0.329 0.355 −14 0.447 0.434 0.460

            −13 0.369 0.355 0.383 −13 0.473 0.460 0.487

         
1/6th Octave  
Bands (Hz) 

−12 0.398 0.383 0.414 −12 0.501 0.487 0.516

        Band fc f1 f2 −11 0.430 0.414 0.447 −11 0.531 0.516 0.546

        −10 0.316 0.299 0.335 −10 0.464 0.447 0.482 −10 0.562 0.546 0.579

        −9 0.355 0.335 0.376 −9 0.501 0.482 0.521 −9 0.596 0.579 0.613

        −8 0.398 0.376 0.422 −8 0.541 0.521 0.562 −8 0.631 0.613 0.649

     
1/3rd Octave  
Bands (Hz) 

−7 0.447 0.422 0.473 −7 0.584 0.562 0.607 −7 0.668 0.649 0.688

    Band fc f1 f2 −6 0.501 0.473 0.531 −6 0.631 0.607 0.656 −6 0.708 0.688 0.729

    −5 0.316 0.282 0.355 −5 0.562 0.531 0.596 −5 0.681 0.656 0.708 −5 0.750 0.729 0.772

  Octave Band (Hz) −4 0.398 0.355 0.447 −4 0.631 0.596 0.668 −4 0.736 0.708 0.764 −4 0.794 0.772 0.818

Band fc f1 f2 −3 0.501 0.447 0.562 −3 0.708 0.668 0.750 −3 0.794 0.764 0.825 −3 0.841 0.818 0.866

−2 0.251 0.178 0.355 −2 0.631 0.562 0.708 −2 0.794 0.750 0.841 −2 0.858 0.825 0.891 −2 0.891 0.866 0.917

−1 0.501 0.355 0.708 −1 0.794 0.708 0.891 −1 0.891 0.841 0.944 −1 0.926 0.891 0.962 −1 0.944 0.917 0.972

0 1.000 0.708 1.413 0 1.000 0.891 1.122 0 1.000 0.944 1.059 0 1.000 0.962 1.039 0 1.000 0.972 1.029

1 1.995 1.413 2.818 1 1.259 1.122 1.413 1 1.122 1.059 1.189 1 1.080 1.039 1.122 1 1.059 1.029 1.090

2 3.981 2.818 5.623 2 1.585 1.413 1.778 2 1.259 1.189 1.334 2 1.166 1.122 1.212 2 1.122 1.090 1.155

    3 1.995 1.778 2.239 3 1.413 1.334 1.496 3 1.259 1.212 1.308 3 1.189 1.155 1.223

    4 2.512 2.239 2.818 4 1.585 1.496 1.679 4 1.359 1.308 1.413 4 1.259 1.223 1.296

    5 3.162 2.818 3.548 5 1.778 1.679 1.884 5 1.468 1.413 1.525 5 1.334 1.296 1.372

        6 1.995 1.884 2.113 6 1.585 1.525 1.647 6 1.413 1.372 1.454

        7 2.239 2.113 2.371 7 1.711 1.647 1.778 7 1.496 1.454 1.540

        8 2.512 2.371 2.661 8 1.848 1.778 1.920 8 1.585 1.540 1.631

        9 2.818 2.661 2.985 9 1.995 1.920 2.073 9 1.679 1.631 1.728

        10 3.162 2.985 3.350 10 2.154 2.073 2.239 10 1.778 1.728 1.830

            11 2.326 2.239 2.417 11 1.884 1.830 1.939

            12 2.512 2.417 2.610 12 1.995 1.939 2.054

            13 2.712 2.610 2.818 13 2.113 2.054 2.175

            14 2.929 2.818 3.043 14 2.239 2.175 2.304

            15 3.162 3.043 3.286 15 2.371 2.304 2.441

                16 2.512 2.441 2.585

                17 2.661 2.585 2.738

                18 2.818 2.738 2.901

                19 2.985 2.901 3.073

                20 3.162 3.073 3.255
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cies. Implementation of Equations (6)-(9) yields reason-
able results. 

For fci < fcut and at the low frequencies where 1/f scal-
ing is most useful, the minimum number of periods in a 
given Nth octave band valid for all array apertures can be 
estimated from 

 0 2

1

2 1
N

N

k
NP

k



            (21) 

Figure 4 shows the minimum number of periods NP0 
that should be used to satisfy the Gabor limit as a func-
tion of the selected Nth octave band. As expected, the 
narrower the band (higher N), the longer the time win-
dow should be to meet the uncertainty principle. Al-
though NP has been treated as an integer to represent the 
average number of oscillations per window, it may also 
be defined as a continuous function of central frequency 
to meet a specified performance criterion. 

The first wavelet was described by [25] by multiplying 
a sinusoid by a Gaussian envelope. This continuous 
wavelet, also known as the Morlet wavelet, is designed to 
meet the Gabor limit and provides a set of basis functions 
with the shortest theoretical time window, or highest 
temporal resolution per band. Although wavelet repre-
sentations are beyond the scope of this paper, the con-
cepts presented here would permit self-consistent com-
parisons between FFT, fractional octave, and wavelet 
representations of diverse sound fields [26]. 

This suggests that the Gabor window length can be 
used as a reference standard in place of the number of 
periods, NP. If the Gabor window is defined as 

1

2g
c

T
f




,              (22) 

 

 

Figure 4. Minimum number of periods (NP) required to 
meet the Gabor limit (Equation (21)) for a given Nth octave 
band specification. Note this theoretical value may be less 
than unity for octave bands, but is ~2 for 1/3 octave bands. 
As N increases, f gets narrower, the filters tend to ring 
longer, and more periods NP are needed to contain a signal. 

the time windows may be scaled in relation to the Gabor 
window such that  

1

2 2
g c g

wg g g
c c

N f N
T N T

cf f f

 
      

.    (23) 

This expression applies to both linearly spaced and 
logarithmically spaced frequency bands. However, for 
constant-bandwidth Nth octave bands, this has the added 
advantage of reducing to, 

1

2
g

wg
N c

N
T

b f

 
  
 

,            (24) 

where bN is constant. For the case fc < fcut, we can use this 
expression to minimize the window duration at the low-
est frequency. 

Further constraints can be placed if we wish to com-
pare our results to FFT and continuous wavelet represen-
tations, where it may be useful to make the number of 
points in the starting and ending windows an integer 
power of two.  

As shown in Appendix A, the PMCC4 algorithm uses 
a frequency counter  1,2,3, ,m   NF  instead of the 
band number n, with a simple linear conversion between 
them. Let Tw(1) and fci be the time windows and center 
frequencies for the first (lowest) frequency band, and 
Tw(NF) and fcf the time windows and center frequencies 
for the last frequency band. Only when fci < fc < fcf can 
window lengths be specified for both the first and last 
windows. The number of points in the longest and short-
est window would then be 

  log 1 log 2 ,w sni ceil T F           (25) 

2ni
iN   

wi iT N Fs  

  log log 2 ,w snf ceil T NF F          (26) 

2nf
fN   

wf fT N Fs  

which will yield a non-integer number of periods NP or 
NPg of 

1 1
wf wi

g

cf ci

T T
NP

f f





              (27) 

as given by Equation (8). A revised version of Equation 
(2) can be defined with Gabor scaling, where an estimate 
of Mg is obtained from Equation (9) when fcut < fcf. 

As in Section 4, 1/f Gabor window scaling is only use-
ful in the case of fci < fcut (Equation (7)), otherwise a con-
stant window duration should be used (Equation (8)).  

Copyright © 2013 SciRes.                                                                            InfraMatics 



M. A. GARCES 23

Perfect 1/f scaling occurs when fcf < fcut (Equation (7)), 
when only the shortest or the longest window length can 
be specified, but not both. In that case it is recommended 
that Tw(1) be specified for comparison with fixed time 
window algorithms. Note that once array processing is 
performed and a beam is formed, TL is no longer needed 
and perfect 1/f Gabor scaling (Equation (24)) can be used 
to minimize the window length when a finer temporal 
resolution is desired. 

5.2. Soundscape Standards 

Ambient sounds are described in ANSI standards [27,28] 
in terms of their amplitude, temporal, spectral, and direc-
tional characteristics. In the time domain, a signal may be 
described as continuous steady, fluctuating, and impul-
sive, or intermittent steady, fluctuating, and impulsive. In 
the frequency domain, a sound of interest may be catego-
rized as broadband, narrowband, tones, or a combination. 
If a signal is high in harmonics, higher Nth order filters 
may be needed to capture the finer spectral detail. 

Although these descriptors provide a valuable starting 
point for general signal classification, they are insuffi- 
cient to describe some signals, such as chirps. In addition, 
some of the ANSI specifications for impulsive sound [27, 
29] invoke the use of A-weighting [30] to account for the 
response of the human ear down to 20 Hz, which is not 
very useful in the infrasound range. For most infrasonic 
environmental impact and industrial noise applications 
down to 0.25 Hz, the G-weighting [20] is more pertinent 
[31]. It is possible to correct back to unweighted SPLs by 
removing the A- or G-weights specified in these stan-
dards. Only unweighted SPL’s are presented in this pa-
per. 

Additional ambient sound descriptors may be derived 
from the ecologically-minded soundscape community. A 
soundscape is defined as “an environment of sound 
(sonic environment) with emphasis on the way it is per-
ceived and understood by the individual, or by a society” 
[32]. Much of the perceived impact of wind turbine 
infrasound falls under the soundscape rubric and [33], as 
may also prove to be the case for next-generation active 
source systems. In lieu of a cohesive system for signal 
classification, most acoustics communities develop field- 
specific taxonomies [34,35]. 

6. Scaling Amplitude: Power and Energy  
Estimates 

Scaling laws for long-range propagation of infrasound 
are as abundant as they are fickle. One problem with 
these scaling laws is that they often refer to an equivalent 
TNT yield, therefore presupposing a detonating high- 
explosive source that poorly represents most transient 
natural sources (including volcanoes and meteors), and  

completely misrepresents most soundscapes. Many of 
these scaling laws seek to predict the peak pressure, pe-
riod, or duration of a signal as a function of yield, range 
and sometimes stratospheric wind (at ~50 km). Since 
there are no conservation laws for pressure, period, or 
duration (Section 3), this work concentrates on obtaining 
the spectral distribution of energy transfer along a 
propagation path. The sound pressure level [27,36-38] 
provides a common, traceable framework for estimating 
infrasonic signal energy (Section 6). 

To facilitate inter-disciplinary collaboration, infrasonic 
results could at a minimum be reported in sound pressure 
levels (SPL, in dB) referenced to 20 Pa, in one-third 
octave bands. When the source distance is specified and 
atmospheric propagation effects are known, they could 
be normalized to a distance of one meter. A similar 
minimum requirement, with procedures, was adopted by 
the ASA for the measurement of underwater sound from 
ships [39]. 

When estimating signal energy it is possible to dis-
criminate from ambient clutter [3] and incoherent noise 
with array processing. It is also valuable to evaluate the 
power levels for the combined incoherent and coherent 
pressure contributions to produce an estimate of data 
quality and array performance. 

6.1. Sound Pressure Levels (SPL) 

One of the most fundamental acoustic measurements is 
pressure amplitude [28,33,36]. Since acoustic signals can 
span over 12 orders of magnitude in sound intensity, it is 
useful to adopt the SPL logarithmic scale [27] for root- 
mean-square (rms) pressure prms: 

2

10 102
10log 20logrms rms

refref

p
SPL

pp

   
   

     

p
      (28) 

where 

 2 2 2

0

1
dsT

rms
s

p p p t
T

   t ,         (29) 

and pref = 20 Pa is the reference rms pressure, p is the 
acoustic pressure time series over a specified frequency 
band, and Ts is the signal duration or the chosen time 
interval for integration. Although this paper concentrates 
on the acoustic pressure relative to ANSI and ISO stan-
dards, the process of signal energy estimation using the 
windowed rms of its amplitude can be generalized to 
other digital time series data with or without known cali-
brations. If a sensor calibration is not known, the units of 
signal amplitude could be counts or volts and the signal 
can be scaled to either the known dynamic range of the 
digitizer or to a reference sensor. 

Root-mean-square pressure (prms) estimates are robust 
when the acoustic signal is stationary, so that its statisti-  
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cal properties do not change substantially over the period 
of integration. For a continuous signal of constant period, 
prms can be approximated by 2 2

max 2rmsp p , where pmax 
is the peak pressure in Pascals. However, for impulsive, 
transient signals such as explosions, the integration in-
terval should match the signal duration to provide a 
sound exposure level 10 . The refer-
ence level of sound exposure in air is (20 Pa)2 s [29]. 
The SPL or Ld are not accurate without a specification of 
the frequency band used to compute the scaled time 
window in Equation (2) and a correction for the data ac-
quisition response in that band [27]. 

10logd sL SPL T 

Sound intensity I, in Watts m−2, is a measure of the 
average rate of acoustic energy flow through an area 
normal to the propagation direction, and is proportional 
to the square of the pressure far from the source. The 
intensity can be estimated from 

 
2

2

0

1
dsT

s

p
I p t t

cT c 
           (30) 

where the sound speed c and the equilibrium density  of 
Earth’s atmosphere at 20˚C and sea level pressures are 
343 m/s and 1.2 kg/m3, respectively. Since there is only a 
proportionality factor (c ~ 400 kg/m2s) between inten-
sity and the square of pressure, SPL estimates can be 
readily converted to intensity by using a reference inten-
sity level Iref = 10‒12 Wm‒2 in air (Equation (30)). Inten-
sity estimates are useful for comparing the acoustic re-
sponse of different environments. The total exposure 
energy E in Jm‒2 in a time window Ts would be esti-
mated from E = ITs. The exposure is a measure of the 
total instantaneous energy, whereas the intensity provides 
a useful measure of the average power. Thus transients 
are generally best characterized by the exposure in 
Joules/m2, and more continuous sounds by the average 
intensity in Watts/m2.  

Practical algorithms for computing the rms and power 
spectral density of digital signals are provided in [15]. In 
practice, the signal duration Ts is not known is and the 
window duration Tw is generally used in its place. By 
substituting the integral in Equation (29) by a sum over 
all the discrete pressure data points q in a window of total 
length Q, the rms pressure can be estimated from 

  22
1

1 Q

rms q
p p

Q 
   q 

f

.         (31) 

For a properly conditioned signal (with the mean re-
moved), this can be readily recognized as the variance of 
the acoustic pressure over the time window. The next 
sections discuss how the SPL, intensity, and exposure per 
frequency band can be readily evaluated in the frequency 
and time domains. 

6.2. SPLs from the Power Spectral Density 

Parseval’s Theorem provides a relationship for the vari-
ance and the power spectral density (PSD) of a digital 
pressure signal [15,40], with units of Pa2/Hz. The PSD 
can be readily computed by the FFT over a finite time 
window and provides an estimate of the mean squared 
acoustic pressure per frequency band in the time window.  

The decibel unit for PSD is dB relative to (20 μPa)2/Hz, 
which is referred to as the spectral level. A spectrogram 
is a time-stepping PSD, and is useful for interpreting 
time-varying signals. To convert spectral levels to sound 
pressure levels, a particular frequency band has to be 
defined. Suppose the unilateral PSD of a signal has al-
ready been calculated [15]. The SPL in a frequency band 
f12 can be estimated from the PSD P(f) from: 
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If P(f) is very slowly varying or nearly constant over a 

fractional octave band, we can estimate the sound pres-
sure level on band n from 

   
 
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where fcn is the center frequency, fn is the bandwidth of 
the nth frequency band (Table 1), and pref = 20 Pa (−94 
dB) is the reference rms pressure. If P(f) is not slowly 
varying, numerical integration over the bandpass is pref-
erable. 

From Equations (28)-(30) 

 
 

2010
cnSPL f

rms cn refp f p

 
 
          (35) 

 
 

1010
cnSPL f

n cn refI f I

 
 
  .        (36) 

The total average intensity over the frequency band 
can be expressed as a sum of the intensity in each dis-
crete frequency component (see notation in Appendix B) 
over the total band    2 1max minNFf f f  

NF

: 

  1 NF mm cmI f I


  f .        (37) 

It is assumed that each frequency bin is sufficiently 
well separated that there is minimal spectral leakage be-
tween adjacent bands. Numerical integration over the 
clearly defined bandedges in Equation (33) would ensure 
this condition is satisfied, as would well-defined filter 
banks with bandedge overlap at the −3 dB point (Appen-
dix C). 

Equation (37) is equivalent to 
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  2

1

NF

rms NF rms cmm
p f p f


  2 .       (38) 

This is an alternate expression for the conservation of 
energy, and is consistent with the formulations in [38]. 
The total SPL over a band can be estimated by applying 
Equations (28)-(38). 

As an example, the global ambient noise models in the 
IMS infrasound detection band [41-43] shown in Figure 
5 are converted from spectral levels to 1/3-octave bands 
(Figure 6). Since the Bowman curves cover the band-
width of 0.308 - 7.2419 Hz, only 1/3-octave bands n = 
−14 to n = 8 (0.04 - 7.1 Hz) overlap. If we estimate the 
total area under the Bowman curves using mid-point in-
tegration (Equation 34) and summing over all bands, the 
intensity estimates are higher than those derived from 
integration only over the predefined 1/3-octave bands. 
The SPLs estimated from trapezoidal integration in 1/3 - 
octave bands are shown on Figure 6, and could be used 
as alternate reference standards for evaluating detection 
probabilities and data quality. Note the lower frequencies, 
although flattened relative to the PSD curves, still have 
the largest contribution to the total energy budget, sug-
gesting that the region in the PSD with the highest am-
plitude and rate of change should be integrated with care. 

6.3. SPLs from Time-Domain Signatures 

The Sound Level Meter [19,30] is one of the key acous-
tician’s tool for the characterization of environmental 
noise. The design and use of these devices are regulated 
by clear standards which routinely extend down to 6.3 
 

 

Figure 5. PSD in 0.308 - 7.2419 Hz band derived from the 
global IMS infrasound network. The three curves corre-
spond to the high, median, and low noise models. The black 
circles show the original data in ~1/8-octave bands, and the 
red crosses are the interpolated values at the central 1/3- 
octave frequencies. Note that the first 1/3-octave band 
within the interpolation range has a center frequency of 
0.04 Hz (band-14). 

 

Figure 6. Sound Pressure Level (or Intensity Level) per 1/3 - 
octave band for Figure 5 using trapezoidal integration per 
band. Black regions are below the low-noise levels, green 
are above low but below median, yellow indicates a range of 
12 db (factor of 4 in amplitude), and red extends to the high 
noise regime. Signal detection probabilities in the green 
zone would be high, in the yellow, marginal, in the red, low. 
 
Hz and lower [20,33]. 

The FFT and its derivative products assume a fixed 
window length, which could be derived using Equation 
(1). This presupposes that the statistical properties of the 
signal are stationary over the time window and across the 
processing band, an often reasonable assumption for sta-
ble, continuous, near-field processes. It is possible to 
reproduce the results of Fourier synthesis by applying the 
filter banks discussed in Section 5 over overlapping time 
windows of fixed duration (Figure 1, third panel from 
top). However, working in the time domain permits the 
integration of frequency-scaled window durations which 
will increase the spectral resolution at all frequencies 
above fci in Equation (1). This approach is desirable for 
broadband signals that may have multiple sources and/or 
arrivals, and its implementation is succinctly described in 
this section. 

The Infrasonic Energy, Nth Octave (INFERNO) mul-
tiresolution algorithm is a conceptually simple energy 
estimator, and involves applying the filter banks defined 
in Equations (10)-(16) to a waveform of interest after 
proper preconditioning by detrending and applying a 
taper window to minimize DC offsets and ringing at the 
window edges. Care should also be taken around data 
gaps and other discontinuities, which will also produce 
spikes and ringing when filtered. The filtered waveforms 
are then divided into possibly overlapped windows using 
the scaled duration defined in Equation (2), and the vari-
ance is computed for each window. If further computa-
tions are intended, it may be desirable to detrend and 
taper each subwindow instead to improve stability. The  
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resulting variance matrix will be non-rectangular. The 
NF frequency bins could be evenly spaced in logarithmic 
or linear frequency, but when using Equation (2) the 
NT(fcn) time windows will depend on the frequency bin 
and be unevenly spaced in linear time. For efficient ma-
trix manipulation and display, the time scale can be ho-
mogenized by rebinning using the smallest time window 
as the reference time granularity. The end result is a rec-
tangular intensity matrix I[ti, fcn] that provides an esti-
mate of signal power as a function of time and log fre-
quency. 

Regardless of window overlapping, the time-averaged 
intensity for a given center frequency is 

 

   2

1 1

1 1 1
, ,

n cn

NT NT

i cn rms i cn
i i

I f

I t f p t f
NT NT c 

 
   

 
 

  (39) 

with Equation (37) providing the total intensity over all 
frequency bands. These intensity estimates should be 
compatible to those derived from PSD integration. By 
comparing the ratio of the intensity per bin I[ti, fcn] to the 
intensity averaged over a specified number of time win-
dows it is possible to define an instantaneous S/N per bin 
(Figure 2). Evaluating the ratio of the intensity in Equa-
tion 39 using a different number of windows NTS and 
NTL could yield results comparable to the fixed-window 
short-time to long-time average methods (STA/LTA) 
used in seismology, where STA/LTA is 1 s/60 s for IMS 
seismic monitoring. Alternatively, it would be possible to 
define NPS and NPL in Equation (2), where NPL > NPS, 
and compute the ratio of the instantaneous intensity using 
NPS relative to a moving averaged intensity (Equation 
(39)) computed using NPL. 

Estimating the total exposure in the case of overlapped 
frequency-scaled time windows requires a bit more care. 
When the intensity matrix is rectangular, the number of 
frequency banks is unchanged but the time grid remap-
ped to the finest time step TW(NF). Since the intensity is 
already an average of the energy over the window, it can 
be subdivided as much as desired to yield the same av-
erage intensity per unit time. From Section 6.1, the ex-
posure per bin in the rectangular matrix can be is defined 
as 

     ,i cn W i cnE t f T NF I t f ,         (40) 

Let NT be the total number of overlapped, adjacent 
time windows in a rectangular intensity matrix. When wp 
is the normalized percent window overlap between [0, 1), 
the total exposure per frequency bin over a time period of 
interest can be estimated from: 

 
        2 2

2
1, 1 ,

n cn

NTW
rms cn p rms i cni

E f

T NF
p f w p t f

c 
   

, (41a) 
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1
1 ,

n cn

NTW
p rms i cn rmsi

E f

T NF
w p t f p NT f

c



   , cn

, (41b) 

which yields an estimate of the total energy in J/m−2 per 
frequency bin. These two equations only differ in which 
of the time pixels is added in its totality, and Equation 
(41a) may be particularly useful for flagging impulsive 
onsets. However, since an infrasonic signal may have an 
impulsive onset but almost always has a slow decay that 
fades into the background, the last time window contri-
bution in Equation (41b) is often negligible and the total 
exposure per band may be estimated by 

      1
NTWT NF

E f w p    2
1

,n cn p rms i cni
t f

c 
 (42) 

Note that this energy estimate is not averaged over all
w

 
indows as in Equation (39), but is instead a cumulative 

sum of weighted rms pressures. As discussed in the pre-
vious section, it would be possible to set up a time-step-
ping, energy-based triggering algorithm comparable to 
STA/LTA using the exposure instead of the intensity. 

In the event of no overlapping windows, wp = 0 and  

     2 ,
NTWT NF

E f p t f  .   (43) 
1n cn rms i cnic 

The sum of the exposure over all frequency bins
vi

a on 15 February 2013, 
and its infrasonic signature was captured worldwide [44].  

 pro-
des an estimate of the total energy observed over a 

band of interest. 
Implementation of this algorithm can offer significant 

improvements in the ability to recognize distinct arrivals 
in broadband signals and improve estimates for their en-
ergy, onset time (Figure 2), and frequency-dependent 
trace velocity and azimuth statistics. This procedure al-
lows high-resolution broadband spectral analysis in stan-
dardized logarithmic-frequency spaces with time window 
autoscaling. In many ways this approach is reminiscent 
of wavelet transforms (e.g. [26]), without abandoning 
sinusoids as basis functions or the familiar concepts of 
energy and frequency. The results are compatible with 
the results of FFT analyses in the case of fixed window 
lengths. In addition, since this formulation is compatible 
with the PMCC4 time-frequency grids, careful imple-
mentation permits an integration with array processing 
results to estimate coherent versus incoherent energy as 
well as the separation of contributions from competing 
sources. It is expected that standardized temporal and 
spectral parameters can facilitate comparative calibra-
tions, source characterizations, and the benchmarking of 
array processing algorithms. 

7. Praxis: Russian Meteor 

A meteor was observed over Russi
or 
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t integration in the bandpass 
of

essing with 1/3 Octave Bands 

-
de-

 

PMCC 1/3 octave bands is set to 33, with a maximum 
frequency of 8.9125 Hz and a minimum frequency of 
0.0045 Hz. For an IMS-type array aperture of ~2 km, NP 
= 5, M = 4 yield a maximum window duration of 
1021.2000 s and a minimum window duration of 24.2000 
s (Equation (2)). The window overlap is 75% (0.75 in 
Equation (42)). With this parameter set, the longest cen-
ter period Tci is 199.5262 s (~5 mHz). Although it is 
likely that there is coherent energy at longer periods, 
IMS arrays are not designed for array processing of 
acoustic signals in the mHz range (Section 2). Typical 
values for the threshold consistency (0.1), minimum 
number of sensors (3), qLambda (50) and family values 
(Threshold distance = 1, sigma rms = 100, ThreshFam-
Max = 300, sigma_f: 50%, ThreshFamMin: 5, Sigma_t = 
200%, ThresholdDate: 200%) were used, but since the 
source was moving quite fast a high tolerance in azimuth 
(30˚) and speed (30%) variability was allowed. 

A description of this event is beyond the scope of this 
work, as is a deconstruction of the meteor trajectory. This 
section concentrates on estimating the infrasonic energy 
in the 4.5 mHz to 9 Hz frequency band using different 
methods. We use array data from IMS infrasound array 
I31KZ, Kazakhstan, to estimate the total acoustic energy 
observed at the station. 

Three different approaches are used. The reference 
energy is obtained from direc

 interest over the known signal time, but does not de-
convolve the sensor response because of uncertainties in 
the complex transfer function of wind filters. Although 
this is the most immediate and direct estimate, it will 
tend to overestimate the total energy as it incorporates 
both signal and noise. The array processing method util-
izes only the coherent energy observed by the 8-element 
array beam. The S/N approach uses the array results to 
reduce source ambiguity, but relies on the S/N ratio per 
band as the signal cutoff criterion. The last two methods 
correct for the known amplitude response of the MB2000 
pressure sensor. 

7.1. Array Proc

Although PMCC4 uses filter bands with 0 dB band-
edge overlap, the SPL estimates presented in Figures 7 
and 8 use the filter banks shown in Figure 3 with a −3 
dB bandedge overlap (Appendix C). In contrast to Fig-
ure 2, the MB2000 instrument response was removed for 
the energy estimates described in this section. 

As mentioned in Section 4, PMCC4 can incorporate frac
tional octave bands and time window scaling as 

Figure 7 shows the beamformed waveform (first panel) 
and coherent energy in dB (second panel) computed by 
PMCC4 with the aforementioned processing parameters.  scribed in Equation (2). For this study, the number of 

 

 

Figure 7. PMCC4 array processing results showing the waveform (first panel), coherent signal levels within specified speed, 
azimuth, and coherence masks (second panel), the remaining ambient field outside of the specified parameter et (third 

 

 s
panel), and the signal to nose ratio estimated by using the ambient field over the record as the reference noise (bottom 
panel).The spike associated with a data drop just after 3:15 does not show up in the array processing. 
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Only coherent arrivals with a correlation greater than 0.8, 
arrival azimuths between 0 and 58 degrees, and a speed 

ithin the narrow range of 0.33 - 0.35 km/s are kept. 

reference noise model. We apply the INFERNO algo-
rithm using the same 1/3 octave bands and window 
lengths as in Section 7.1 to the sw

These parameters are selected to keep only the most re-
liable and accurate coherent arrivals and to illustrate 
some of the possible issues that may arise from the ex-
clusive use of array processing results to estimate infra-
sonic energy. The maximum energy beam within this 
parameter subset set is used. The third panel in Figure 7 
shows the ambient field remaining after the removal of 
the signal, and is used to construct the average back-
ground noise specifications (Equation (39)). The fourth 
panel shows the S/N ratio in dB using this background 
noise as a reference. 

Figure 8 shows a similar procedure, but using S/N 
rather than array processing as the primary criterion. The 
procedure is reminiscent of the short-time/long-time av- 
eraging (STA/LTA) routinely performed in seismic stud- 
ies, where here a reference noise specification is con- 
structed from a longer term average or a sample record 
obtained before the signal arrival.  

7.2. Signal Detection Using Energy 

In contrast to using the energy remaining after the re-
nce noise (Fig-

 

The array processing and S/N results provide a fairly 
e sig-

 
moval of the coherent signal as the refere
ure 7), a relatively quiet record segment is selected as the

ame beam (Figure 8, 
first and second panels). As can be seen in the third panel 
of Figure 8, a more careful selection of the reference 
noise yields an S/N increase in excess of 24 dB for this 
exceptionally broadband, energetic record. This is not 
surprising, as Figure 7 shows that much of the energy 
previously considered as “noise” is coincident with the 
“signal”. If it is assumed that the majority of the energy 
arriving at the station at ~0400 UTC originated from the 
meteor, this procedure also demonstrates how much of 
the event energy may not be picked up by array process-
ing. The infrasonic energy may not appear coherent to 
the array due to multipathing, phase mismatches at the 
elements, or wavefront distortions induced by topogra-
phy, nonlinearity, or atmospheric scintillation. 

7.3. Estimating the Observed Event Energy 

 

robust indication of the temporal distribution of th
nal. Direct integration of the bandpassed, squared pres-
sure (Section 6.1, Equation (30)) over the signal duration 
estimated in Section 7.2 yields an energy estimate of 4.4 
J/m2, whereas integration of the whole record yields 4.7 
J/m2. Thus the majority (~94%) of the energy in the ~2 h 

 

Figure 8. S/N threshold results showing the waveform (first panel), the instrument-corrected infrasonic intensity over the 
record (second panel), the S/N estimated by using a selected part of the record as the reference noise (third panel), and the 
extraction of the spectral components with S/N > 6 dB (bottom panel).The spike associated with the data drop just after 3:15 
can be clearly seen.   
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record is from the signal of interest. 

When using filter banks with 1/2 power (−3 dB) over-
ap at the bandedge

the total energy, whereas direct integration would tend to 
overestimate due to a lack of disambiguation between 

l  frequency, as sh
array processing method (Figure 7

own in Figure 3, the 

 87% 

al energy esti-
m

rom sound pressure integra-
tio

not only legitimize research in a field, but also open 
l opportunities by permitting the fair and con-

ays, they are the 
intended audience. Many thanks to M. Charbit for his 

hened the paper. A. Le 

) yields a coherent 
signal energy estimate of 2.0 J/m2 and a total record en-
ergy of 4.3 J/m2, which corresponds to an underestimate 
of 45% (−3.4 dB) for the signal energy and a slight un-
derestimate of 97% (−0.1 dB) for the total record energy. 
Thus by restricting energy estimates to those derived 
from only the most accurate array processing results with 
high correlation values, the total signal energy may be 
underestimated by at least a factor of two (3 dB).  

The INFERNO S/N approach uses only contributions 
with an S/N > 6 dB (Figure 8, bottom panel) to derive a 
total signal energy estimate of 3.9 J/m2, which is
(−0.5 dB) of the integrated signal energy. By lowering 
the S/N threshold and using contributions with an S/N > 
−3 dB, the energy estimate increases to 4.2 J/m2 which is 
95% (−0.2 dB) of the integrated signal energy. 

If using filter banks with 0 dB bandedge overlap, the 
array processing method yields a coherent signal energy 
estimate of 8.1 J/m2 and a total record energy of 19.5 
J/m2, which corresponds to an overestimate of 185% (2.6 
dB) for the signal energy and an overestimate of 415% 
(6.2 dB) for the total record energy. Note that this 2.6 dB 
signal energy overestimate is 6 dB above the previous 
−3.4 dB underestimate using filter banks with 1/2 power 
bandedge overlap. This +6 dB bias may be attributed to 
spectral leakage, where energy contributions from adja-
cent filter bands near the bandage frequencies are dou-
ble-counted (factor of 2 in rms pressure). 

With knowledge of this bias, the INFERNO S/N is re-
computed using the 0 dB filter bank with a cutoff thresh-
old of S/N > 12 dB to derive a total sign

ate of 17.7 J/m2 which overestimates the integrated 
signal energy by 402% (6 dB). Therefore, filter banks 
with 0 dB bandedge overlap should not be used in the 
estimation of signal power, as they will generally overes-
timate total exposures by ~6 dB. 

In summary, care must be taken when applying frac-
tional octave bands to estimate signal power. By restrict-
ing energy estimates to those derived from only the most 
accurate array processing results with high correlation 
values, total event energy may be underestimated by at 
least a factor of two (−3 dB). In contrast, bandedge over-
lapped (0 dB) filter banks may overestimate signal power 
by a factor of four (+6 dB).  

The INFERNO energy estimator using filter banks 
with 1/2 power bandedge overlap yielded the best match 
to the signal energy derived f

n. The implementation of more refined filter banks 
(Appendix C) should improve the spectral resolution and 
accuracy of SPL estimates. Due to window tapering ef-
fects, the INFERNO method would tend to underestimate 

signal and noise. A combination of the direct integration 
and S/N methods in the 5 mHz - 9 Hz frequency band 
yields an estimated infrasonic signal energy of ~4.2 J/m2, 
with an error of ~5% for the Russian meteor signal re-
corded at I31KZ. 

To estimate the total equivalent TNT yield at the 
source would require a source and propagation model, 
and these considerations are beyond the scope of this 
work. The multiresolution spectral deconstruction of the 
meteor trajectory will be the topic of a separate paper. 

8. Coda 

This work is an invitation to select a common set of 
standards that meet the scientific requirement of repro-
ducibility, verifiability and precedence. Shared standards 

commercia
sistent evaluation of sources, sensors, detection algo-
rithms, and models. 

The proposed methods and standards are intended as 
possible reference points for interdisciplinary collabora-
tions. They may also be complementary to more ad-
vanced and adaptable algorithms for signal detection, 
signature feature recognition, and event characterization. 

This methodology is also pertinent to the estimation of 
exposure levels for active infrasound source characteri-
zation and development. With the recent emergence of 
controllable infrasound sources capable of radiating to 
10km ranges and beyond, there will be new applications 
of active infrasonic soundings for atmospheric studies of 
large-scale turbulence and variability. 
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Notation 

c: wave speed (km/s);  
: wavelength (km) 
f: wave frequency (Hz);  
L: maximum sensor distance (km) 
Cel: celerity (nominal 0.21 - 0.34 km/s for infra-

sound) 
R: great circle range (km) from source to receiver 
Tw: time window length (s) 
Twg: Gabor window (s) 
fc: center frequency of a filter band (Hz) 
c: center wavelength of a filter band (km) 
Tc: center period (s) = 1/fc 
f0: reference center frequency of 1 Hz 
fci: lowest center frequency 
fcf: highest center frequency 
Twi: longest time window 

Twf: (generally) shortest time window 
Ts: signal duration, Tw in practice 
NP: number of center periods 
NP0: minimum number of periods, Gabor limit 
NPg: number of Gabor windows 
M: edge effect compensation coefficient 
fcut: cutoff frequency for 1/f window scaling 
N: Bands per octave. N = 1 is a perfect octave, N = 3 

yields three bands/octave 
G: band interval scale, recommend 100.3 
n: band number,   0

n N
cf n f G  

kN: frequency scaling factor, G(1/2N)
 

f1: lower bandedge frequency, = fcn/kN 
f2: upper bandedge frequency, fcnkN 
fn: bandwidth, f2 − f1 
bN1: scaled bandedge bandwidth 
f1p: lower flat bandpass frequency 
f2p: upper flat bandpass frequency 
bN2: scaled bandwidth for flat bandpass 
NF: number of frequency bands 
m: alternate frequency band counter,  1,2, , NF
prms: root mean square (rms) pressure amplitude (Pa) 
pref: reference rms pressure in air, 20 Pa 
Ts: signal duration (s) 
P: power spectral density, Pa2/Hz 
c: acoustic impedance, ~400 kgm−2 s in air 
I: sound intensity (Wm‒2) 
Iref: reference intensity in air, 10‒12 Wm‒2

 

E: exposure energy (Jm‒2) = ITs 

SPL: sound pressure level, dB 
Ld: sound exposure level, dB 
NT: number of overlapped, adjacent time windows 
wp: normalized percent window overlap 
ti: i

th time bin 

Appendix A. Nominal Values for PMCC4 
Time Windows Using Fractional Octave 
Bands 

Instead of the order number, PMCC4 uses a number  
counter from 1:NF, where NF is the total number of fre-
quency bands. For an Nth octave specification N and a 
prescribed minimum and maximum bandpass frequen-
cies fmin and fmax, the order numbers are: 

    max max log logn ceil N f G   

    min minlog logn floor N f G   

The total number of frequency bins NF are: 

max min– 1NF n n   

For fractional octave bands (geometric frequency 
spacing) with 1/f time window scaling, the time window 
length may be defined by: 

W
c c

NP L A
T M B

f c f
     

PMCC4 computes the 1/f window length using the 
expression 

       

   
   

1 1 1
1

1 1 1
1

c c

c c

T N T
T m T

f m f
f NF f

 
   

 
 

If we use:    W
c

A
T NF B

f NF
   

   
1

1W
c

A
T B

f
   

       

   

1 1

1 1c c

W
c

A
T m B A

f f m

A
B T m

f m

 
    

  

  

cf  

The case of B=0, appropriate when considering very 
low frequencies, single sensors, networks, or when opti-
mizing windows, yields 

   W
c

A
T m

f m
  

In which case, 

           1 1

1 1 W
c c c c

A A
T m A T m

f f m f f m

 
     

 
 

Thus both window types are in agreement with the 
1/fPMCC4 window computation schema. This time scal-
ing schema can be used even if the frequencies are line-
arly distributed. 

For a known T(NF) and T(1), A and B (>0) can be re-
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covered from 

   

   

1
1 1

1c c

T NF T
A

f NF f





 

   c

A
B T NF

f NF
   

The PMCC4 linear time window scaling is not con-
sistent with the 1/f formulation, and should not be used 
with these relationships. 

Appendix B. PMCC4 Filter Bank  
Specifications 

For the , defined in Appendix A, evenly- 
spaced bandedge frequencies can be computed from  

1,2,3, ,m   NF

     
1

2
1 1

1

1
(1)

m

NFf NF
f m f

f



 
  

 
 

     2
2 1

1

1
(1)

m

NFf NF
f m f

f

 
  

 
 

This can be further constrained by using the exact Nth 
octave frequency band specifications, where  

 
 

2 2

1 1
NF

N

f NF
k

f
  

     2 1
1 1 1 m

Nf m f k   

    2
2 1 1 m

Nf m f k  

   2 1
1 2 1 1 m

cm Nf f f f k    

Note that once the Nth octave has been specified in 
conjunction with the bandpass of interest, the number of 
bands NF is fixed. 

Appendix C. Setting –X dB Filter Bank 
Bandedge Overlap for the Non-Specialist 

When redesigning fractional octave filter banks with an 
arbitrary degree of overlap, it may be desirable to pre-
serve the center frequency fc and the constant bandwidth 
b1 relative to the center frequency. There are probably 
many elegant and mathematically fabulous ways of per-
forming this function. This is not one of them. However, 
this formulation will permit a simple and rapid evalua-
tion of an arbitrary overlap level for log-space filter 
banks that preserve the center frequency and constant 
(scaled) bandwidth properties. 

Let f1 and f2 be defined as the –X dB point bandedges for 
a fractional octave filter with center frequency fc, where 

2 1
1 2 1,c

c

f f
f f f b

f


   

The flat passband (with specified ripple) of a filter [f1p, 
f2p] can be defined from 

1 1 11pf f              (C1) 

 2 2 21pf f              (C2) 

where 1 2, 1   . The center frequency should remain 
invariant, so that 

1 2c p pf f f ,            (C3) 

and a new scaled constant (flat) bandwidth b2 can be 
defined as 

2 1
2

p p

c

f f
b

f


 .           (C4) 

This parametrization sets autoscaling with frequency. 
Using the general relationship for fractional octave 
bands, 

1 2 andc cf f k f f k  , 

Define  = b2/b1 as the ratio of the flat bandwidth to 
the bandedge bandwidth, and 

 1 2 1 1b b b b     , 
2

1
1

k k


    . 

Application of Equations (C1) and (C2) to Equations 
(C3)and (C4) yields 

2
2

1
4

2 k


 

      
 

, 

2
1 2k k    . 

Since the bandwidth b1 changes with specification of 
an Nth octave, the variables 1 and 2 will also change 
accordingly. 

If 2 1  , these expression simplify to: 

1 2 21

k

k

    


 

Leading to the symmetric solutions for the flat band-
pass frequencies, 

1 1 p 1f f f   

2 2 p 2f f f   

where  is determined by the ratio of the flat passband b2 
to the bandedge bandwidth b1. In the case of  = 1,  = 
 = 0 and the filter is flat over [f1 f2]. Although the ap-
proximate solution is attractive, the exact expressions 
must be used when coding. 

As desired, these solutions autoscale with the center 
frequency fc. For any desired filter, one can empirically 
find the value of  that leads to a –X dB intersection 
point.  

Figure C1 shows the filter response for second, third, 
and fourth order Chebyshev Type I filters with a ripple 
of 0.01. The second-order filters are the least steep, and   
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Figure C1. Filter Response curves for second, third, and fourth order Chebyshev Type I filters with a ripple of 0.01, relative 
o ANSI S1.11-2004. t 

 
are remarkably stable over the broad infrasonic spectrum 
and sample rates of practical interest, as demonstrated by 
PMCC in over fifteen years of applications. Numerical 
tests over various fractional octave bands show that the 
−3 dB point for the second-order filter banks is at  ~ 0.3, 
which means that only ~30% of the passband has a flat 
response (Figure C1). As discussed in Section 7, adja-
cent filter bands that intersect at the −3dB points deliver 
better spectral resolution, reduce spectral leakage, and 
are more compliant with ANSI standards. However, the 
second-order Chebyshev Type I filter specifications do 
not meet ANSI [24] Class 2 minimum and maximum 
specifications, as they drop off too fast in the passband 

and then drop off too slowly past the bandedges. For 
third order Chebyshev Type I filter specifications, the 
−3dB edge band levels are found at = 0.53, and for 
fourth order, at  = 0.68 (Figure C1). The third order 
filters would almost meet the Class 2 specifications, and 
it appears fourth order filters would meet Class 0 specs 
as defined in [24]. However, higher-order filters can be 
unstable without careful design and testing using the 
passband and sampling rates of interest. 

As in audio acoustics, once the filter bands are agreed 
upon it is possible to construct stable, custom-designed 
filter banks that will meet ANSI specifications, or their 
adequate extension into the infrasound range. 

 
 
 
 


