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Abstract 
 
In this paper, we present an algorithm for embedding an m-sequential k-ary tree into its optimal hypercube 
with dilation at most 2 and prove its correctness. 
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1. Introduction 
 
Let G and H be finite graphs with n vertices.  V G  and 
 V H  denote the vertex sets of G and H, respectively. 
 E G  and  E H  denote the edge sets of G and H, 

respectively. An embedding f  of G into H is defined 
[1] as follows: 
1) f is a bijective map from    V G V H  

2) f is a one-to-one map from  E G to  

     , :fP f u f v      ,fP f u f v is a path in H be-

tween  f u and  f v .  

The dilation of an embedding f of G into H is given by 

           = max , : ,fdil f P f u f v u v E G  

where     ,fP f u f v  denotes the length of the path  

fP . Then, the dilation of G into H is defined as 

   , = mindil G H dil f  

where the minimum is taken over all embeddings f of G 
into H. Embedding G into H with minimum dilation is 
important for network design and for the simulation of 
one computer architecture by another [2]. 

Embeddings as mathematical models of parallel com-
puting have been discussed extensively in the literature 
[3,4]. In these models, both the algorithm to be imple-
mented and the interconnection network of the parallel 
computing system are represented by graphs. The im-
plementation details are then studied through the embed-
ding. 

A tree is a connected graph that contains no cycles. 

Trees are the most fundamental graph-theoretic models 
used in many fields: information theory, automatics clas-
sification, data structure and analysis, artificial intelli-
gence, design of algorithms, operation research, combi-
natorial optimization, theory of electrical networks and 
design of network [5]. Trees are ubiquitous in computer 
science. A rooted tree represents a data structure with a 
hierarchical relationship among its various elements [6]. 

The most common type of tree is the binary tree. It is 
so named because each node can have at most two des-
cendents. Binary trees are widely used in data structures 
because they are easily stored, easily manipulated and 
easily retrieved [5]. A k-ary tree is a rooted tree in which 
each node has no more than k children. It is also known 
as a k-way tree. 

From a computing perspective, trees form an impor-
tant class of computational structures. Many operations 
such as searching and storing can be easily performed on 
tree data structures. Hence, there is a large literature on 
embeddings of various kinds of trees into the graphs of 
interconnection networks [3,7-25]. In particular, embed-
dings of binary trees into hypercubes have received spe-
cial attention since they naturally arise as the computa-
tional structures of algorithms that employ dvide-and- 
conquer paradigm [12]. 

Hypercubes are very popular models for paralled 
computation because of their regularity and the relatively 
small number of interprocessor connections. The hyper-
cube embedding problem is the problem of mapping a 
communication graph into a hypercube multiprocessor. 
Hypercubes are known to be able to simulate other 
structures such as grids and binary trees [3,26]. It has 
been shown that an arbitrary binary tree can be embed-*This work is supported by DST Project No. SR/S4/MS: 494/07.
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ded into a hypercube with constant dilation [26]. 
In 1984, Havel [9,27] conjectured that a binary tree 

can be embedded into a k-dimensional hypercube kQ  
with dilation one if and only if each of its partite sets 
contains at most 12k  vertices. In 1985, Bhatt and Ipsen 
[7] conjectured that a binary tree can be embedded into 
its optimal hypercube with dilation at most two as well 
as into its next-to-optimal hypercube with dilation one. 
As observed in [13], the conjecture of Havel is stronger 
than those of Bhatt and Ipsen. Though all these problems 
have been resolved in several special cases, they still 
remain open for the general case. 

Monien and Sudborough [14] proved that every binary 
tree can be embedded into a hypercube with dilation 3 
and  1O  expansion. Chen and Stallmann [26] proved 
that a simple linear-time heuristic embeds an arbitrary 
binary tree into a hypercube with expansion 1 and aver-
age dilation no more than 2. Dvořák [15] constructed the 
embedding of certain classes of binary trees into hyper-
cubes based on an iterative embedding into their sub-
graphs induced by dense sets. Heun and Mayr [16] 
proved that arbitrary binary trees can be embedded into 
hypercubes with dialtion 8. Further, they constructed an 
embedding of double-rooted complete binary trees into 
hypercubes [17]. Sunitha [4] constructed an embedding 
of some hierarchical caterpillars into their optimal 
hypercube with dilation 2. Choudum et al. [28] proved 
that subclasses of height-balanced trees can be embedded 
into hypercubes. Further, they proved that the height-balanced 
trees and Fibonacci trees can be embedded into hypercubes 
[6]. Eğecioğlu and Ibel [18] proved that the dynamic 
k-ary tree can be embedded into its asymptotic hyper-
cube. 

Thus there is a vast literature on embedding trees into 
hypercubes. In this paper, we define an m-sequential 
k-ary tree and prove that it can be embedded into its op-
timal hypercube with dilation at most 2. 
 
2. Preliminaries 
 
In this section, we introduce the labeling hal to label the 
vertices of the hypercube architecture. We obtain results 
that enable us to prove the main result of this paper. 

Definition 1 [5] An r-dimensional hypercube rQ  has 
nodes respesented by all the binary r-tuples with two 
nodes being adjacent if and only if their corresponding 
r-tuples differ in exactly one position.  

The decimal representation of the vertices is the set 

 0,1, 2, , 2 1 .n  For convenience, we use the symbol  

1x   instead of x and therefore the set of labels of the  

vertices is  1,2, , 2 .n  

Remark 1 Let G  be graph with m  vertices. The 

hypercube of dimension  2log m    is called its optimal 
hypercube, and one of dimension  2 1log m     is called 
next-to-optimal.  

Definition 2 Let rQ  be an r-dimensional hypercube. 
A partial ordering “ ” on rQ  is defined by ji QQ   
if and only if iQ  is a subcube of jQ , 1 ,i j r  . The 
notation ji QQ <  shall mean ji QQ   and .i jQ Q  

Definition 3 A hamiltonian labeling of hypercube rQ , 
denoted by hal, is the labeling of the vertices of rQ  
defined inductively as follows: Consider the ordering 

1 2< < < < <i rQ Q Q Q       on rQ . Label vertices of 
1Q  as 0 and 1. If ( )iu V Q  is labeled x , then label 

the unique vertex     1 \i iv V Q V Q  adjacent to u  
as 12 1i x   . 

Remark 2 The labeling hal is the decimal equivalent 
of the binary gray code sequence [26]. 

Definition 4 A hamiltonian cycle is a cycle that visits 
each node of the graph exactly once. By convention, the 
trivial graph on a single node is considered to possess a 
hamiltonian cycle. A graph possessing a hamiltonian 
cycle is said to be a hamiltonian graph. 

Theorem 1 The hamiltonian labeling hal of rQ  
determines a hamiltonian cycle  = 1,2, ,2 ,1r

rC   in 
rQ ， 2.r   
Proof We prove that hal determines the hamiltonian 

cycle  1,2, , 2 ,1l  in lQ  for all ,l .2 rl  We prove 
the result by induction on .r  For 2,=r  2 = 1,2,3,4,1C  
is a hamiltonian cycle in 2 .Q Assume that 

 1
1 = 1,2,3, , 2 ,1k

kC 
  is a hamiltonian cycle in 1.kQ   

Consider kQ . We observe that 1kQ is a subcube of 
.kQ  Let 1kF  denote the other  1k  -dimensional 

subcube contained in .kQ By definition of kQ ,  ,u v  
is an edge in 1kQ  if and only if  ,' 'u v  is an edge in 

1kF , where  , 'u u  and  , 'v v  are edges in .kQ Thus 
=P  11,2,3, ,2k  is a hamiltonian path in 1kQ  

implying that  

      1= 2 + 1 1, 2  + 1 2, , 2  + 1 2k k k kP      

 1= 2 ,2 1, ,2 +1k k k   

is a hamiltonian path in 1kF  . Moreover, the vertex 
labeled 12 k  is adjacent to the vertex labeled 
  1 12 1 2 = 2 1k k k    . Again the vertex labeled 1 is 
adjacent to the vertex labeled  2 1 1 = 2 .k k  Thus 

       11 1 1 12 ,2 1 2 ,1 = 1,2, ,2 ,2 1, ,2 ,1k k ' k k k kP P
        

is a hamiltonian cycle in kQ . 
The following results are easy consequences of 

Theorem 1 and the hal labeling of vertices of the 
hypercube. 

Lemma 1 Let x  and y  be the hal labeling of 
vertices u and v in .rQ If myx 2=  for some m, 

rm 1 , then  , = 2d u v  in .rQ  
Proof Without loss of generality let yx > . Now 

   1 1= 2 = 2 2 = 2 1 2 1m m m m mx y x y z z          , 
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where z is the label of some vertex w in .rQ Thus 
 1= 2 1 , = 2 1m mx z y z     is a solution to the 
equation = 2 .mx y  This implies that w is adjacent to 
both u and v. In other words,  , = 2d u v  in .rQ  

Lemma 2 Let x and y be the hal labeling of vertices u 
and v in .rQ If 122=  xxy m  for some m, 
1 ,m r   then 1=),( vud  in .rQ  

Lemma 3 Let 1 and y be the hal labeling of vertices u 
and v in .rQ If mimy 22=1    for some m and i, 
1 ,m ,i r  then 2=),( vud  in .rQ  

Proof It is straightforward to see that mimy 22=1    
implies 12=  zy im , where mz 2=  is the label of 
some vertex w in .rQ Thus, { = 2 1 , = 2 }m i my z z    is a 
solution to the equation 1 = 2 2 .m i my   This implies 
that w is adjacent to both u and v. In other words, 

2=),( vud  in .rQ  
 
3. Embedding Algorithm 
 
Embeddings with dilation more than one become 
significant when trees with branch lengths representing 
time are considered. In this section, we obtain an 
embedding algorithm and prove its correctness. 

Definition 5 A rooted tree T is said to be a step-up 
tree if for every internal node u of T, any two subtrees 

iT  and jT  rooted at children of u are ordered in T in 
such a way that if    i jV T V T , then iT  lies to the 
left of jT . See Figure 1.  

Definition 6 For 2m  and 1k , an m-sequential 
k-ary tree T(m,k) is a step-up tree obtained by 
recursively growing the root u with k children under the 
following conditions. 

(a) The subtrees rooted at the children of u are of 
sequential order  1 2 22 2,2 ,2 ,2 , ,2m m m m m k      or 
 1 2 12 1,2 ,2 , ,2 .m m m m k      

(b) The root of a subtree of order ts 2 , 20  t , 
3s  has 1s  children which in turn are the roots of 

subtrees of sequential order  2 3 2 13,2 ,2 , ,2 ,2s s t    
except when = 3, = 2s t  and in this case the sequential 
order is (2, 3). 

(c) A subtree of order 3 or 4 with v as a root node is 
isomorphic to one of the graphs shown in Figure 2. 

T1 T2 T3 Tk

u

 

Figure 1. Step-up tree T with        1 2V T V T   
  kV T . 

vv v v v v

 

Figure 2. A subtree of order 3 or 4 with v as a root node. 
 

Remark 3 ),( kmT  rooted at u is said to be of Type 
A or Type B depending whether the subtrees rooted at the 
children of u are of sequential order 1(2 2,2 ,2 ,m m m  

2 22 , ,2 )m m k    or  1 2 12 1,2 ,2 , ,2 ,m m m m k     res- 
pectively. See Figure 3. 

Remark 4 ),( kmT  of Type A has 12 3 km  nodes 
and ),( kmT  of Type B has  2 2 1m k   nodes.  

In the sequel, we need the following definition of 
pre-order tree traversal. 

Definition 7 Let T be a rooted tree. A pre-order 
labeling of nodes of T is the labeling of its nodes the first 
time we visit the nodes in the traversal. See Figure 4. 

Embedding Algorithm 
Input: ),( kmT  and its optimal hypercube .rQ  
Algorithm: Label the nodes of T using pre-order 

labeling and the vertices of the hypercube using hal 
labeling. 

Output: Embedding of T into rQ  with dilation at 
most 2. See Figure 5. 
 

(a) (b)  

Figure 3. (a) T (2, 4) of Type A; (b) T (3, 2) of Type B. 
 

1

2

3

4

5 6

7

8

9

10 11

12

13 14

15  

Figure 4. A pre-order labeling of nodes of T. 
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Figure 5. Embedding of T(2, 3) of Type A into Q4. 
 

Theorem 2 An m-sequential k-ary tree can be embedded 
into its optimal hypercube with dilation at most 2.  

Proof Consider an embedding f of T into rQ  using 
the embedding algorithm, labeling the nodes of T using 
pre-order labeling and the vertices of the hypercube 
using hal labeling such that xxf =)( . 

Let v be an internal node of T with children 

1 2
, , , pv v v . Let 1 2, , , pT T T  be the subtrees rooted at 

1 2
, , , ,pv v v  respectively. Since T is a step-up tree, we 

have      1 2 .pV T V T V T      Suppose that the root of 
T is u. Then the label of u is 1. 

Case 1 (v is a child of u): 
Let )(1,= ii ye , 1 .i k    

By definition of pre-order traversal, 

     1 2 1= 2.i iy V T V T V T        

By definition of m-sequential k-ary tree of Type A,  

     
 

1 2 1

1 2 ( 3)

3 4

= 2 2 2 2 2 2

= 2 [1 2 2 ] 2= 2 2.

i

m m m m m i

m i m i

V T V T V T 

   

  

  

     

    







 

Therefore 12=1 4  im
iy  and hence by Lemma 2, 

the edge ie  is of dilation 1. 
Again by definition of m-sequential k-ary tree of Type B,  

     

 
 

1 2 1

1 2 ( 1)

1

= 2 1 2 2 2

= 2 1 2 2 1= 2 2 1.

i

m m m m i

m i m i i

V T V T V T 

   

 

  

    

     







 

Therefore iim
iy 22=1    and hence by Lemma 3, the 

edge ie  is of dilation 2. 
Case 2 (v is not a child of u): 
Let the label of v be x. Let ),(= ii yxe , 1 .i p    

By definition of pre-order traversal,  

     1 2 1= 1 .i iy V T V T V T x         

By definition of m-sequential k-ary tree, 

      1
1 2 1 = 3 4 2 = 2 1.i i

iV T V T V T 
           

Therefore i
i xy 2=  and hence by Lemma 1, the edge 

ie  is of dilation 2. 
 
4. Conclusions 
 
In this paper, we have obtained an embedding algorithm 
to embed an m-sequential k-ary tree into its optimal 
hypercube with dilation at most 2. We have also proved 
its correctness. This study is important as the embedding 
of binary trees into hypercubes received special attention 
in the computational structures of algorithm such as 
searching and storing. 
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