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ABSTRACT 

Asymptotically bounded velocity profiles describe the vertical velocity variations in compacted sediments in a more 
realistic way than unbounded velocity models, and allow presenting the subsurface by a smaller number of thicker lay- 
ers. The first and the simplest asymptotically bounded model is the Hyperbolic velocity profile proposed by Muscat in 
1937, and our paper is an extension of this early study. The Hyperbolic model has an advantage over other bounded 
models: The velocity increases with depth and approaches the limiting value with a more smooth and gradual rate. We 
derive the time-depth relationships, forward and backward transforms between the instantaneous velocity profile and 
the effective models (average, RMS and fourth order average velocities), study the trajectories for pre-critical and 
post-critical curved rays and derive the equations for traveltime, lateral propagation and arc length. We compare the ray 
paths obtained with the Hyperbolic model and with the other bounded velocity profiles.  
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1. Introduction 

The Hyperbolic velocity model was first proposed by 
Muscat [1] and published in 1937. However, since then 
the model was not extensively studied and is unjustifia- 
bly ignored in the literature. The objective of this re- 
search is to extend the original study and to correct the 
inaccuracies. We show the place of the Hyperbolic model 
among the other asymptotically bounded models, analyze 
its basic relationships and attempt to develop a complete 
theory. 

Asymptotically bounded velocity models describe the 
velocity profile in compacted sediments, where the ve- 
locity gradually increases with depth and eventually ap- 
proaches a limiting value. These models make it possible 
to describe a vertical velocity profile with a smaller num- 
ber of intervals as compared to the classical unbounded 
models, such as linear velocity vs. depth [2,3], unbounded 
exponent [4], linear slowness [5], “sloth” (linear varia- 
tion of slowness squared), e.g., [6], parabolic model [7,8], 
Faust velocity model [9,10] with a reference depth and 
different root indices. The unbounded models are de- 
scribed by two parameters: the instantaneous velocity at 
the top interface aV  and the vertical velocity gradient 

a  at the same level. The Faust model includes also the 
root index n, normally . Asymptotically bounded 
models require an additional parameter: the limiting 
value of velocity  at infinite depth. Two models of 

this family were studied by Ravve and Koren: the Expo- 
nential asymptotically bounded model [11,12] and the 
Conic model [13]. The asymptotically bounded profiles 
can be used, in particular, as velocity trend functions for 
the constrained velocity inversion with the best (e.g., 
least-squares) fit of the input data [14]. Examples of as-
ymptotically bounded models are presented below. For 
each model, we first give the original formulation of the 
velocity profile as it appears in the original works by the 
authors, and then we convert it to a canonical form in 
terms of the “standard” parameters  and 

k
6n 

V

,a aV k V . Pa- 
rameter V  means the instantaneous velocity range, 

aV V V   . 
 The Hyperbolic velocity model by Muscat [1], 

 
 

, const.aV z V
z A A

V V z


  


           (1) 

In our notation, the Hyperbolic profile reads 

  1 .          (2) aV V


       a

V

V k z

 

 
V z

 The Exponential velocity model by Muscat [1], 

 
 

ln
z

ln nst.a

a

V V z V V

B V V z V
 

 

 
  

 
, coB

V
     (3) 

We convert it to our notation, 
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  tanh ,oV z V A z z              (4) 

where the parameters are 
2 2

2 2
arccosh , .a

o
aa

V VV
A z

k VV V






 


       (5) 

 The Exponential slowness model [5,15], 

 
1 1 1 1

exp .
a o

z

V z V V V z 

  
      

  





       (6) 

It can be converted to canonic form, 

   
,

exp
a a

o
a o

V V V V
V z z

V V z z k V







  
.

a

      (7) 

 The Exponential asymptotically bounded (EAB) ve- 
locity model [11,12],  

  1 exp .a
a

k z
V z V V

V

           
       (8) 

 The Conic velocity model [13], 

   
 22

,
1

V z Q z h

V Q z h




 
          (9) 

where 

 
 2 22

3 2 22 2
, .

a aa

aa

V V Vk V
Q h

k VV V






 


      (10) 

A detailed review on unbounded and bounded velocity 
models is given by Kaufman [16]. Figure 1 shows 
graphs of the instantaneous velocity vs. depth for the five 
asymptotically bounded velocity models mentioned 
above.  

For all models, we assume the same velocity profile 
parameters: . The ver- 
tical gradients of the velocity vs. depth are plotted in 
Figure 2. It is interesting to note that among the five 
models presented, the Muscat Hyperbolic model (Equa- 
tion (1) and grey line on the plot) approaches the limiting 
value  in the slowest and the most gradual manner. 
The “second slow” is the Conic velocity model (red line), 
and the “third slow” is the EAB model (blue line). An 
asymptotically bounded model can be characterized by 
its gradient-velocity relationship, which is actually the 
governing differential equation of the velocity model.  

13 km/s, 1s , 6 km/sa aV k V
  

V

This paper is structured as follows. We define the Hy- 
perbolic model using 1) the original Muscat [1] formula- 
tion—depth vs. velocity, 2) the physical parameters: 
maximum gradient R, length scale  and vertical shift 
h, and 3) the “technical” or geophysical parameters: top 
interface velocity aV , top gradient a  and asymptotic 
velocity . We introduce the dimensionless asymptotic 
factor 

Q

k
V

M  that simplifies the transform equations. First  
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Figure 1. Asymptotically bounded velocity models: Muscat 
hyperbolic model, Muscat exponential model, the Exponen- 
tial slowness model, the Exponential asymptotically bounded 
model and the Conic model: Velocity vs depth. For all mod- 
els, the profile parameters are: the top interface velocity Va 
= 3 km/s, the top gradient ka = 1 s−1 and the asymptotic ve- 
locity V∞ = 6 km/s. 
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Figure 2. Vertical gradients vs. depth for asymptotically 
bounded velocity models.  
 
we derive the time-depth and the depth-time relationships. 
Next we proceed to forward transforms from the instan- 
taneous velocities to the effective models, such as the 
average, the RMS and the fourth order average velocity. 
Then we study the inversion problems, considering the 
inversion with the instantaneous velocities and gradients, 
and the inversion with the effective models, i.e., the av- 
erage or the RMS velocities given vs. time or depth. Next 
we comment on the two types of curved rays existing in 
all asymptotically bounded models, depending on the ini- 
tial take-off angle, and derive the trajectories of the ray 
paths for the Muscat velocity profile. For both types of 
the curved rays we derive the lateral propagation, the tra- 
veltime and the arc length. 

2. The Hyperbolic Velocity Profile 

Muscat [1] defined the Hyperbolic model by 

 
 

,aV z Vz

A V V z





                (11) 

where V is the instantaneous velocity, z is depth measured 
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from the top interface, a  is the top interface velocity, A 
is the characteristic distance (scale) that affects the top 
gradient a , and  is the asymptotic velocity. Inverting 
Equation (1), we obtain 

V

k V

  .
1

aV V z A
V z

z A





              (12) 

The velocity gradient becomes 

 
 2

d 1
,

d 1

V V
k z

z A z A


  


        (13) 

where  At , the top gradient is aV V V   0z  ak k . 
Therefore, 

ak V  A  and .aA V k          (14) 

Introduce Equation (14) into Equation (13). In our no- 
tation, the Hyperbolic profile reads 

  1 .a
a

a a

V V V k zV
V z V V

V k z V k z
   

          
a

h

 (15) 

We call values  and V  the technical parame- 
ters of the profile. At a definite height above the earth 
surface (above the upper interface), where 

,a aV k

z   , the 
instantaneous velocity vanishes. According to Equation 
(15),  

.a

a

V V
h

k V

 
                   (16) 

Introduce the absolute frame , where the in- 
stantaneous velocity vanishes at the origin 

z z h 
0z  . Pa- 

rameter  is the shift between the two frames of refer- 
ence. In the absolute frame, the velocity profile simplifies 
to 

h

   
 

,
1 1

R h zRz
V z

Qz Q h z

 
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   



         (17) 

where 
2 and .aQ k V V R QV            (18) 

We call values  and  the physical parameters 
of the profile. Note that the linear velocity profile, where 
the ray trajectories are circular arcs, is a particular case of 
the Hyperbolic model with  and V , in such 
way that their product 

,R Q h


V

0Q
R Q


  remains a finite value, 

and parameter  becomes the constant velocity gradient 
of the linear model. The velocity gradient of the Hyper- 
bolic model reads 

R

 
 2

.
1

R
k z

Qz


 
               (19) 

At the absolute origin 0z 
k

, the velocity gradient 
reaches its maximum value max . Comparing Equa- 
tions (17) and (19), we conclude that 

   
max

1.
V z k z

V k

              (20) 

Equation (20) is the governing differential equation of 
the Hyperbolic velocity profile. It can be used to plot the 
gradient-velocity diagram. Such diagrams for several 
asymptotically bounded velocity models are studied in 
Appendix A. 

Introduce the normalized (dimensionless) velocity v , 
the normalized gradient  and the normalized absolute 
depth , 

k̂
ẑ

ˆ ˆ, , .           (21) v V V k k R z Qz   

Note that parameter Q is the reciprocal characteristic 
length. With these notations, the Hyperbolic velocity pro- 
file simplifies to 

 2

ˆ 1ˆ,
ˆ1 ˆ1

z
v k

z z
 

 
.             (22) 

The technical parameters of the velocity profile are re- 
lated to the physical parameters, 

 2
, ,

1 1
a a

Rh R R
V k V

Qh QQh
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 
,      (23) 

The inverse relationship is 

 

2

2
, , .    (24) a a a

aa

k V V V V R
R h Q

k V VV V
 

 


   



3. Asymptotic Factor 

To simplify the equations for velocity transforms, it is 
suitable to introduce a special parameter M. This pa- 
rameter can be defined at any point of the profile, and in 
particular, at the top and the bottom interfaces of an in- 
terval, 

  

 

1 ,

1 ,

1 ,
a

b

M z Q h z

M Qh

M Q h z

  

 

   

            (25) 

where z  is the interval thickness (the vertical distance 
between the two interfaces), subscript a is related to the 
top interface 0z  , and subscript b is related to the bot- 
tom interface z z  . It follows from Equation (25) that 

,a b
a b

V V
M M

V V V V


 

 
 

,          (26) 

where a  and bV  are the top and bottom instantaneous 
velocities, respectively. Next, it follows from Equation 
(26) that parameter M is the inverse normalized measure 
of the difference between the velocity at the given depth 
level and the asymptotic velocity . Equation (26) can 
be inverted, 

V

VR
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1
,a a b b

a b

V M V M

V M V M 

 
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1
.          (27) 

The velocity gradient is also related to the asymptotic 
factor, 

2
,a b

a b

R
k k

2
.

R

M M
               (28) 

It follows from Equation (25) that 

 
   

,b ab a

a b

V V VM M
Q

z z V V V V


 


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    
   (29) 

and 

 

1 ,

1 .

a
a

a

b
b

b

V
Qh M
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V
Q h z M

V V




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
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

        (30) 

We use Equations (28) and (29) to get the interface 
gradients, a  and , through the increment of the as- 
ymptotic factor, 

k bk

b aM M M  , 

2 2
,b a b a

a b
a b

M M M MV V
k k

zM M
  

   


.
z

    (31) 

It follows from Equation (31), 

2 2,a b
b a a a b b

k z k z
M M M M M M

V V

 
     



  (32) 

Equations (27) and (29) result in the average gradient 
on the interval, ave , expressed either through the inter- 
face asymptotic factors 

k

aM  and bM , or through the 
interface gradients  and , ak bk

ave

.

b a b a

a b

a b a b

V V M MVV
k

z z z M M

QV R

M M M M





 
   
  

 
      (33) 

Introduction of Equation (28) into Equation (33) leads 
to 

ave .a bk k k                  (34) 

The average gradient on the interval with the Hyper- 
bolic velocity profile is the geometric average of the top 
and bottom interface gradients. 

Given the velocity and its gradient at one interface, one 
can calculate these parameters at the other interface. The 
calculations can be done either in depth or in time. Four 
problems of this kind are considered in Appendix C. 

4. Depth-Traveltime Relationship 

Integrate the slowness to get the vertical traveltime vs. the 
interval thickness, 

   0

d d 1 1
d

1
ln .

z h z h z

h h

z z Q
t z

V z V z V Qz

z h z

V QV h

  



 


   

  
  

  
  
 

z

   (35) 

The traveltime equation can be written in terms of 
asymptotic factors at the top and bottom interfaces, aM  
and bM . With the use of Equations (25) and (29), we 
obtain 

11
1 ln

1
b

b a a

M
V t z

M M M

 
        

,      (36) 

where the top asymptotic factor aM  is calculated with 
Equation (26), and the bottom asymptotic factor  bM z - 
with the first equation of Equation Set (32). The interval 
velocity (local average velocity) through the layer be- 
tween the interfaces becomes 

Int .
1

ln
1

b a

b
b a

a

V M Mz
MV V t M M
M

 


 

  


     (37) 

To get the vertical distance vs. traveltime we should 
invert Equation (26), i.e. find  bM t . Introduction of 
Equation (29) into (36) results in 

1
ln .

1
b

b a
a

M
QV t M M

M


   


       (38) 

Equation (38) should be solved for the unknown bottom 
asymptotic factor bM , 

 
 

1 ln 1

1 ln 1 .

b b

a a

M M

M M R

  

t     
        (39) 

Taking exponent from both sides of Equation (39), we 
get 

   
     

1 exp 1

1 exp 1 exp .

b b

a a

M M

M M R

  

t     
      (40) 

Equation (40) can be solved with the Lambert function, 

     01 1 exp 1 exp ,b a aM L M M R t          (41) 

where notation 0  means the zero branch of the Lambert 
function. The Lambert function 

L
 y L x  delivers the 

solution of the transcendent equation expx y  y , see 
Appendix B for details. In terms of the interface velocities, 
Equation (41) reduces to 

 0 exp exp .b a a

b a a

V V V
L R

V V V V V V  

t
 

       
  (42) 

After the bottom asymptotic factor bM  or the bottom 
interface velocity b  is found, the interval thickness can 
be established with Equation (29), 

V
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 
   

.b ab a

a b

V V VM M
z

Q Q V V V V


 


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  
     (43) 

5. Hyperbolic and Non-Hyperbolic Moveout 

In the absence of the intrinsic anellipticity, the hyperbolic 
parameter W and the non-hyperbolic parameter H on the 
interval are defined as 

2

4 3

d d

d d

b b

a a

b b

a a

t z

t z

t z

t z

W V t V z,

.H V t V z

 

 

 

 
            (44) 

Introduce the velocity profile from Equation (17). The 
hyperbolic parameter W becomes 

 

d
d

1

1
ln .

1

b

a

z z h z

z z h

Rz z
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      (45) 

The non-hyperbolic parameter H becomes 
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
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

2


   (46) 

With the use of the top and bottom asymptotic factors, 
the hyperbolic parameter becomes 

ln

1
1 ln

b
b a

a

b

b a a

MV
W M M

Q M

M
V z

M M M


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 
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.


      (47) 

Introducing Equation (37) for the traveltime into Equa- 
tion (47), we obtain the local RMS velocity U over the  

interval. By definition, U W t , so 

2

2

ln

.
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ln
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b
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b
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a

M
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MV M M
M



 



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        (48) 

The non-hyperbolic parameter becomes 

3

3

2 2

3 3

1 1
3 ln .

2 2

b a
a b

b

aa b

V
H M M

Q M M
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Q MM M


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 
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 
 

      
 

   (49) 

With the use of Equation (29), the non-hyperbolic pa- 
rameter simplifies to 

3

2 2

3 3
1 l

2
a b b

a b b a aa b

H V z

M M M

M M M M MM M

 

 
      

n .
 (50) 

When the parameters of the velocity profile are speci- 
fied, the top asymptotic factor Ma is a known value. The 
bottom asymptotic factor Mb can be presented either vs. 
depth (interval thickness) or vs. traveltime. Thus, the hy- 
perbolic and non-hyperbolic parameters become func- 
tions of depth or traveltime, accordingly. The anelliptic- 
ity induced by the vertically varying velocity is defined 
as the fractional difference between the fourth-order av- 
erage velocity  and the RMS velocity , 4V 2V

4 4
4 2

4
2

.
8

V V

V
 
                (51) 

Parameter   can be also considered as a function of 
depth or vertical time. For a particular case of a single 
infinite layer (half-space) with any vertical velocity pro- 
file, 

2
2 4

2 4 2
, .

8

W H H t W
V V

t t W
  

   


     (52) 

The graph for the induced anellipticity   is plotted 
vs. depth in Figure 3 for three asymptotically bounded 
velocity models: Exponential, Conic and Hyperbolic. For 
all the three models, the parameters of the velocity pro- 
file are: 3 km/s,aV   1 and . At the 
surface, the anellipticity is zero as there are yet no accu- 
mulated variations of the instantaneous velocity. The 
induced anellipticity is always positive. It reaches a 
maximum value a definite depth and then vanishes at the  

1sak  6 km/sV 
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Figure 3. Induced anellipticity vs. depth for asymptotically 
bounded velocity models. 
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infinity, where the medium velocity is asymptotically 
constant. 

6. Forward Dix Transform 

Consider a package of n layers (vertical intervals), where 
the nodes (interfaces) are enumerated from zero, and 
layers are enumerated from 1. Interval n connects nodes 

 (top interface) and n (bottom interface). The nodal 
average velocity 1,nV , RMS velocity  and fourth- 
order average velocity  are 

1n 
2,nV

4,nV

1, 1 1
1,

1

2
2, 1 12

2,
1

4
4, 1 14

4,
1

,

,

.

n n n
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n n

n n n
n
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n
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V t z
V

t t

V t W
V

t t

V t H
V

t t

 



 



 



  


 

 


 

 


 

           (53) 

where n  is the one-way interval traveltime, nt z  is 
the layer thickness, Wn and Hn are the interval hyperbolic 
and non-hyperbolic parameters, respectively. For 1n   
we set 0  in Equation (53). The effective velocities 
(average, RMS and fourth-order average) can be also 
defined for any internal point of the interval. 

0t 

7. Inverse Dix Transform 

Recall that the Hyperbolic velocity profile on the interval 
is defined by the three parameters: the top interface in- 
stantaneous velocity a , the top interface gradient a , 
and the asymptotic velocity V . We consider that the 
asymptotic velocity is always given a priori. When the 
two other parameters, a  and ak , are also known, then 
velocity transforms are considered forward. When one or 
both parameters are unknown (with another data speci- 
fied instead), we deal with the velocity inversion. There 
are three groups of inverse transforms studied in Appen- 
dices D, E and F. 

V

V

k

Appendix D considers the inversion that does not in- 
volve the RMS velocity. These formulations deal with 
the instantaneous velocity and its gradient only. We solve 
a problem where the two velocities are given at the in- 
terfaces, a  and bV , or—alternatively—the two gradi- 
ents, a  and b . Another kind of problem is when the 
velocity and its gradient are given at the different inter- 
faces of the interval, i.e. the velocity is given at the top 
interface and the gradient—at the bottom interface, a  
and b , or vice versa, ak  and bV . We solve also a 
problem where the instantaneous velocity is given at the 
bottom interface and at the intermediate point of the in- 
terval, b  and cV . These problems are studied both vs. 
depth and vs. time. 

V
k

k

V

k

V

Appendix E considers the inversion with the RMS ve- 

locity specified at the interfaces vs. depth or time with a 
single parameter unknown, either aV  or a . We con- 
sider also a problem with the traveltime specified vs. the 
interval thickness, also with a single parameter unknown. 
Finally, we consider the RMS velocity specified vs. both 
depth and time, with the two parameters unknown,  
and . 

k

aV

a

In Appendix F we study the two-interval inversion. 
The RMS velocity is given vs. depth or time at the two 
interfaces and at an internal point of the interval. Alter- 
natively, depth can be specified vs. traveltime at the three 
points. Both parameters of the velocity profile are un- 
known. This is a so-called three-point or two-interval in- 
version. 

k

8. Ray Trajectories 

In this section we establish the trajectories of non-verti- 
cal rays. Due to Snell’s law, in 1D medium the horizontal 
slowness  is constant, and the ray angle p   (meas- 
ured from the vertical axis) becomes 

 sin .pV z               (54) 

Introduce the ray parameter m, 

1 1
,

Q
m

pR pV P

              (55) 

where Q and R are the physical parameters of the Hy- 
perbolic velocity profile,  is the normalized ray 
slowness, and m is its inverse value. We call parameter m 
“eccentricity of the ray trajectory” as it is very similar to 
the eccentricity of the hyperbolic and elliptic rays of the 
Conic velocity model [13]. With Equation (17), the sine 
of the ray angle becomes 

P pV

1
sin ,

1 1

pRz Qz

Qz m Qz
   

 

 


           (56) 

so that the tangent of this angle is 

2

2 2 2 2 2

sin
tan

1 sin

,
2

Qz

m m Qz m Q z




 


 
 


 

     (57) 

where 2 1m 2m  . Parameter  (the conjugate ec- 
centricity squared) may be positive or negative. Intro- 
duce the dimensionless coordinates, 

2m

ˆ ˆ, .x Qx z Qz                  (58) 

The tangent of the ray angle becomes 

2 2 2

ˆˆ1 d
tan .

ˆd dˆ ˆ1 2

z x

m zz m m z
     

   
dx

z
   (59) 

Integrating Equation (59), we obtain 
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 
2 2 2

ˆ ˆd
ˆ ˆ ,

ˆ ˆ1 2
c

z z
m x x

z m m z
  

  
     (60) 

where cx  is the constant of integration. This integral 
can be reduced to 

2 2 2

2
2 2 2

2

2

2 2 2 2

ˆ ˆd

ˆ ˆ1 2

ˆ ˆ1 2

ˆd
.
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
   





       (61) 

To obtain the integral on the right side of Equation 
(61), we consider two cases, or two ranges of the eccen- 
tricity: m > 1 (pre-critical rays) and m < 1 (post-critical 
rays), 

2 2 2
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arccosh for 1,
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  









    (62) 

For a limiting case  (critical rays), 1m 

   ˆ ˆ1 1 2ˆ ˆd
ˆ ˆ ,

3ˆ1 2
c

z zz z
x x

z

  
   

     (63) 

We emphasize that two kinds of rays exist for any 
monotonously increasing and asymptotically bounded 
velocity model, and in particular, for the Hyperbolic mo- 
del. The pre-critical rays that may start on the earth sur- 
face, propagate to the infinite depth, and their curvature 
asymptotically vanishes. The post-critical rays have a li- 
mited propagation depth. Their arc-like trajectories have 
a finite minimum curvature at the turning point, and 
these rays return to the earth surface. Note that at any 
point of the trajectory, the ray path curvature   de- 
pends on the velocity gradient k only, 

   .z pk z                (64) 

In particular, the linear velocity model with a constant 
velocity gradient leads to ray trajectories of constant 
curvatures, i.e. to the circular arcs. 

The critical rays with the unit eccentricity 1m   are 
the limit case between the two types of rays. Their take- 
off angle (the ray angle at the upper interface) is called 
the critical angle C . It follows from Equations (54) and 
(55) that the critical take-off angle is 

arcsin .a
C

V

V




              (65) 

It follows from Equations (61) and (62) that the tra- 
jectories of the pre-critical and post-critical rays are 
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       
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z

z

(66) 

At infinite depth, pre-critical rays become asymptoti- 
cally straight. Equation (57) leads to 

2

1 1
tan ,sin .

1
pV

mm
   


      (67) 

However, although the slope of these rays converges 
to a constant value and their curvature becomes infini- 
tesimal, the pre-critical rays of the Hyperbolic model 
have no asymptotic straight line, unlike the pre-critical 
rays of the EAB and the Conic models. The pre-critical, 
critical and post-critical rays are plotted in Figure 4 for 
the Hyperbolic, the Conic and the Exponential (EAB) 
models. Parameters of the velocity profile are the same  
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Figure 4. Pre-critical (red lines), critical (green lines) and 
post-critical (blue lines) ray trajectories for Hyperbolic 
(lines 1, 4, 7), Conic (lines 2, 5, 8) and EAB (lines 3, 6, 9) 
velocity models. Pre-critical rays propagate to an infinite 
depth and become asymptotically straight. Critical ray pro- 
pagate to an infinite depth, and the ray angle approaches 
π/2 at large depth, but this ray has no asymptote. Post- 
critical rays pass the turning point and return to the earth 
surface, their trajectories are symmetric arcs. The Conic 
rays pass above the Hyperbolic model rays because their 
curvature is larger. For the same reason, the EAB rays pass 
above the Conic rays. For all models, parameters of the me- 
dium are the same as in Figure 1. The take-off angle of the 
pre-critical rays is 3π/24, that of the critical rays π/6, and 
that of the post-critical rays 5π/24.  
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as above. The three columns of numbers to the right of 
the plot area are velocities for the three models at the 
specified depth levels. 

9. Maximum Penetration Depth 

Pre-critical rays penetrate to infinite depth. The maxi- 
mum penetration depth of post-critical rays follows from 
Equation (59). At the turning point, the ray angle π 2  , 
and thus, its tangent becomes infinite. This leads to a 
quadratic equation with a single positive root, 

maxˆ .
1

m
z

m



                (68) 

Recall that  is the dimensionless depth measured 
from the absolute origin (above the upper interface). The 
maximum penetration depth in units of length, measured 
from the upper interface reads 

ẑ
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    (69) 

10. Lateral Propagation, Traveltime and  
Arc Length 

In a 1D medium, it is convenient to express the lateral 
propagation distance x , traveltime S  and arc length t s  
through the ray angle   and angle-dependent gradient 
 k  . These relationships are [12,16] (Kaufman, 1953; 

Ravve and Koren, 2006) 
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            (70) 

where a  and b  are ray angles at the departure and the 
destination points, respectively. Equations (17) and (19) 
make it possible to eliminate depth and to express the 
gradient through the velocity, 
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2
.

V V
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


               (71) 

Next we apply Snell’s law and obtain the vertical 
gradient vs. the ray angle,  
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1 sink R m    .          (72) 
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The indefinite integral on the right side of this equation 
essentially depends on the range of the eccentricity m, 
resulting in 
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(76) 

For the critical ray, 1m   

 
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Let a  and b  be the ray angles at the start point and 
the destination point of the ray path, respectively. Equation 
Set (76) can be re-arranged as follows 
 For the pre-critical rays, 1m   

 pre
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 For the post-critical rays, 1m    
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pre ,a bI    and pst ,a bI    are functions of the 
ray angles at the endpoints of the path. The following 
identities were used,  
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To simplify the notations, we introduce one more 
function of the ray angles at the endpoints,  

 

   

cos
,

1 sin

cos sin
2 22sin .

2 1 sin 1 sin

b

a

a b

b a a b

b a

a b

J
m

m

m m

 


   
 

 




 


 
  

  (81) 

The normalized lateral propagation becomes 
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The normalized traveltime is 
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The normalized arc length is 
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For the critical rays, , and the departure angle is 
critical, 

1m 
a  . The ray path parameters are, 
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The current depth can be also expressed through the ray 
angle. It follows from Equation (17) that 
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Recall that 
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and therefore 
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In Figure 5 we plot the graphs for the traveltime vs. ray 
path arc length for the pre-critical, the critical and the 
post-critical rays of the Hyperbolic velocity profile.  

The “trigonometric” solution for the lateral propaga- 
tion and traveltime of the post-critical rays was obtained 
(in a different form) by Muscat (1937). However, it was 
not pointed out in this early study that the solution was 
related to the post-critical rays only, and that the other, 
“hyperbolic” solution exists for the pre-critical rays (and 
a “transient” solution for the critical rays, which are the 
limit case between the two basic types of rays).  

Note that for the vanishing or infinitesimal parameter 
, the shape of the trajectory, the lateral propaga- 

tion, the traveltime and the arc length of the Hyperbolic 
model ray path converge to the corresponding character-  
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Figure 5. Traveltime vs. arc length of ray path for the three 
kinds of rays of the Hyperbolic velocity model: the pre- 
critical ray αa = 22.5˚, the critical ray αa = αC = 30˚ and the 
post-critical ray αa = 37.5˚. 
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istics of the linear velocity profile. In this case the as- 
ymptotic velocity V  becomes unbounded, so that the 
product  remains a finite value and converges 
to a constant gradient of the linear velocity model. The 
eccentricity m becomes infinitesimal, and 

R QV

0
lim lim .
m V

pRVQ
pR

m V



 


 

.

         (89) 

Functions I and J from Equations (79) and (81) simplify 
to 

, cos cosb a b aI J      



      (90) 

Equation (66) comes to 

 2 2 2 2 2 2 1.Cx x p R z p R           (91) 

This is an equation for the circular arc of radius 
1

,
pR

  

whose center is located at  where  is the 
ray slowness. The lateral propagation, Equation (82), 
becomes 

, 0cx x z  ,

b

p

cos cos .apRx              (92) 

Equation (83) yields the traveltime for this limiting 
case, 

 
 

tan 2
ln ,

tan 2
b

S
a

Rt



             (93) 

and finally, Equation (84) for the arc length converges to 

.b apRs                   (94) 

11. Full Arc of Post-Critical Ray 

Consider two points on the earth surface, the transmitter 
and the receiver, located x  distance apart. The goal is 
to trace the full arc of the post critical turning ray that 
connects the two points. Note that due to the symmetry 
of the arc, the ray angle at the destination point b  is 
related to the take-off angle a  , 

π .b a                   (95) 

Applying Equations (79), (81) and (82), we obtain 

 
2

3 2

sin cos
arccot ,

cos 21 sin
a a

a a

m mm Q x

mm m m

 
 
 

 
  

 (96) 

where 21m  m  is the conjugate eccentricity of the 
post-critical ray path. Recall that 

sin sin .a C am V V             (97) 

Equation (96) simplifies to 

 

2 222

3 22 2

sinsin
arccot .

21 sinsin

CC

CC

mmm Q x

m mm m




 
 

   
  

(98) 

Equation (98) should be solved numerically for the 
unknown eccentricity m. To obtain the initial guess, we 
assume that the distance x  is small. Then the take-off 
angle a  approaches π 2 , and according to Equation 
(97), the eccentricity exceeds the sine of the critical angle 
only slightly. We assume 

sin ,Cm m                (99) 

where m  is a small positive value. Next we expand 
Equation (98) into the Taylor series and neglect the high 
order terms, 

   

 

1 2
2 3

3 2 5 2

2sin 3 13sin

1 sin 6 2sin 1 sin

.
2

C C

C C

m

Q x
m O m

 
 


 

 


   

C  (100) 

The cubic Equation (100) has a single positive root. 
For example, for the velocity profile 3 km/saV  , 

11sak   and 6 km/sV  , and the offset , 
the critical angle becomes 

10 kmx 
π 6C  . Equation (100) 

leads to 0.23m 
0.7

, and Equation (99) yields the initial 
guess 3m  . Solving Equation (98) with the Newton 
method, we obtain the eccentricity m . The 
take-off angle becomes a . The arcs 
are plotted in Figure 6 for the three asymptotically 
bounded velocity models. In the shallow region, the Hy- 
perbolic model has a smaller vertical gradient (and thus, 
a smaller curvature) than the Conic and the EAB models, 
and thus, the Hyperbolic model yields a smaller take-off 
angle. The ray path arc of the Hyperbolic model passes 
above the Conic and the EAB arcs. 

0.67638
7.67 


3 40.8319

12. Boundary Value Ray Tracing 

Given data are the departure point  ,a a x z  and the ar- 
rival point  ,b bx z , and the goal is to trace the ray path. 
The ray path is an explicit function of the eccentricity m, 
and this parameter is so far unknown. Without any loss of 
generality, we assume here that b ax x , i.e. that the lat- 
eral distance b ax x x    and the horizontal ray slowness  
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Figure 6. Full arcs of post-critical rays for the EAB, the 
Conic and the Hyperbolic velocity profiles.  
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p are positive. Assume also b a , which is also not a 
limitation (one can reverse the endpoints otherwise). 
Since the ray tracing equations depend on the type of ray, 
we need to determine, whether the ray is pre-critical or 
post-critical. For this, one can plot a critical path that 
starts at the departure point at the critical take-off angle 

z z

arcsina C aV V     . If the destination point lays to 
the left from the critical trajectory, then the ray path is 
pre-critical. The ray path is post-critical if the destination 
point lays to the right. The critical lateral propagation 

Cx  is delivered by Equation (63), which can be re- 
arranged as 

   
   

3 1 1 2

1 1 2

C b b

a

Q x Q z h Q z h

Q z h Q z h

        

        .a

  (101) 

Given the vertical coordinates of the source and the 
receiver, a  and b , we calculate the critical lateral 
propagation, and then apply the criterion  

z z

pre-critical ray,

critical ray,

post-critical ray.

C

C

C

x x

x x

x x

   

   

   

        (102) 

The velocities at the end points of the trajectory 
 and  are known values. It follows from 

Snell’s law that the ray angles at the end points of the 
trajectory are the functions of the eccentricity alone, 

 a aV z  b bV z

sin ,sin .a
a b

V

mV mV
 

 

  bV
       (103) 

Note that for the pre-critical rays and for the post 
critical rays before the turning point, the ray angle is 
acute, while for the turning rays after the turning point 
the ray angle is obtuse,  

   

   

arcsin ,before turning point,

π arcsin ,after turning point.

V z
z

mV

V z
z

mV











 

 (104) 

Equation (82) relates the lateral propagation x  to 
the ray angles at the endpoints, which, in turn, depend on 
the eccentricity according to Equations (103) and (104), 

   
2

,
1

m I m J mQ x

m m

 



         (105) 

where 

     
22

sin
2

cos sin .
2 2

b a

a b

b a a b

V
J m

V V V V

m

 

   



 


 

  

   





    (106) 

Function 

     ,a bI m I m m  .            (107) 

is delivered by Equations (78) and (79). It was initially 
defined as a function of the endpoints’ ray angles, but 
due to Equations (103) and (104) it can be considered as 
a function of the eccentricity alone. Next we solve 
nonlinear Equation (105) numerically for the unknown 
eccentricity m. Then the ray angles at the endpoints can 
be established, and the ray path can be plotted with Equa- 
tion (66). Numerical examples for the boundary value ray 
tracing with the Hyperbolic velocity profile are presented 
in Appendix G. 

13. Conclusion 

The Hyperbolic asymptotically bounded exponential ve- 
locity model has been studied and compared to other 
asymptotically bounded models, in particular, the Expo- 
nential and the Conic. The forward and the inverse ve- 
locity transforms are derived. The Hyperbolic model 
allows a better representation of the vertical velocity va- 
riations in compacted sediments, especially in the case of 
thick layers. An advantage of the Hyperbolic model is 
that the instantaneous velocity reaches the asymptotic 
value in a more slow and gradual fashion, as compared to 
other asymptotically bounded models. Ray tracing equa- 
tions have been derived. The ray trajectories, traveltimes 
and arc lengths have been studied analytically, and the 
boundary value ray tracing problem have been solved. 
We have tried to present a complete theory for both ver- 
tical and non-vertical rays propagating through the Hy- 
perbolic model. Application of the Hyperbolic velocity 
distribution enables us to present realistic geological 
models using fewer parameters, as compared to the clas- 
sical linear velocity function. We showed that the linear 
velocity function is a limiting particular case of the Hy- 
perbolic model.  
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Appendix A. Gradient-Velocity Diagrams 

In this appendix we derive the gradient-velocity dia- 
grams for the five asymptotically bounded velocity mod- 
els. In all cases we pass to a shifted frame , in which 
the governing equations are essentially simplified. The 
value of the vertical shift h is different for all models. 
For all models the “absolute” origin corresponds to a 
point of maximum gradient. For all models except the 
Exponential slowness, this is also the point of a vanish- 
ing instantaneous velocity. As we show below, for the 
Exponential slowness model, the absolute origin corre- 
sponds to the half-limiting velocity 

z

  2V z V . 

A.1. The Hyperbolic Muscat Model 

The velocity profile is given by 

  1 ,a .
a

V
V z V V V V V

V k z 

 
          

a  (A-1) 

Establish the depth level where the velocity vanishes. 
This point is located above the earth surface, 

, a

a

V V
z h h

k V


   .            (A-2) 

Introduce the shifted frame, . The velocity 
profile becomes 

z z h 

 
2

.a

a

V z k V z

V V k V z


 


 

 


         (A-3) 

The vertical gradient is 

 
 

2

22
.a

a

k z k V V

V V k V z



 




 




        (A-4) 

At the absolute origin , the gradient is maximal, 0z 
2

max .ak k V V  2             (A-5) 

Introduction of Equation (A-5) into (A-3) and (A-4) 
leads to 

   
 

2
max

2
max max max

, .   (A-6) 
V z k zk z V

V V k z k V k z


  

 
 

 
 

Finally, elimination of depth  from the two equa- 
tions of Equation Set (A-6) results in 

z

max

1.
k V

k V

              (A-7) 

A.2. The Exponential Muscat Model 

The velocity model is described by 

   tanh .oV z V A z z          (A-8) 

The vertical shift is , and in the shifted frame, oh Az

z z h  , Equation (A-8) simplifies to 

  tanh .oV z V z z             (A-9) 

The velocity gradient is 

 
 2

1
,

cosho o

k z

V z z z





        (A-10) 

with max ok V z , so that 

 
 2

max

1
.

cosh o

k z

k z



 z

         (A-11) 

Eliminate the absolute depth from Equations (A-9) and 
(A-11) and obtain the gradient-velocity relationship, 

2

max

1.
k V

k V

 
  
 

          (A-12) 

A.3. The Exponential Slowness Model 

The profile equation reads 

   
, .

exp
a a

o
a o

V V V V
V z z

V V z z k V





 

   a

 (A-13) 

Unlike the other asymptotically bounded models men- 
tioned in the introduction, the velocity in the Exponential 
slowness model does not vanish at a finite negative depth. 
The velocity vanishes at  and approaches to the 
asymptotic value V

z 
  at . The gradient of the 

velocity is 
z 

   
  2

exp
.

exp

oa

o a o

z zV VV

z V V z z

 
 k z   (A-14) 

    

The gradient  k z  vanishes at both remote ends, 
, and z   k z  has a single critical point: the maxi- 

mum of the gradient occurs at ,  z z

ln .o
a

V
z z

V
 
             (A-15) 

We emphasize that the logarithm in Equation (A-15) 
may prove to be both positive and negative. At the point 
z z , the maximum gradient and the velocity are 

max ,
4 2o

V V
k V

z
 .            (A-16) 

Note that in case when the depth of the maximum gra- 
dient is positive, , this point really exists under- 
ground, and the gradient first increases, then accepts the 
maximum value 

0z 

2

max .
4
a

a

k V
k

V V
 


          (A-17) 

Below this point, the gradient begins to decay, and 
eventually vanishes at the infinite depth. In case when 
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the depth  of the maximum gradient is negative, this 
point is above the earth surface, and throughout the whole 
depth range 0  the velocity gradient 

z

z    k z  is 
actually a monotonously decreasing function. Note that  

0 or 2a a az V V V V V V
        .   (A-18) 

Next we assume the shift , and pass to the 
shifted frame, . The gradient accepts now a 
maximum value at the origin. Rearrange Equation (A- 
13), 

h z 
z z h 
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

z
      (A-19) 

Note that the velocity profile in Equation (A-19) can 
be set in an alternative way, 
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where 

max21
,

2 o

k
a

z V

             (A-21) 

so that 
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      (A-22) 

Finally, we eliminate depth from Equation (A-22) and 
obtain 

max

1
4

k V V

k V V 

 
  

 
.          (A-23) 

A.4. The Exponential Asymptotically Bounded 
Velocity Model (EAB) 

In this case the velocity profile is 

  1 exp .a
a

k z
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    (A-23) 

The velocity vanishes above the earth surface at 
,  z  

ln .
a

VV
h

k V


 


          (A-24) 

In the shifted frame , the velocity profile 

simplifies to 

z z h 

 

 

1 exp ,

exp .

a

a a

V z k z

V V

k V k z
k z

V V





     
       

 


       (A-25) 

At the shifted origin the gradient is maximal, 

max .ak V
k

V





              (A-26) 

Introduce Equation (A-26) into (A-25), 

 

 

max

max

max

1 exp ,

exp .

V z k z

V V

k z k z

k V





 
   


 

  
 

 

 
 

       (A-27) 

Finally, we eliminate depth from Equation (A-27) and 
obtain the governing equation, 

max

1.
k V

k V

              (A-28) 

Note that only for the EAB velocity model the dia- 
gram Equation (A-28) is linear. 

A.5. Conic Velocity Model 

For the Conic profile, the velocity and its gradient in the 
absolute frame are given by 

 

 
 

2 2

3 22 2

,
1

.
1

Rz
V z

Q z

R
k z

Q z













          (A-29) 

This equation can be rearranged as 

 

 
 

max

2 2 2
max

3

3 22 2 2
max max

,

.

V z k z

V V k z

k z V

k V k z

 











 






       (A-30) 

Next we eliminate the absolute depth  from Equa- 
tion (A-29) and get the governing differential equation of 
the Conic velocity model, 

z

2 3 2

max

1.
k V

k V

   
    
  

       (A-31) 

The Conic velocity profile, Equation (A-30), can be 
also set in an equivalent form, through a hyperbolic and 
an inverse hyperbolic function, 

  maxtanh arcsinh .
V z k z

V V 


 

        (A-32) 
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A.6. Comments on Diagrams 

Summarize the gradient-velocity diagrams for the five 
asymptotically bounded velocity models. The governing 
differential equations are 

max

2

max

max

max

2 3

max

1          Muscat Hyperbolic Model,

1        Muscat Exponential Model,

1 Exponential Slowness Model,
4

1              EABVelocity Model,

k V

k V

k V

k V

k V V

k V V

k V

k V

k V

k V





 





 

 
  
 

 
   

 

 

   
  
  

2

1 Conic Velocity Model.

 

(A-33) 

The gradient-velocity diagrams for the five asymp- 
totically bounded models are plotted in Figure 7. Note 
that in the original frame of reference the asymptotically 
bounded models are described by the three parameters. 
As we mentioned, in the shifted frame where the velocity 
vanishes at the origin (or the vertical gradient accepts a 
maximum value at the origin), only two parameters are 
needed. These two parameters may be the maximum 
gradient max  and the asymptotic velocity Vk   as in 
Equation Set (A-33). The constant value that appears 
upon the integration of each equation is not a new pa- 
rameter as it should be adjusted to match the maximum 
values  and V .  max 

We emphasize that only for the EAB model the gradi- 
ent-velocity relationship is linear: Derivative of an ex- 
ponent is proportional to the same exponent.  

k
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Figure 7. Diagrams “Gradient-Velocity” for asymptotically 
bounded velocity models. Only for the EAB model the dia- 
gram is linear. For all models, except the Exponential 
slowness model, the gradient decreases with the increase of 
velocity. For the Exponential slowness model the gradient 
reaches maximum when the velocity becomes one half of 
the asymptotic value. Note the central symmetry between 
the two Muscat models, Hyperbolic and Exponential.  

For all models except the Exponential slowness [8], 
the gradient decreases with the increase of velocity (and 
depth). In case of the Exponential slowness, the vertical 
gradient increases along with the velocity, until the ve- 
locity reaches one half of the asymptotic value 2V t 
this point the gradient reaches its maximum value maxk  

then begins to decrease with depth. The point of 
maximum gradient in the Exponential slowness model 
may really exist in the subsurface, or it may be an im- 
aginary point located above the earth surface (or above 
the upper interface of a layer). This point is real in case 
when the initial velocity aV  does not exceed the half- 
limiting value, 

. A

and 

2aV V . Furthermore, we comment on 
the special central symmetry between the two Muscat 
(1937) models: Hyperbolic (HM) and Exponential (EM), 
see Equation (A-33) and the two corresponding plots in 
Figure 7, 

max max

, 1 1 ,1HM EM

k V k V
F F

k V k V 

   
1.       

   
 (A-34) 

where HMF  and EMF  are the corresponding gradient- 
velocity functions in Equation (A-33) for these two mod- 
els. Although these two models are described by essen- 
tially different vertical velocity profiles, there is an ap- 
parent similarity in the gradient-velocity diagrams. 

Appendix B. Lambert Function 

The Lambert function [17]  y L x  delivers the solu- 
tion of the transcendent equation 

exp .x y y                 (B-1) 

Its graph is plotted in Figure 8 and consists of two 
branches: branch zero  0L x  and branch minus one 

 1L x . The argument range is  for 
branch zero and 

 exp 1 x    
 1exp x 0  

1 y
  for branch minus 

one. The value range is      for branch zero and 
1y     for branch minus one. In particular, this 
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Figure 8. Lambert function y = L(x) is the solution of the 
transcendent equation y·exp(y) = x for a given value x and 
an unknown value y. The function has two branches. 
Branch zero is plotted in red, and branch minus one is 
plotted in blue.  
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means that for a positive argument x only branch zero 
exists, while for a negative argument both branches do 
exist. Therefore, in the latter case, the branch index 
should be specified to avoid ambiguity. The derivative of 
the Lambert function is  

 
 

d 1
for 0,

d 1

L xL
x

x x L x
  


      (B-2) 

and for the infinitesimal argument 

 
0

d
lim 1.

dx

L x

x
             (B-3) 

Comment. A general comment is related to Appendi- 
ces C to F. The transform equations are formulated in the 
dimensionless form, with the unknown top and bottom 
asymptotic factors, aM  and bM . After the transform 
equation or equation set is resolved, we apply Equation 
(27) to find the top and bottom instantaneous velocities, 

a  and b . If the transform is formulated in depth (i.e., 
the interval thickness  is specified), we apply Equa- 
tion (31) to find the top and bottom gradients of velocity, 

a  and bk . If the transform is formulated in time (i.e., 
the interval traveltime  is specified), then we first 
apply Equation (37) to establish the interval thickness 

, and then Equation (31) to find the top and bottom 
gradients. 

V

k

z

V
z

t

Appendix C. Swapping Interfaces 

In this appendix, we find the instantaneous velocity and 
its gradient at the bottom interface, given these parame- 
ters at the top interface, and vice versa, and consider 
these problems both vs. depth and vs. time.  

Problem C1. Given the velocity a  and its gradient 

a  at the top interface and the layer thickness 
V

k z , one 
can establish the corresponding parameters at the bottom 
interface. For this, we calculate the top asymptotic factor 

aM  with the first equation of Equation Set (26). The 
bottom as- ymptotic factor bM  can be obtained with the 
first equation of Equation Set (32).  

Problem C2. The instantaneous velocity and its gradi- 
ent are specified at the bottom interface and the interval 
thickness  is given. Velocity and gradient should be 
found at the top interface. Thus, parameters  are 
given, and parameters  are to be found. In this 
case calculate the bottom asymptotic factor b

z
,b bV k

,a aV k
M  with the 

second equation of Equation Set (26) and apply the sec- 
ond equation of Equation Set (32) to get the top get aM .  

Problem C3. The velocity and its gradient at the top 
interface, a  and a  are given, the interval traveltime 

 is known, and the bottom interface parameters bV  
and b  should be found. Combining the first equation 
of Equation Set (32) and Equation (36), we eliminate the 
interval thickness  and obtain  

V k

z

t
k

21
ln ,

1
b

b a a a
a

M
M M M

M


k t  


       (C-1) 

where the top asymptotic factor aM  is known from 
Equation (26). Equation (C-1) should be solved for the 
unknown bottom asymptotic factor bM . We use a cubic 
approximation for Equation (C-1) to get the initial guess, 
assuming the increment of the asymptotic factor  

b aM M M    is small, 

   

3 2
2

2 2
.

13 1 2 1
a

a a
aa a

M MM M
M k t

MM M

 
  

 
  (C-2) 

Problem C4. The velocity and its gradient are speci- 
fied at the bottom interface, along with the interval trav- 
eltime, and the profile parameters should be found at the 
top interface. Thus, parameters  and ,b bV k t  are 
given, while parameters aV  and a  are to be estab- 
lished. For this, we combine the second equation of 
Equation Set (32) and Equation (36), 

k

21
ln .

1
b

b a b b
a

M
M M M

M


k t  


       (C-3) 

The bottom asymptotic factor bM  is known from 
Equation (26), and Equation (C-3) should be solved for 
the unknown top asymptotic factor aM . The initial 
guess for b aM M M    can be found from  

   

3 2
2

2 2
.

13 1 2 1
b

b b
bb b

M MM M
M k t

MM M

 
  

 
  (C-4) 

Appendix D. Inversion with Instantaneous 
Velocity 

In this appendix we consider inversion problems that do 
not involve the effective models (average and RMS ve- 
locity). In this inversion group, one or both parameters at 
the top interface, aV  and a  are unknown, with the 
other data given instead. The group includes four prob- 
lems vs. depth (interval thickness) and four similar prob- 
lems vs. interval traveltime. 

k

Problem D1. Instantaneous velocities vs. depth. Given 
data are the top and bottom interface instantaneous ve- 
locities, a  and bV , the asymptotic velocity VV   and 
the interval thickness z . Find the top interface gradient 

a . Solution. Apply Equation (26) to calculate the top 
and bottom asymptotic factors, 
k

aM  and bM .  
Problem D2. Instantaneous velocities vs. time. Given 

data are the top and bottom interface instantaneous ve- 
locities, a  and bV , the asymptotic velocity VV   and 
the interval traveltime t . Find the top interface gradi- 
ent a . Solution. Apply Equation (26) to calculate the 
top and bottom asymptotic factors, 

k

aM  and bM .  
Problem D3. Gradients vs. depth. Given data are the 

top and bottom interface vertical gradients,  and , ak bk
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the asymptotic velocity V  and the interval thickness 
. Find the top interface instantaneous velocity aV . 

Solution. Solve Equation Set (32) for the unknown as- 
ymptotic factors, 

z

aM  and bM ,  

, ,

whe .

a b b a

a b

a b

k M A k

k kV

z k k


 


 


re

M A

A

V

        (D-1) 

Problem D4. Gradients vs. time. Given data are the top 
and bottom interface vertical gradients, a  and b , the 
asymptotic velocity   and the interval traveltime 

k k
t . 

Find the top interface instantaneous velocity a . Solu- 
tion. Introduce solution (D-1) into the traveltime Equa- 
tion (36). This leads to a nonlinear equation vs. the un- 
known interval thickness   

V

z
2

2
ln

z

B k




 

2 ,

where .

a a ba b

b a b

a b

BV k k k zk k
V z V t

B BV k k k z

k


 



 
   

   (D-2) 

Equation (D-2) should be solved numerically. It is 
suitable to normalize the gradients and the interval thick- 
ness,  

Int, , 1a a b

Vz
k k k t z

V t V 


       


 .   (D-3) bt k 

The normalized equation becomes 

2

2
a b z

B

B k


 ln 1,

where .

a a b

b a b

a b

BV k k k zk k
z

BV k k k z

k





 
   

 

 

    


   

 

   (D-4) 

To get an initial guess, we expand Equation (D-4) into 
a power series and obtain a cubic approximation, 

3 2 3 2
3 2

2 2
ln 1.

2
a b a b a

b

k k k k k
z z

B B k
z    

    
        (D-5) 

After the interval thickness is found, apply solution 
(D-1). 

Problem D5. Velocity and gradient vs. depth at dif- 
ferent interfaces. Given data are the top interface velocity 

a , the bottom interface vertical gradient b , the as- 
ymptotic velocity V  and the interval thickness 
V k

z . 
Find the top interface gradient a . Solution. Apply Equ- 
ation (26) to calculate the top asymptotic factor 

k

aM . In- 
troduce the normalized bottom gradient, 

ˆ

2
b̂ bk M

.b bk k z V               (D-6) 

With this notation, the second equation of Equation 
Set (32) be- comes 

0.b aM M             (D-7) 

Taking into account that for an interval of vanishing 

thickness  0z   the top and bottom asymptotic fac- 
tors coincide  b aM M , one can establish the single 
physical root of the quadratic equation, 

ˆ1 1 4
.

ˆ2
a b

b

b

M k
M

k

 
         (D-8) 

Problem D6. Velocity and gradient vs. depth at dif- 
ferent interfaces. Given data are the top interface gradi- 
ent a , the bottom interface instantaneous velocity b , 
the asymptotic velocity V

k V

  and the interval thickness 
z . Find the top interface velocity a . Solution. Calcu- 

late the bottom asymptotic factor 
V

bM  with equation 26. 
Normalize the top gradient, 

ˆ .a ak k z V             (D-9) 

Get the top asymptotic factor 

ˆ1 4 1
.

ˆ2
b a

a

a

M k
M

k

 
        (D-10) 

Problem D7. Velocity and gradient vs. time at differ- 
ent interfaces. Given data are the top interface velocity 

a , the bottom interface vertical gradient b , the as- 
ymptotic velocity V
V k

  and the interval traveltime t . 
Find the top interface gradient a . Solution. Apply Equ- 
ation (26) to calculate the top asymptotic factor a

k
M . 

Then solve the nonlinear Equation (C-3) for the un- 
known bottom asymptotic factor bM . To get the initial 
guess, we assume b aM M M   . Expand Equation 
(C-3) for a small increment of the asymptotic factor 

M  to get a cubic approximation, 

 
 

 
 

23
2

3 2

2

1 2 1

3 1 2 1

1 2 1
.

1

b a

a a

b a a
b a

a

k t MM
M

M M

k t M M
M k tM

M

  
 

 

     




 

  (D-11) 

Problem D8. Given data are the top interface gradient 

a , the bottom interface instantaneous velocity b , the 
asymptotic velocity 
k V

V  and the interval traveltime t . 
Find the top interface velocity aV . Solution. Apply 
Equation (26) to calculate the bottom asymptotic factor 

bM . To calculate the unknown top asymptotic factor, we 
solve the nonlinear Equation (C-1). To get the initial 
guess, assume a bM M M  . This leads to 

 
 

 
 

23
2

3 2

2

1 2 1

3 1 2 1

1 2 1
.

1

a b

b b

a b b
a b

b

k t MM
M

M M

k t M M
M k tM

M

  
 

 

     




 

 (D-12) 

Problem D9. Given data are the instantaneous veloc- 
ity  at the bottom interface, and at an intermediate bV
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level inside the interval, c , and the asymptotic velocity 
. Two vertical distances are specified: the full interval 

thickness b  (the distance between the top and bottom 
interfaces) and the partial interval thickness c

V
V

z
z  (the 

distance between the top interface and the intermediate 
level). Find the top interface velocity and gradient, aV  
and a . Solution. Use Equation (26) to calculate the 
bottom asymptotic factor b

k
M  and the intermediate as- 

ymptotic factor cM . Apply Equation (29) for the full 
interval and for the partial interval, 

.b a c a

b c

M M M
 

M
Q

z z


 

       (D-13) 

Solve Equation (D-13) for the top asymptotic factor 

aM , 

.c b b c

b c
a

M z M z

z z





M

t

 
 

        (D-14) 

Problem D10. Given data are the instantaneous veloc- 
ity  at the bottom interface, and at an intermediate 
level c  inside the interval, and the asymptotic velocity 

. Two vertical traveltimes are specified: the full in- 
terval traveltime b  (the traveltime between the top 
and bottom interfaces) and the partial traveltime c

bV
V

V

t  
(the traveltime between the top interface and the inter- 
mediate level). Find the top interface velocity and gradi- 
ent, a  and a . Solution. Use Equation (26) to calcu- 
late the bottom asymptotic factor b

V k
M  and the interme- 

diate asymptotic factor cM . Apply Equation (28) for the 
full interval and for the partial interval, parameter  
becomes, 

R

1 1
ln

1 1
b

c a
a a

b c

M
M

M M

t t


 

 
 

ln

.

c 
b aM M 

M
M

m M



i

 (D-15) 

Introduce parameter , Equation (D-15) be- 
comes 

1i 

   lnb a  lnb a a c

b c

m m m m m

t t

 


 
.  (D-16) cm am m

Equation (D-16) can be solved with the Lambert func- 
tion, branch zero, 

 0m L exp ,

and .

c bf f
a c b b c b

b c

b c b c

m m f m m

t

t t t t

  
 

   

c

b c

f

t
f f

 

 
  (D-17) 

Appendix E. Two-Point Effective Model  
Inversion 

In this appendix we consider the two-point (single-in- 
terval) inversion where the RMS velocity is specified at 
the interfaces of an interval vs. depth or traveltime, or 

alternatively, depth is specified vs. traveltime instead of 
the RMS velocity. One of the two parameters at the top 
interface-either the top velocity a , or the top gradient 

a -is a known value, while the other one is unknown 
and should be established. In all cases, the asymptotic 
velocity 

V
k

V  and the top interface absolute traveltime 

a  are assumed known values. We consider also a spe- 
cial case when the RMS velocity is specified vs. both 
depth and time, and both parameters,  and , are 
unknown. 

t

aV ak

Problem E1. RMS vs. depth with unknown gradient. 
Given data are the RMS velocities at the top and bottom 
interfaces, 2,a  and 2,b , the interval thickness V V z  
and the top interface velocity a . Find the top gradient 

a . Solution. It follows from the definition of the hyper- 
bolic parameter, Equation (44),  

V
k

2 2
2, 2, ,b b a a b aW V t V t t t t.             (E-1) 

Recall that a  and b  are one-way absolute top and 
bottom interface traveltimes (measured from the earth 
surface), 

t t

t  is the one-way interval traveltime, and W 
is the hyperbolic parameter through the interval. Equa- 
tion (E-1) can be arranged as 

 2 2 2
2, 2, 2, .b b aW V t V V ta            (E-2) 

Introduction of Equation (37) for the traveltime t  
and Equation (47) for the hyperbolic parameter W into 
Equation (E-2) results in 

11
ln ln ,

1
b b

b a a b a a

M MB
A

M M M M M M


  

 



  (E-3) 

where A and B are known dimensionless parameters, 
2 2

2, 2, 2 2
2,1 ,b a

a b

V V
.A B t B V

V z 



    


V     (E-4) 

The top asymptotic factor aM  is delivered by Equa- 
tion (26), and the nonlinear Equation (E-4) should be 
solved for the unknown bottom asymptotic factor bM . 
To get the initial guess, we assume a small increment of 
the asymptotic factor on the interval, b aM M  M , 
and expand Equation (E-3) into a power series. The cu- 
bic approximation reads 

3 2
3 2 1 0 ,C M C M C M C A           (E-5) 

where 

 
  1 1

1 1
, 0,1,

1 1

i

i i i
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B
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i MM
 

 
    

   
.  (E-6) 

Equation (E-3) should be solved for bM . 
Problem E2. RMS vs. depth with unknown velocity. 

Given data are the RMS velocities at the top and bottom 
interfaces, 2,a  and 2,b , the interval thickness V V z  
and the top interface gradient . Find the top interface ak
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velocity a . Solution. Use Equation (E-3) and the first 
equation of Equation Set (32), 

V
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.

b b
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a
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  (E-7) 

We solve Equation Set (E-7) for the unknown asymp- 
totic factors aM  and bM . To obtain the initial guess 
for aM , assume that the increment of the asymptotic 
factor M  is small, and linearize Equation Set (E-7). 
This leads to 

  
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ˆ 4 2.
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Problem E3. RMS vs. time with unknown gradient. 
Given data are the RMS velocities at the top and bottom 
interfaces, 2,a  and 2,bV , the interval traveltime t  
and the top interface velocity a . Find the top gradient 

a . Solution. First we apply Equation (E-1) and calculate 
the hyperbolic parameter W. At this time, W is a known 
value. Next we apply Equation (48), 

V
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         (E-9) 

where C is a known dimensionless parameter, the nor- 
malized local RMS velocity, 

2

2 2
,

U W
C

V V t 

 


           (E-10) 

and U is the non-normalized local RMS velocity on the 
interval. The top asymptotic factor aM  is delivered by 
Equation (26), and the bottom asymptotic factor bM  is 
established from Equation (E-9). To solve this nonlinear 
equation, an initial guess is needed. Assume that the in- 
crement of the asymptotic factor M  on the interval is 
small, and expand Equation (E-9) into a power series. 
The cubic approximation reads 
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Problem E4. RMS vs. time with unknown velocity. 
Given data are the RMS velocities at the top and bottom 
interfaces, 2,a  and 2,bV , the interval traveltime V t  
and the top interface gradient a . Find the top interface 
velocity a . Solution. We solve a set consisting of two 
equations: the first is Equation (E-9) combined with 

Equation (C-1), and the second is (C-1) itself, 

k
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To get the initial guess, we linearize Equation Set (E- 
12) for a small increment of the asymptotic factor M  
and obtain 
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           (E-13) 

Problem E5. Depth vs. time with unknown gradient. 
Given data are the interval thickness , the traveltime z

t  and the top interface velocity a . Find the top gra- 
dient a . Solution. Use Equation (26) to find the top 
asymptotic factor a

V
k

M . Next we apply Equation (37) to 
establish the bottom asymptotic factor bM  

,
1

ln
1

b a

b
b a
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M M
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      (E-14) 

where D is a known dimensionless parameter—the nor- 
malized interval velocity, 

Int .
V z

D
V V t 


 


            (E15) 

To get the initial guess for Equation (E-14), we ex- 
pand it into a power series for a small increment of the 
asymptotic factor M ,  
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Equation (E-14) should be solved for the bottom as- 
ymptotic factor bM . 

Problem E6. Depth vs. time with unknown velocity. 
Given data are the interval depth , the interval travel- 
time 

z
t  and the top interface gradient a . Find the top 

interface velocity a . Solution. Apply Equation (E-14) 
and the first equation of Equation Set (32), 
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       (E-17) 

Next we solve Equation Set (E-17) for the unknown 
asymptotic factors aM  and bM . To obtain the initial 
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guess, we linearize Equation Set (E-17) for a small in- 
crement of the asymptotic factor M , and consider the 
first equation of the set, 

1

a

 
  

1 1
lim ln .

1 1b a
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M M
b a a
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  (E-18) 

Hence we obtain the initial guess for the top asymp- 
totic factor aM , 
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Problem E7. RMS vs. depth and time with unknown 
velocity and gradient. Given data are the RMS velocities 
at the top and bottom interfaces, 2,a  and 2,bV , the in- 
terval traveltime  and the interval thickness t z . 
Find the top interface velocity aV  and gradient a . 
Solution. The resolving set follows from Equations (E-9) 
and (E-14),  
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where A and B are known dimensionless parameters, 
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To obtain the initial guess, we assume that the top and 
bottom values of the asymptotic factor, aM  and bM , 
are close, and solve the two equations of Equation Set 
(E-20) apart. Each equation yields a root; the smaller 
root is the top asymptotic factor aM , and the larger root 
is the bottom asymptotic factor bM . The initial guess 
becomes  
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Appendix F. Three-Point Inversion 

In this appendix we consider three problems where the 
RMS velocity is given at the interfaces and at an inter- 
mediate (inner) point of the interval vs. depth or time, or 
depth is given vs. time at the interfaces and at an inter- 
mediate point, and both parameters of the velocity profile, 

 and k , are unknown. aV a

Problem F1. RMS vs. depth with the unknown top in- 
terface velocity a  and top gradient a . Given data are 
the RMS velocities at the top and bottom interfaces, 2,a  
and 2,b , and the RMS velocity at the inner point of the 
interval, 2,c , the full interval thickness b  (between 
the top and bottom interfaces) and the partial thickness 

c

V
V

V
V z

z  (between the top interface and the intermediate 
level). Find the top velocity aV  and the gradient a . 
Solution. The resolving equation set follows from Equa- 
tion (E-3), 
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 (F-1) 

Coefficients , ,b c bA A B  and c  are known values; 
they follow from Equation (E-4),  
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

where the asymptotic factors ,aM M  and cM  are to 
be found, 
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It follows from Equation (32), 
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Divide the second equation of Equation Set (F-4) over 
its first equation, 

.c a c

b a b

M M z

M M z

 
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 

Thus, we solve Equation Set (F-1) together with Equa- 
tion (F-5), to obtain the three unknown asymptotic fac- 
tors. To obtain the initial guess, we assume that the layer 
is thin, i.e. that the differences in the asymptotic factors 

b aM M  and c aM M  are small. This assumption 
allows linearization of Equation Set (F-1), which, in turn, 
results in 
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Introduction of solution (F-6) into Equation (F-5) 
leads to a fourth order polynomial equation for the top 
interface asymptotic factor , M
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We solve Equation (F-7), choose a proper root, and 
this yields the initial guess for aM . Then we use Equa- 
tion (F-6) to obtain the initial guess for bM  and cM . 
Next we solve Equation Set (F-1), (F-5) numerically. 

Problem F2. RMS vs. time with the unknown top in- 
terface velocity a  and top gradient a . Given data are 
the RMS velocities at the top and bottom interfaces, 2,a  
and 2,b , and at the inner point of the interval, 2,c , the 
full interval traveltime b  (between the top and bot- 
tom interfaces) and the partial traveltime c  (between 
the top interface and the intermediate level). Find the top 
velocity a  and the gradient a . Solution. The resolv- 
ing equation set follows from Equation (E-8), 
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where c  and b  are the normalized local RMS ve- 
locities, for the partial interval and the full interval, re- 
spectively. These are the known dimensionless values, 
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We make use of Equation (D-14), 
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and solve Equation Set (F-8) numerically along with 
Equation (F-10). To obtain the initial guess, we assume 
that the layer is thin, and thus, we linearize Equation Set 
(F-8) for the small variations of the asymptotic factor, 

b aM M  and c aM M , 
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Note that for the small increments of the asymptotic 
factor  
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Linearization of Equation (F-10) leads to 
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Equation (F-13) is similar to (F-5); however, (F-5) is 
exact and valid for any layer thickness, while (F-13) is an 
approximation for a thin layer only. Introduction of (F-13) 
into (F-11) results in a quadratic equation, 
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The equation has two positive roots, but only one of 
them exceeds 1. The solution is 
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Next we apply Equation (F-11) to obtain the initial 
guess for bM  and cM . Then we solve Equation Set 
(F-8), (F-10) numerically and deliver the three asymp- 
totic factors. 

Problem F3. Depth vs. time with the unknown top in- 
terface velocity a  and top gradient a . Given data are 
the traveltime and layer thickness for the full and the 
partial intervals, respectively: b  and 

V k

b z,t  ,c ct z  . 
Find the top velocity a  and the gradient a . Solution. 
The resolving equation set follows from Equation (E-14), 
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where b  and b  are the normalized interval veloci- 
ties for the full and the partial intervals, 
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Equation Set (F-16) should be solved numerically 
along with Equation (F-5). To obtain the initial guess, we 
linearize Equation Set (F-16) for the small increments of 
the asymptotic factors, 
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Figure 9. Boundary value ray tracing with the Hyperbolic 
velocity model: AB1—pre-critical ray, AB2—post-critical 
ray without the turning point, AB3—post-critical turning 
ray, green line-critical ray, grey line-auxiliary post-critical 
ray with the turning point at the given depth.  
 

Introduction of Equation Set (F-18) into Equation (F-5) 
results in 
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Equation (F-19) yields the initial guess for the top 
asymptotic factor aM , 
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Equation (F-18) yields the initial guess for the bottom 
and the inner asymptotic factors, bM  and cM . Then 
we solve Equation Set (F-16) numerically, along with 
Equation (F-5). 

Appendix G. Numerical Examples of BVRT 

In this appendix, we present three examples of the boun- 
dary value ray tracing, Figure 9. The parameters of the 
velocity profile are the same as above. For each case, the 
source point A  is located at the origin of the frame.  

The destination point is different for each case: B1 (x = 
2 km, z = 3 km), B2 (x = 4 km, z = 2 km), and B3 (x = 8 
km, z = 2 km). As we will show, the first case corre- 
sponds to the pre-critical ray path, the second corre- 
sponds to the post-critical path that does not include the 
turning point, and the last case leads to the post-critical 
path with the turning point. First we calculate the critical 

lateral propagation with Equation (101): ΔxC = 1.587 km 
for the destination point depth zb = 2 km, and ΔxC = 
2.646 k  km. Next we compare the horizontal 
offset 

m for z  = 3b

B Ax x x    to the critical latera ation 
and apply the criterion in Equati 1 C

l propag
on (102): x x    for 

the destination point B1 and 2,3 Cx x    for th es- 
tination points B2 and B3. We conclude that ray 1

e d
AB  is 

pr
 for pre-crit

e-critical, while rays AB2 and AB3 are post-critical. 
We solve Equation (105) ical ray 1AB  and 

establish its eccentricity: 1.18647m  . The ray an  
 and th

gles
at the departure pointe destination s are: a   
0.

xt w
43501 24.92   and 0.68430 39.21b    . 
Ne e figure out whether the post-critical rays 2AB  

and 3AB  include the turning point or not. If the post- 
critical ray includes a turning point, then the ray angle at 
the destination is obtuse, and this should be taken into 
account in Equation (104). For this we establish an aux- 
iliary post-critical ray, whose maximum penetration 

 to the destination depth of points B1 and 

2 :B
dept ual

m
h is eq

bz 2 k . We solve Equation (68) for the eccentric- 
ity, 

 ˆ
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ˆ1 z

Compare Equation (G-1) with Equation (22). It is in- 
teresting to note that the eccentricity of a post-critical ray 
with the turning point at the given depth is equal to the 
normalized velocity at this de e obtain the eccen- 
tricity  0.7m  , and the take-off 
angle 0.79560 45.58a    . hord of 
this ray with Equation (98), 

z
m z Q z h         (G-1) 

pth. W
of the auxiliary ray

e the half-cCalculat

aux 2 5.994 kmx  . Thus, 
we see that for the destination point 2B , th s 
than the half-chord of the auxiliar

e offset
y ray, 

 is les

2x   aux 2x , 
while for the destinatio int B3, n po 3 aux 2x x   . Hence 
we conclude that ray 2 AB  does not include the turning 
point, while ray 3AB  includ he turning point. We 
solve Eq  for ray 2

es t
uation (105) AB  and obtain the eccen- 

tricity, 0.71798m  , and the ray angles at 

0681,

the 

.78582 4

endpoints, 
0.77036 44.14 , 1.34651 77.15 .a b       For ray 

.02 ,a
  

.96 .b
  Note that the last angle is 

obtuse. The three traced rays, along with the auxiliary 
ray (grey line) and the critical ray (green line) are plotted 
in Figu

AB3

and 
 the results are: 0.7m

1.70973 97  
0  5

re 9. 

 


