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ABSTRACT 

In this work, we use the Bogning-Djeumen Tchaho-Kofané method to look for all solutions of shape Sechn- of the 
modified KdV and Born-Infeld Equations. n being a real number, we obtain the soliton solutions when n is positive and 
the non soliton solutions when n is negative. 
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1. Introduction 

Dynamics of physical phenomena are more often de- 
scribed analytically by nonlinear partial differential 
equations (NPDEs). These equations are varied and are 
met in various branches of the Physics, notably in Classi- 
cal Mechanics, Quantum Mechanics, Fluid Mechanics, 
Electrodynamics, and so on. These NPDEs are not al- 
ways easy to solve. Knowing that all analytic solutions of 
a NPDE always bring supplementary information, many 
researchers develop every day the means to solve these 
NPDEs or to improve some existing solutions. It is in this 
optics that several methods and techniques facilitating 
the resolution of NPDEs have been proposed [1-3]. From 
all these equations, those which contain the scattering 
terms and nonlinear terms create a particular interest, 
because they generally admit some soliton solutions; the 
soliton being a futuristic concept which imposes itself 
progressively in the world of Physics and especially as 
alternative in the modern telecommunications. This pro- 
pensity is translated besides by all recent works that have 
been published [4-7]. 

Among these numerous equations, two have drawn our 
attention in this work. It is precisely the equation of 
Born-Infeld developed by Born and Infeld in the years 
1930 and admits numerous applications in physics [8-15]. 
The second is the equation of KdV. This equation which 
is the first that describes the dynamics of the navy waves 
has been also the object of several investigations and 
modifications [16-22]. 

Abdul-Majid Wazwaz in one of his recent works dem-

onstrated that the modified KdV equation admitted sev-
eral types of solutions notably the solitons, the peakons 
and the cuspons [23]. In this work, we follow the same 
logic to look for all solutions of the shape Sechn- of the 
modified KdV equation. We are also going to determine 
all solutions Sechn- of the equation of Born-Infeld. The 
problem we want to solve has been motivated in the fol-
lowing manner: We know that the equation of KdV un-
der its initial shape admits a solution in Sechn- (for 

2n  ) but we don’t know what happens precisely when 
2n  . Thus, we at first look for the equation of KdV 

under its initial shape then admit a solution of shape 
Sechn- with 2n  . But it is not the first objective of this 
work, we want to test the efficiency of the method rightly 
by using on a simplest case. The goal of work is to look 
for all pulse solutions of the shape Sechn- in the modified 
KdV and Born-Infeld equations by the Bogning-Djeumen 
Tchaho-Kofané method (BDKm) [24-28]. 

This work is organized as follows: in Section 2, we 
verify if the solution in Sechn- of the initial KdV equa-
tion is only obtained for . Section 3 is devoted in 
research of all solutions in Sechn- of the modified KdV 
equation. The same analysis is made in Section 4 for 
equation of Born-Infeld. Finally, in Section 5, we con-
clude our work. 

2n 

2. Sechn- Soliton Solution of the Initial KdV 
Equation 

The KdV equation in its initial form is given by 
3 0t x x         ,              (1) 
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where   represents the amplitude of navy wave,  is 
the time and 

t
x  the spatial variable. The problem here is 

to construct the solution of Equation (1) in the form 

   , sechn
gx t a x V t   ,            (2) 

where  is a constant and  a real number which is 
different of two. When we introduce the Equation (2) in 
the Equation (1) we obtain an equation of which the use 
of the different transformations linked to BDKm [24-28] 
permits to write it under the form  

a n

   

   

 

, , , ,

, , , ,

,

cosh sinh cosh

cosh cosh sinh

0.

n m
ij ij

i j n i j m

k l
ij ij

i j k i j l

ij
i j

F a x G a x x

H a x T a x

W a

x

  

 



 

 

 

 



  (3) 

called equation of ranges where  ijF a ,  ijG a , 
 ijH a ,  and  are functions of the coef-

ficients ij  to determine and  are positive 
whole integers. 

 ijT a
a

 ijW a
, , ,i j n , ,m k l

These transformations concern the terms obtain when 
we introduce Equation (2) in Equation (1) and they are 
given by the following equations 

    2 2

0

tanh 1 sech
k

k i i
k

i

 i
x C x



   ,            (4) 

     2 1 2 1

0

tanh 1 sech sinh
k

k i ii
k

i

x C x




  x
  

,x

,   (5) 

   

   

2 2 2 1

2 2

0

sech sinh

1 sech sinh

k k

k
i ii

k
i

x x

C x

 

 

 





 
              (6) 

   

   

2 2 2 1

2 2
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sech sinh

1 sech sinh

k n k

k
i i ni

k
i

x x

C x

 

,x 

 





 
              (7) 

       2 1 2 2 1

0

sech sinh 1 sech
k

k k i i
k

i

x x C
 



    i
x
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i k

,x

, (8) 

   

   

2 1 4 2

2 1
2 2 1

2 1
0

sech sinh

1 sech

k k

k
i i

k
i

x x

C x

 



 


 




 
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   

   

2 2 1
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0

sech sinh

1 sech sinh

k k

k
i ii

k
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x x

C x
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   

     

4 2 2 1

2 1

0

sech sinh
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k k

k
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C x
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                  (11) 

       2 1 2 1 2 1

0

sech sinh 1 sech ,
k

k k i i
k

i

x x C x    



  (12) 

       2 1 2 2 1

0

sech sinh 1 sech ,
k

k k i i
k

i

x x C x   i 



   (13) 

where ,i k  ,   and  are fixed integers such  n

that 
 

!

! !
i
k

k
C

i k i



. Thus, substituting Equation (2) in  

Equation (1), we obtain with the help of the preceding 
transformations the general equation 

   
 

 
 

    
 
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3
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g
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g
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x V t

x V t
n n n a

x V t
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 




 


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


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





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   (14) 

After haven gotten the Equation (13), the principle of 
analysis is as follows: before passing to the identification 
of coefficients of the terms in 

   sinh cosh i
g gx V t x V t      1, 2 1, 3i n n n   

of Equation (14), we verify if there exist some values of 
 for which some terms of the Equation (14) have the 

same factor 
n

   sinh cosh i
g gx V t x V t   ? So for 

the Equation (14), the factors 

   2 1sinh cosh n
g gx V t x V t    

and 

   3sinh coshn
g gx V t x V t    

are identical for 2n   (it is sufficient to solve the equa-
tion 2 1n 3n   ). We also notice that the factors  

   1sinh coshn
g gx V t x V t    

and 

   2 1sinh cosh n
g gx V t x V t    

are identical for 0n  . But for , the Equation (14) 
leads to a trivial solution of the type 

0n 
 ,x t a  (con-

stant) that is not interesting. For n = 2, Equation (14) is 
written as 

   
 

   
 

3

3

3 2

5
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2 8
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sinh
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g
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
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
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
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  



     (15) 

From Equation (15), we obtain the following ranges of 
equations 
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212 0a   ,               (16) 

and 
24gV   0 .                (17) 

The resolution of Equation (16) and Equation (17)  

permits to have 212a     and 2gV  . While  

reporting these values obtained in the expression (2), we 
at first find a solution considered like particular solution 
of the Equation (1) and given by 

  2
3

, sech
2

gg
g

VV x t x  


V t ,       (18) 

with  and 0gV  0 . The particular cases 0n   
and  being studied, we now look at the case where 

 and . So for 
2n 

n0n  2 0n   and , the Equa-
tion (14) doesn’t present more terms that can merge 
themselves. At this level, the only acceptable solution is 
the trivial solution  which doesn’t have im-
portance. In conclusion, the equation of KdV as consid-
ered above admits non trivial solutions only for 

2n 

 , 0t U x

2n   
and Equation (18) also gives the general solution of the 
KdV equation considered under its initial shape given by 
Equation (1). 

3. Sechn- Soliton Solution of the Modified 
KdV Equation 

The modified KdV equation that we are going to use here 
is in the form [23] 

3

3

4 4

4 16 0.

xxt x xt t xxx

x xx x

UU U U U U UU

U U U U

  

  
       (19) 

We look for the solutions of Equation (19) under the 
shape  

   0, sechn
nU x t a x t   ,          (20) 

where  and a   are constants to be determined, 0  a 
known constant and  a real number to determine. 
Thus, taking into account Equation (20) into Equation 
(19) gives with the help of transformations (4), (5),···, 
(13) the following ranges equation 
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


 




1

   (21) 

The two terms of the Equation (21) merge themselves 
for  (it is sufficient to solve the equation 

). So from the Equation (21), we obtain 
1n 

2 3n   4n 

   3 2 3 2
0 0 08 2 8 3a a 0           ,   (22) 

with 0a  . Equation (22) can also be written as 
2 3 2

3 0

0 0

8 3
0,

8 2 8 2
a a

  0  
  
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        (23) 

with 
0

1

4





. By setting 
2 3

0

0

8

8 2
P


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
  
 
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2
0

0

3

8 2
q





 

 
, Equation (23) becomes 

3 0a Pa q   .               (24) 

By using the Cardano’s method, we set a u v   
leads to the relations  

3 3u v q   ,                 (25) 

and 
3

3 3

27

P
u v


 .                 (26) 

The resolution of the coupled system (25) and (26) 
gives 

2 3 2 3

3 3

27 4 27 4

27 27
2 2

q P q P
q q

a

 
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Therefore the solution obtained for  is given by 1n 

 

 
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3

1

2 3

3

0

27 4
27,

2
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27 sech .

2
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For 1n  , Equation (21) leads to the following rela-
tions: 

Term in 
 
 

0

4 1
0
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x t

x t





 
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, 

0

1

4
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Term in 
 
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0

2 3
0

sinh

cosh n

x t

x t





 
 

, 

1
with 0, 1a n

n
n   .          (30) 

Then for 0n   and 1n  , the solution of the modi-
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fied KdV equation is given by 

  01
, sech 4

4
n

nU x t x t
n


 

0

.         (31) 

In the following section, we are going to make an 
analogous survey for the equation of Born-Infeld. 

4. Sechn- Solution of the Born-Infeld’s  
Equation 

The Born-Infeld’s equation that we want to analyze in 
this section is given by 

   2 21 2 1t xx x t xt x ttU U U U U U U    .    (32) 

Like in the preceeding section, we look for the solu-
tion of Equation (31) in the form of Equation (20). With 
the help of the transformations (4), (5),···, (13), we obtain  
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As in the previous cases, we first look for the values of 
 for which the terms which constituted Equation (33) 

merge themselves. Thus, the terms in 
n

 2
01 coshn x t    and  3 2
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
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for . Then, for , the Equation (33) 
contains the terms which merge. In the continuation we 
are going to study in detail the Equation (33) when  is 
equal to these found values. 

1n   2, 1,0,1n  

n

 For 2n   , the resolution of Equation (33) gives 

0    and 1a  . The solution of Equation (32) 
in this case is given by  
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 For 1n   , the resolution of Equation (33) gives 

0    and 1a  . The solution of Equation (32) 
in this case is given by 
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 For 0n  , we obtain  0 ,  which is a con-

stant. 

U x t a

 For 1n  , the Equation (33) becomes 
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While equating the terms of the Equation (36) to be 
zero we obtain 0   ;  and the solution of the 
Equation (32) is 

1a 

  1 0, sechU x t x t     .         (37) 

In the case where  2, 1,0,1n    , we identify the  

terms of Equation (32) to zero and look for the non trivial 
solutions  0a   which give 0    and 1a  . So 
we can affirm without hesitation that the general solution 
of the equation of Born-Infeld is  

  0, sech ,

.

n
nU x t x t

n

  
 

        (38) 

5. Conclusion 

In this work, we constructed with success the solutions of 
shape Sechn- of the KdV and Born-Infeld equations. Our 
survey has been guided by the fact that, we already know 
that by a direct integration, the initial KdV equation ad-
mits a solution in Sechn-  2n 

2n 

2

 and we don’t know 
what happens precisely when . To this effect, we 
supposed that its solution is under the shape Sechn- to 
arrive at the conclusion n  . The survey has been ex-
tended to the case of the modified KdV and Born-Infeld 
equations. The solutions of shape  

   01
, sech 4

4
n

nU x t x t
n

 


, 

for 0n  , 1n   and   0, sechn
nU x t x t    ,  

n  , have been obtained respectively. The success of 
this survey is due to the BDKm whose mastery permits 
to push the analysis as far as possible in the equations 
that present an elevated nonlinearity as seen in the two 
equations studied scrupulously. 


         (34) 
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