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ABSTRACT 

An effective numerical algorithm for computing the determinant of a pentadiagonal Toeplitz matrix has been proposed 
by Xiao-Guang Lv and others [1]. The complexity of the algorithm is (9n + 3). In this paper, a new algorithm with the 
cost of (4n + 6) is presented to compute the determinant of a pentadiagonal Toeplitz matrix. The inverse of a pentadi- 
agonal Toeplitz matrix is also considered. 
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1. Introduction 

Pentadiagonal Toeplitz matrix linear systems often occur 
in several fields such as numerical solution of differential 
equations, interpolation problems, boundary value prob- 
lems [1-5], etc. In these areas, the determinants and the 
inversions of pentadiagonal Toeplitz matrices are con- 
sidered. In recent years they have become one of the 
most important and active research field of applied ma- 
thematics and computational mathematics increasingly. 

In [2], E. Kilic, M. Ei-Mikkawy presented a fast and 
reliable algorithm with the cost of  for eva- 
luating special nth-order pentadiagonal Toeplitz determi- 
nants. In [1], X.G. Lv, T.Z. Huang, J. Le presented an 
algorithm with the cost of  for calculating the 
determinant of a pentadiagonal Toeplitz matrix and an 
algorithm for calculating the inverse of a pentadiagonal 
Toeplitz matrix. 
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In this paper, we present new algorithms for comput- 
ing the determinant and the inverse of an n-by-n pen- 
tadiagonal Toeplitz matrix. The complexity of the algo- 
rithms are  and   respectively. 4 6n  2 5n n

This paper is organized as follows: in Section 2, we 
present some useful notations and lemmas. In Section 3, 
we are going to derive new two algorithms. Finally, we 
give an numerical examples to show the performance of 
our algorithms in Section 4. 

2. Notations and Preliminaries 

Definition 2.1 Let  ijbB  be an  matrix.   n n B

is called persymmetric if it symmetric about its 
northeast-southwest diagonal, i.e.,  for all 
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is called Toeplitz matrix. 
Toeplitz matrices are all persymmetric matrices. 
Lemma 2.1 [6] Let H  be an  matrix. Then  n n
(1) H  is persymmetric matrix if and only if  

T
n n J H J H ; 
(2) If H  is nonsingular Toeplitz matrix, 1H  is 

also a Toeplitz matrix, where nJ  is the n n  ex- 
change matrix, i.e.,  1 1,n ne e eJ

I
, ,n  ,  is the ith 

column of identity matrix  of order n . 
ie

n
n

Without loss of generality, we suppose  in the 
paper. By computing simply, we have the following con- 
clusion: 

6

Lemma 2.2 Let T  be an    Toeplitz 
matrix 

 2n n   2*Project supported by the Natural Science Foundation of Fujian Prov-
ince, China (2012D139). 
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Then the inverse of  is an  Toep- 
litz matrix, and 
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where  

 1 2 3 4 , 1,2, , 3i i i i ia aa ba ca da i n           

and . 0 1 2 31, 0a a a a     

Lemma 2.3 Let  where  and  ,


 
 

A B
M

C 0
, ,A B C

0  are matrices of size 
       2 2 , 2 2, 2 2 ,2n n n n       2  respectively. 
A  is nonsingular. Then  is nonsingular if and only 

if 
M
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In the current paper, we consider the  penta- 
diagonal Toeplitz matrix of the form  

n n
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3. Main Results 

Decompose the pentadiagonal Toeplitz matrix  (2.2) 
as the following: 

T

,T MP  

where 
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Partition M into  where T  is matrix (2.1),  ,
 

 

T B

C



0

0  is zero matrix of size 2 2 , 
T

0 0

0 0 0

a b c d

b c d


 
 

B




 2 2n   of size   and 

0 0

0 0 0

d c b a

d c b

 
  
 

C



 of size .  2 2n 

Thus 
1

6 7 8 9

5 6 7 8

4 5 6 7

3 4 5 6

5 4 5

4 3 4

3 2 3

2 1 2

0

0

0

n n n n

n n n n

n n n n

n n n n

n n n

n n n

n n n

n n n

a a a a a b

a a a ad c b a b c

a a a ad c b c d

a a a a d

a a aa

a a aad c b a

a a aad c b

a a aa



   

   

   

   

  

  

  

  



  
            

  
 

      
 

D CT B

1 1
2

1 1 1

,
2

n n n

n n n n n

a a aa

a aa a a aa a
 

  





 
     

 

where 

 1 2 3 4 ,

2, 1, , 1.
i i i i ia aa ba ca da

i n n n n
       

   
 

Denote 
2

1 1 2 1 3 1

2
1 3 2

, , 2

.

n n n n nd a d a aa d a a aa a

d d d

1,n       

  
  

Thus 

  2 2
1 3 2 1 1det .n n nd d d a a a      D  

It is noticed that 

2
1 1

2

.n
 

     
             

I T B T B T B

CT I C CT B

  
 

0

0 0 0



D

 

Copyright © 2013 SciRes.                                                                                 ENG 



Y. H. CHEN 27

       2
det 1,det 1 det .    T D D 

1

 

We have 
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According to the Lemma 2.3 and deduction above, we 
have the following results: 

Theorem 3.1 Let  be the pentadiagonal Toeplitz 
matrix as (2.2), then (1)  is nonsingular if and only if 

 and 

T
T
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When  , we have that  is nonsingular, and 0  T
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According to the deduction above, we can obtain 
Theorem 3.2: 

Theorem 3.2 Let the pentadiagonal Toeplitz matrix 
 as (2.2) be nonsingular. Then T

1 1, T PM  
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Combining with Theorem 3.1 and Theorem 3.2, we 
obtain the following algorithm: 

, , , ,n M M J D    as above. 

Algorithm 3.1 (Computing  det T
,a a

) 
(1) Input 0 1 2 3, , , , , 1 0a b c d n a a      ; 
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(2) Compute 
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(3) Compute  .   2
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(6) Calculate . 1 1 T PM
Let us now have a look at the number of multi- 

plications and divisions executed by Algorithm 3.1 and 
3.2. For Algorithm 3.1, in Step 2, it takes about  4 1n   
operations. Step 3 amounts to 2 operations. On the whole, 
we need about  operations to compute 4 6n 

So 
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Algorithm 3.1 is better than E. Killic’s algorithm [2] with 
the cost of  and X.G. Lv’s algorithm [1] with 
the cost of . For Algorithm 3.2, in Step 1, it 
takes 4 operations. Step 2 amounts to  operations. 
Step 3 amounts to  operations. The cost of step 
4 is about , we make use of the persymmetric matrix. 
Therefore, we need about  operations comput- 
ing . Our algorithm is better than X.G. Lv’s algo- 
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