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ABSTRACT 

We applied multiple parameters method (MPM) to obtain natural frequency of the nonlinear oscillator with rational 
restoring force. A frequency analysis is carried out and the relationship between the angular frequency and the initial 
amplitude is obtained in analytical/numerical form. This equation is analyzed in three cases: the relativistic harmonic 
oscillator, a mass attached of a stretched elastic wire and oscillations of a punctual charge in the electric field of charged 
ring. The three and four parameters solutions are obtained. The results obtained are compared with the numerical solu-
tion, showing good agreement. 
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1. Introduction 

Nonlinear oscillators play a pivotal role in physics and 
engineering. Recently, considerable attention has been 
directed towards analytical/numerical solutions of nonlin-
ear equations. Many new techniques have been appeared 
in writing, for example, max-min approach [1-3], frequency 
amplitude formulation [4], homotopy methods [5-7], har- 
monic balance method [8], parameter-expanding method 
[9], variational approach [10-11], Hamiltonian methods 
[12-14] and Lindstedt-Poincaré methods with modifica-
tion etc. [15-16].  

In this paper, we consider a generalized nonlinear os-
cillator 
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with initial conditions 

 0u  A  and  0 0u              (2) 

This equation occurs in certain phenomenon in rela-
tivistic physics, vibration of a stretched elastic wire due 
to mass attached to the centre and oscillation of a punc-
tual charge in the electric field of charged ring. This 
equation has been investigated by various authors [17,18] 
for special cases.  

It is interesting to note that 0, 1, 3  m  reduce 
to the oscillations of a charge in the electric field of a 

charged ring equation. This connection is given as follows: 
We consider a ring of radius r with a charge  
spread uniformly around the ring. The electric field E on 
the x-axis of the ring is given by 
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where x is the distance along the axis. If a negative 
punctual charge  Q Q  is placed at a point on the 
ring axis, the charge will experience a force 
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The equation of motion of the punctual charge  is 
given by the following nonlinear differential equation 
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Equation (5) can be written as 
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Now, dimensionlize the Equation (6) by taking 

x ru  and t                (7) 

Substituting these dimensionless variables into Equa- 
tion (6) gives 
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This is a special case of generalized oscillator Equai- 
ton (1). 

We assume the solution in the following form: 

 
1 3 5

2 1

cos cos3 cos5

cos 2 1

  

   k

u A t A t A t
A k
  


      (9) 

where , , 0,1,2, kA k  are the angular frequency of 
motion and Fourier coefficients, respectively. 

2. Governing Equation 

Consider the following nonlinear equation: 

  0  u u                  (10) 

where  a rational function and u is the displace-
ment. The imposed initial conditions take the forms 

 u

   0 ,  0u A u 0               (11) 

After multiplying both sides of Equation (10) by , 
integrating and using the initial condition (11), we obtain 
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The exact frequency of the motion   can be ex-
pressed by the relation (see Equation (14)). 

A general scheme of the procedure of three and four 
parameters is depicted in Figures 1 and 2. 

3. Applications of MPM to Oscillators with 
Rational Restoring Force 

3.1. Example for , ,m   0 1 1  

In this case, the nonlinear equation reduces to equation of 
relativistic oscillator 
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with initial conditions 

 0u A  and            (16)  0 0u 

Multiplying both sides of Equation (15) by 2 u  and 
integrating, with initial conditions, we get 

22 1 1u A     2u           (17) 

In MPM the solution of the problem is assumed to be 

1 3cos cos3u A t A t             (18) 

Differentiating Equation (18) leads to the results 

 1 3sin 3 sin 3u A t A t            (19) 

 2
1 3cos 9 cos3u A t A t           (20) 

From the initial condition Equations (16) and (18), we 
have 

1 3A A A                (21) 

Substituting Equations (18) and (19) into Equaiton  

(17) at 
π

2
t , we will find the following equation: 

 22 2
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Considering the acceleration at the time 0t , from 
Equations (15), (16) and (20), we get the following equa- 
tion 

 2
1 3 2

9
1

 


AA A
A

        (23) 

From the three Equations (21)-(23), three unknowns 

1 3, ,A A  can be solved analytically/ numerically. 
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The computed results of three parameters methodsfor 
1A  

1 31.0072876, 0.072875,

1.302198
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Figure 1. A genral scheme for the solution of nonlinear oscillator problem (three parameters case). 
 

 

Figure 2. A general scheme for the solution of nonlinear oscillator problem (four parameters case). 
 

The frequency of three parameters method is not 
highly perfect. In order to find more accuracy of the so-
lution the four parameters technique is introduce 

1 3 5cos cos3 cos5u A t A t A t         (26) 

According to the initial conditions: 

1 3 5A A A A                (27) 

Substituting Equation (26) and its derivative at π 4t  
and π 2t , the following equations are obtained 

 

 

22
1 3 5

22
1 3 5

   3 5

1
2 1 1

2

 


       

 

A A A

A A A A



       (28) 

 22 2
1 3 5 3 5 2 1A A A A      2        (29) 

The acceleration at 0t , from Equaiton (15), we 
will find the following equation: 
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After some mathematical simplification with 1A ,  

we achieve the numerical values 

1 3

5

1.009845,  0.010338,

0.000492,  0.872384

A A
A 
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From Equation (14), we obtain the exact frequency for 
1A  is 

 Exact 0.872342              (32) 

The frequency-amplitude relationship of relativistic 
oscillator Equation (15) obtained by Zhao [18] and Belé-
ndez et al. [19] by frequency-amplitude formulation (FAF) 
and homotopy perturbation method is given by 
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The frequency of Equation (15) found by Shen and Mo 
[17] using max-min approach is given as 
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where    Elliptic ,  EllipticE m K m  are the complete el-
liptic integral and elliptic integral of the first kind respec-
tively. The accuracy of FAF/HPM reaches 0.332517%, 
the accuracy of max-min approach is 3.09685% and the 
accuracy of four parameter lower than 0.004816% for 

1A . After comparison between the exact frequency 
with these methods, we conclude that the four parameter 
approach is better than the FAF, max-min approach and 
HPM. 

3.2. Example for , , , ,m n         1 1 0 0 1  

In this case, Equation (1) is reduces to the equation of 
motion of a mass attached to the center of a stretched 
elastic wire 
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with initial conditions 

 0u  A



 and            (36)  0 0u 

Multiplying both sides of Equation (35) by and inte-
grating, taking into account the initial conditions, we get 

  2 2 2log 1 log 1      u A A u u  2    (37) 

In MPM the solution of the problem is assumed to be 

1 3cos cos3 u A t A t             (38) 

Differentiating Equaiton (38) leads to the results 

 1 3sin sin 3u A t A

 2
1 3cos 3 cos3u A t A t             (40) 

From the initial condition Equations (36) and (38), we 
have 

1 3A A A                   (41) 

Substituting Equations (38) and (39) into Equation (37) 

at 
π

2
t , we will find the following equation: 
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1 33 log 1A A A A     2      (42) 

Considering the acceleration at the time 0t , from 
Equations (35) and (40), we get the following equation 
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From, Equations (41)-(43), three unknowns 1 3, ,A A  
can be solved analytically/numerically (see Equation (44)). 

In order to find more accuracy of the solution the four 
parameters technique is introduce 

1 3 5cos cos3 cos5u A t A t A t           (45) 

According to the initial conditions: 

1 3 5A A A A                  (46) 

Substituting Equation (45) and its derivative at  

π 4t   
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and                π 2t , 

         (39) the following equations are obtained (see Equation (47)). 
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   22 2
1 3 53 5 log 1 2A A A A A         (48) 

From Equation (45) and (36), we will find the follow-
ing equation: 

 22
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A

    


      (49) 

After some mathematical simplification with 1A , 
we achieved the numerical values 

1 3

3

1.009845,  0.010338,

0.000492,  0.636223

A A
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  
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which is very close to the exact solution. 

3.3. Example for , ,m   0 1 3  

In this case, Equation (1) is reduces to the equation of a 
punctual charged ring, which is a free charge [21,22] 
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with initial conditions 

 0u A  and            (52)  0 0u 

After utilizing the same procedure in the previous 
examples, we obtained the approximate solutions of the 
problem are portrayed in Figure 5. 

4. Conclusion 

The multiple parameter approach has proved to be a 
powerful mathematical tool to find an approximate ana- 
lytical solution for relativistic harmonic oscillator, a mass 
attached of a stretched elastic wire and oscillation of a 
charged ring. Comparison of the results obtained with 
previous methods shows that the approximate solutions 
are accurate and valid for the whole solution domain, and 
very convenient and effective. It is also found the method 
gives the better results if the number of parameters will 
be increased. It is also observed that multiple parameter 
approach converts the original differential equation into 
system of nonlinear algebraic equations. It is found that 
an iterative procedure for solving the corresponding sys- 
tem of algebraic equations creates an extremely effective 
method for constructing periodic solutions for nonlinear 
oscillators. Figures 3-5 are plotted for three, four para- 

 

              
(a)                                                           (b) 

Figure 3. Comparison for the u versus  trajectory for the case of u A  1  (a) three parameters (b) four parameters. 
 

                 
(a)                                                            (b) 

Figure 4. Comparison for the u versus  trajectory for the case of u A  1  (a) three parameters (b) four parameters. 
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(a)                                                           (b) 

Figure 5. Comparison for the u versus  trajectory for the case of u A  1  (a) three parameters (b) four parameters. 
 

Table 1. Numerical comparison for frequency by present method and exact solution. 

  FAF  3MPM  4MPM  Exact  

1.0 0.666666 0.632712 0.636223 0.636780 

0.8 0.802773 0.721979 0.726125 0.726027 

0.6 0.894427 0.800866 0.804122 0.804108 

0.4 0.954521 0.872423 0.874534 0.874620 

0.2 0.988826 0.938420 0.939514 0.939514 

 
meters and exact trajectories and Table 1 shows the nu-
merical comparisons for second examples. 
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