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ABSTRACT 

The set of all spheres and hyperplanes in the Euclidean space  could be identified with the Sitter space n 1n . All 

the conformal properties are invariant by the Lorentz form which is natural pseudo-Riemannian metric on 1n . We 
shall study behaviour of some surfaces and foliations as their families using computation in the de Sitter space. 
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1. Introduction 

One of the topics in the theory of foliations is studying 
geometric properties of leaves e.g. being totally geodesic, 
totally umbilical, constant mean curvature etc. Two sur- 
veys [1,2] by the first author together with Paweł Walc- 
zak and Badura descibe progress of this research in the 
last years. 

Conformal geometry using the Sitter space was stud- 
ied by Langevin and many of his collaborators. Up to 
now the most extensive explanation is given in [3]. 

The idea of representing oriented spheres in the de 
Sitter space is widely presented in [4] by Langevin and 
Paweł Walczak. They succesfully applied this method to 
the theory of foliations. Together with Bartoszek they 
studied properties of so called canal surfaces i.e. enve- 
lopes of one parameter families of spheres (cf. [5,6]). 

In the paper below we recall some notions of confor- 
mal geometry and extend them to study intersections of 
spheres. The main application is some partial characteri- 
zations of totally umbilical foliations on the hyperbolic 
space  in its conformal ball model. n

2. Space of Spheres 

Every -dimensional round sphere in the Eucli- 
dean space  is determined by  coordinates of its 
center and one positive parameter (radius). A hyperplane 

is the limit of spheres internally tangent to each other 
when radius tends to infinity. Anyway, in that case there 
are many different families of spheres having the same 
limit hyperplane. 

 1n 


More natural is to consider hyperplanes and spheres on 
the unit sphere . Here all the hyperplanes and spheres 
are simply round 

n
 1n  -spheres. Thus the set of 

 1n  -spheres and hyperplanes in  is endowed with 
a differential structure of 

n
 1n -dimensional manifold. 

It is well known that conformal diffeomorphisms of 
 form the Möbius group Möb n n  isomorphic to the 

group  1,SO n  consisting of linear transformations 
with determinant equal to 1 preserving the Lorentz form 
and orientation. Thus the Lorentz product preserves all 
the conformal properties. 

We shall describe this idea more explicitely. 
Consider  2n  -dimensional Lorentz space 2n , 

i.e. the space 1, 1n  with the Lorentz form    given 
by  

0 0 1 1 1 1n n n nx y x y x y x y x y        

In 2n  the canonical basis  is consi- 
dered. 

 0 1 1, , , ne e e 

For   2
0 1 1, , , , n

n nx x x x x 
  

  ˆ




 we use the notation 

n n 1 1 1, , , and , ,n n nx x x x x x x     

The terminology comes from the special relativity, so 
we traditionally say that vectors of positive Lorentz norm 
(i.e. 0x x  ) are called space-like while those of 
negative (resp. zero) Lorentz norm are time-like (resp. 
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light-like). 

On the space-like -plane  the Lorentz  1n     10 n
form reduces to the standard scalar product .,.  and the 
respective Euclidean norm  . 

Definition 1 The sets  

 
 

   

2

1 2

2
0

0

1

1 1

n

n n

n n

x x x

x x x

S x x x x x



 




  

   

      









 0, 1





 

are called respectively: the light cone, the de Sitter 
-space, the limit sphere.  1n 

Furthemore we denote by S the set of oriented (round) 
-spheres contained in  which is in fact  1n  n nS . 

Proposition 2 Assigning to any  an intersec- 
tion 

1ns 
ns S
  is an one-to-one correspondence between 

 and S.  1n
Proof: Observe that for  we have 1ns 

   


2 2
2

2 2
0 0

2
0 0

1

0

1, , , 1

n

n n

n n

s s


s v s v v s v s

s S x x s x s x



  

 


 

     

    



 

  

 



v  

Since in the affine hyperplane 0  the distance 
from an -plane 

1x 
n 0: ,sE s x s   to the origin  ,1  

equals 

0 1
s

s



 

hence sE  intersects the sphere 1x   along  1n  - 
sphere what is clearly visible in Figure 1. 
 

 

Figure 1. De Sitter space. 

The -planes n sE  and sE   (and therefore respective 
 1n  -spheres) are equal if s  and s  are linearly de- 
pendent. But 1n  intersects every 1-dimensional vec- 
tor space   , 1lin ns s  , in exactly two points, so we 
can think of them as of distinct orientations of the sphere 

ns S
 . 

The above proposition motivates. 
Definition 3 Given 1ns   we say that s  is the re- 

presentation of sphere  in the de 
Sitter 

ns S
  n

s 
 1n  -space. 

Since we are interested only in conformal properties of 
spheres (mainly angle of intersection), we shall proceed 
with stereographic projection which transforms them 
conformally onto codimension 1 spheres or affine sub- 
spaces. 

Proposition 4 Assume that . Then spheres 1, ns t 
s  and t  represented by them: 

1) are disjoint if 1s t  ,  

2) meet at angle 
π

0,
2

     
 if coss t  . 

Proof: The Lorentz form is invariant under Möbius 
transformations so it is enough to check the statement for 
spheres (not) meeting a fixed sphere. 

Fix the sphere represented by  and observe that 1ne 

1n ns s e  1  for any 1ns 

S 

. Let   denote the 

stereographic projection of  onto  1n n
   1n n    0  from the point . 1ne 

Thus the projection   is given by the formula  

 
1

ˆ

1 n

z
z

z 

 


 

and its inverse by 

 
2

1
2 2

12
, ,

1 1

nyy
y y

y y


 
   
   

 .  

It is obvious that  1n  -sphere  is inva- 
riant under 

1
n

ne S
  

 . 
For 1s n  we have an equation of  s    

 
2

1 02 2

12
ˆ, , ,

1 1
n

yy
s s s

y y


 
  
   

 

or equivalently  

  2

1 0 1 0ˆ2 , 0.n ns y s s y s s       

Hence two cases occur: 
1) If 1 0 0ns s    then  s   is a hyperplane 

1ˆ, 0ns y s   , 

2) If 1 0 0ns s    then  s   is the sphere 
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1 0 1 0

ˆ 1
.

n n

s
y

s s s s 

 
 

 

For the angle of intersection we obtain: 
1) In case of a hyperplane ˆ 1s  ) so  s   meets 

the unit sphere at angle 
π

0,
2

   

  if the Euclidean dis- 

tance of the center from s  equals cos . Thus we 
have 

1
1cos .

ˆ
n

n

s
s

s
 

   

2) If  s   is a sphere then it meets the unit sphere 
at angle   if at any point of intersection the angle at 
this point in the triangle formed by centers is exactly  . 
Equivalently, by law of cosines  

 

2

2
1 0 1 01 0

ˆ 1 2
1

n n

s

s s s ss s
cos

n


 

  
   

 

which could be simplified to 

 

2 2 2
1 0 1 0 1 0

1 1 0 1 0

0

ˆ1 2 2

2 cos

n n n

n n n

s s s s s s s

s s s s s 
cos


  

  

      

   

 

or directly 2 2
1 cos .ns    

Example 5  
1) 2-dimensional de Sitter space  is one-sheeted 

hyperboloid in 3-dimensional space. Points of 

2
2  re- 

present 0-dimensional oriented spheres on the unit circle. 
Thus they are arcs of this circle. According to Prop. 4  

a) these arcs are disjoint if the Lorentz product of their 
representations is ,  1

b) they are nested if the product is , 1 
c) they are knotted if the product is between −1 and 1.  
Excluding the case of representing the same unoriented 

sphere the product equal −1 means that one arc is in- 
clude-ed in another, while 1 is the condition for having 
exactly one point in common. 

2) Oriented circles (i.e. discs) on  are represented 
in . The circles have 2 (resp. 1, 0) common points 
provided that the absolute value of their Lorentz product 
is in  (resp. 1, ). 

2
3

0,1 1
3) 2-dimensional spheres on  are tangent if their 

representations on  have the Lorentz product equal 
. They intesect along a circle if the product is between 

−1 and 1. Otherwise they are nested.  

3
4

1

3. Application to Foliations 

3.1. Umbilical Foliations of  n
Hyperbolic -space  has the Poicaré ball model 

which is the unit -ball with conformally changed 
Euclidean metric. At every point 

n n

n
x  the Euclidean 

Riemannian metric is multiplied by 

 22

4

x1
. The ball 

model is conformal so angles at  are preserved. n
Complete totally umbilical hypersurfaces in the Eucli- 

dean space are spheres and hyperplanes. Conformality of 
the ball model implies the same is true for . Thus 
every totally umbilical hypersurface in the ball model is 
intersection of   with a (Euclidean) sphere or a 
(Euclidean) hyperplane. 

n
n

If we denote by n  the ideal boundary of  
which is in fact 

n
 1n  -sphere then spheres orthogonal 

to n  contain totally geodesic hypersurfaces. More- 
over, every sphere making angle   with n  con- 
tains a hypersurfaces with all principal curvatures equal 
to cos  sharing ideal boundary with a totally geodesic 
hypersurface from which a given part of the sphere is 
equidistant. 

Geodesic spheres in  do not touch the ideal 
boundary. They bound balls which cannot be foliated by 
spheres in codimension 1 which allows us to exclude 
them from the further analysis. From now on we shall 
study only unbounded totally umibilical hypersurfaces. 

n

This makes sense to analyse totally umbilical hyper- 
surfaces of  as well as codimension  totally umbi- 
lical foliations using only notions for spheres coming 
from 

n 1

1n . 
Choose a model for  as 1n . This oriented n e 

 1n  -sphere could be treated as a unit ball. From Prop. 
4 and its proof we obtain directly. 

Corollary 6 Assume that  is a ball model 
of . An element 

1
1

n
ne 
 

1n ns  represents an unbounded 
totally umbilical hypersurface of  if n  1 1,1ns    . 
Moreover, the element s  represents: 

1) a totally geodesic hypersurface if ,  1

2) a hypersphere meeting ideal boundary at angle 
0ns  

  
if 1 cosns    ,  

3) a horosphere which is internally tangent to the ideal 
boundary if 1n 1s    .  

Every unbounded totally umbilical hypersurface of 
 divides the hyperbolic space into two domains with 

nonempty ideal boundary. From this we conclude that 
every totally umbilical codimension 1 foliation of  
has leaves entirely contained in spheres which form one- 
parameter family. 

n
n

Corollary 7 Every totally umbilical codimension 1 
foliation of  is represented by a curve n 1: n  �  
which lies in the region bounded by hyperplanes 

1 1nx    .  

Denote by 1 1
0 0n n

nx 
 1     the set of totally 

geodesic hypersurfaces and by  1 1
1 1 1n n

nx 
    
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—the set of horospheres. It is easy to see that 1
0
n  is 

simply -dimensional de Sitter space  while n n 1
1
n  

is the light cone corresponding to  with the vertex 

1n . Similarly, the set of totally umbilical hypersurfaces 
with the mean curvature equal to 

1n

cos
e 

  is rescaled - 
dimensional de Sitter space given by 

n
2nsix x   for 

the first  coordinates. 1n
The converse to Cor. 7 is obviously not true. Some 

local conditions are studied by Langevin and the first 
author in [7]. More global conditions were found for 
totally geodesic foliations (see e.g. Figure 2). 

Theorem 8 (Cz, Langevin [7]) Any unbounded curve 
 such that 1

0: n  

   1 2 11 for all ,t t t   2t  

represents a totally geodesic codimension 1 foliation of 
. Moreover, any such foliation is transversely ori- 

ented and is represented by a curve  as above. 

n


The proof uses mainly the fact that spheres orthogonal 
to a given sphere are disjoint inside this sphere if they are 
at most tangent on the given sphere. 

The above works even for  foliations. For dif- 
ferentiable case we have the following 

0C

Corollary 9 An unbounded  curve 1C 1
0: n  

 

 
represents a totally geodesic codimension 1 foliations of 

 if  is time-or-light-like i.e. n    0t t     
for any . t

Strictly metrical characterization of totally umbilical 
foliations of  were described by Lużyńczyk and the 
first author in [8] under assumption that an orthogonal 
transversal is a geodesic. 

n

Example 10 Well known examples of totally umbili- 
cal foliations of  are those by horospheres of the 
same end, totally geodesic orthogonal to a given geodesic 
or to a horocycle.  

n

1) A light ray of the shifted light cone 1
1
n  repre- 

 

 

Figure 2. Totally geodesic foliation  orthogonal to a 
geodesic 


 . 

 

Figure 3. A canal surface with its spheres. 
 
sents a foliation by horospheres with the same endpoint 
on the ideal boundary.  

2) The intersection of de Sitter -space n 1
0
n  with 

the time-like plane 2 1 0x x xn n     represents a 
totally geodesic foliation orthogonal to a geodesic.  

3) The intersection of de Sitter --space n 1
0
n  with 

the space-like plane 0 3 1n n 0x x x x      repres- 
ents a totally geodesic foliation orthogonal to a horocy- 
cle.  

3.2. Foliatons by Surfaces 

Some of hypersurfaces are envelopes of families of 
spheres. In particular, envelopes of one-parameter fami- 
lies of 2-spheres are objects which are well understable. 
They are easily represented as curves in de Sitter space 

4 . 
Definition 11 An envelope of an one-parameter family 

of 2-spheres is called a canal surface. 
If a canal surface is a common envelope of two dis- 

tinct one-parameter families of spheres we say that this 
surface is a Dupin cyclide.  

Typical examples of a canal surface are a torus, a 
round cylinder, a cone of revolution or more generally a 
regular surface of revolution. A conformal image of a 
cylinder with a family of generating spheres is shown on 
Figure 3. 

Dupin cyclides could characterized in another way as 
conformal images of tori, cylinders and cones. 

In [5,6] the authors characterized foliations of  
with canal leaves proving that such foliation comes only 
from the Reeb foliation by inserting a torical region filled 
out by tori and cylinders. 

3

Some sophisticated methods led Langevin and Paweł 
Walczak to the fact that foliating compact hyperbolic 
3-manifold is impossible neither by umbilical nor Dupin 
leaves. 
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