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ABSTRACT 

The mechanism of natural branching is explored, which is characterized by branch dynamics, where interior dynamics 
and exterior dynamics reveal the unified mechanism of physical and biological phenomena. While interior dynamics is 
characterized by gene-interaction, gene-interchange and gene-interpretation via the quaternion mathematical processes 
of Cayley-Dickson branching, Grassman branching and Euclidian branching, exterior dynamics is characterized by 
multi-vector physical unification. Everything in the world is linked by branches, and the dynamic mechanism of the 
branching phenomena is approached by branch dynamics. 
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1. Introduction 

The phenomenon of branching is omnipresent in our 
world. We can see branches anywhere, whether in the 
cosmos or in bio-organisms, in mountains, rivers, trees, 
fingers and blood vessels. Everything develops with 
branches. Branching is a general natural process in the 
world, reflecting the unity of the nature. So, branches 
should be brought into our thinking about physical reality 
[1]. 

Let us begin with quaternion and multi-vector mathe- 
matical methodology for describing branches. 

2. Mathematical Foundations and the 
Structure of Branches 

When we choose a quaternion basis {1, i, j, k}, there are 
2 2 2 1i j k ijk      

and 

, ,ij ji k jk kj i ki ik j         . 

Then a quaternion q is denoted by 

0 1 2 3q q q i q j q k                    (1) 

Equation (1) can also be written as the form of dual 
complexes 

  0 1 2, ,q v jw v q iq w q iq      3      (2) 

when we introduce a scalar function 0q   and a vec- 
tor function  1 2 3, ,

 ,q  A                       (3) 

And when we record Equation (1.4) as 

   , ,q v w z z                  (4) 

it is a Cayley-Dickson construction [2]. 
So, there exist scalar-vector branching and Cayley- 

Dickson branching in quaternion and we can call the 
branches a Hamilton representation of a quaternion, which 
guides us into the branch world. 

Meanwhile, there is multi-vector Mk (k = 0, 1, 2, 3, 4), 
where Mk is a multi-vector of grade k. k = 0 is scalar, k = 
1 vector, k = 2 bivector, k = 3 pseudovector and k = 4 
pseudoscalar [3-5] as 

0 1 2 3 4M M M M M M

V B iU i A B 
    

        
       (5) 

in which Ψ = φ – iθ constructs a complex wave function 
of matter, while A = V – iU forms a complex vector func- 
tion of matter particles in space-time and F maintains a 
bivector as interaction. Equation (5) means that matter 
combines wave function and vector function with their 
interaction, which is an image fitting the duality of wave- 
particle, within the concept of combining mass and ener- 
gy as matter. 

The conjuncture of M is 

0 1 2 3 4M M M M M M

V B iU i A B 
    

        
      (6) 

A q q q , Equation (1) can be also re- 
corded as a scalar-vector construction of quaternion M can be divided into two parts, even M, M+, as left M, 
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ML, and odd M, M  , as right M, MR: 

0 2 4LM M M M M       B         (7) 

1 3RM M M M    A                 (8) 

The reversion of multi-vector M, denoted by M , can 
be defined as 

0 1 2 3 4M M M M M M                 (9) 

In order to describe the branching process, quaternion 
and multi-vector mathematics are suitable. When we 
combine quaternionic algebra, geometric algebra and cal- 
culus, the mathematical structure for branch dynamics 
will become apparent. 

Suppose R, C, and H denote respectively real, complex, 
and quaternion fields. For a complex  ,z x x 

z x

 Re q

 with 
, record  and , called the 

real part and imaginary part respectively. And for a qua- 
ternion  with , record 

Rx  Re z 

z z

x  Im

 ,q z C z  and 
, called the real or scalar part and 

vector or pure quaternion part respectively. 
 Ve q Pu q  z

While a quaternion (q) can be expressed by the sca- 
lar-vector construction and the Cayley-Dickson construc- 
tion, there is a conjugation of q 

  , ,q A z     z              (10) 

with q q  and norm 
3

2 2

0
i

i

qq qq q q


    . Then we 

have 

   1
Re R

2
q q q                 (11) 

and 

   1
P

2
Ve q q q                  (12) 

where  and P constructs 3-dimentional Eucli- 
dean vector space. 

H R P 

Using Pauli matrices and Dirac spinors [6-8], we know 
that a quaternion can split into 2 × 2 complex matrices by 
substitution 1 2 3, , , ,i j k i i i       [9], where i  are 
the standard complex Pauli matrices as follows (together 
with unit matrix 0 ) 

0 1

2 3

1 0 0 1
, ,

0 1 1 0

0 1
,

0 0 1

I

i

i

 

 

   
     

  
   

       

0


         (13) 

and Dirac matrices become 

0

00
,

00
k

k
k

I

I


 


 

      




1

          (14) 

in which . 2
0 1 2 3 1 2 3 0; ;k ki i            

So, a quaternion has an equivalent representation 

which we can call the Pauli representation as 

  0 1 2 3
0 1 2,G A A A A 3               (15) 

We see that Equation (15) is the same as the conjuga- 
tion of q, Equation (10), as i iG G  , which means 
that the Pauli representation and Hamilton representation 
become conjugations of each other. The algebraic struc- 
ture shows that the Hamilton representation and Pauli 
representation exist naturally for a quaternion, which 
constructs a conjugation pair. 

In the Hamilton representation, there are a Cayley- 
Dickson branch, a Grassman branch and a Euclidian 
branch, in which the Cayley-Dickson branch is produced 
by the multiplication of quaternion G1 and quaternion G2 
with the form of the dual complex function form as 

 1 2 1 2 2 1 1 2 1 2,G G Z Z Z Z Z Z Z Z               (16) 

The Grassman branch produced by the multiplication 
of quaternion G1 and quaternion G2 with the form of sca- 
lar-vector representation as left branch 

  
 

1 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2

, ,

,

G G A A

A A A A A A

 

   



     
    (17) 

and a similar Euclidian branch as right branch 

   
 

1 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2

, ,

,

G G A A

A A A A A A

 

   

  

     
  (18) 

Noncommutative associative quaternion algebra pro- 
vides rich algebraic branch structures, which establishes 
the foundations of branching. And a similar structure 
could be broadened to octonion (both quaternion algebra 
and octonion algebra belong to Clifford algebra), if we 
abandoned the associative property and then got only the 
alternative algebraic structure. 

For multi-vector M, the frame basis can be unified in 
geometric algebra, spanned by 
 

1 {γμ} {σk, iσk} {iγμ} i 

1scalar 4vectors 6bivectors 4pseudovectors 1pseudoscalar

 
And for multi-vectors M and N, the geometric product 

is defined as 

MN M N M N               (19) 

where. means inner product and  outer product. 

3. Interior Dynamics of Branches 

Using the idea of genes, if there are two quaternion genes 
G1 and G2 in a physical or biological system, with the 
following forms 

   1 1 1 1 1, ,G Z Z A  ,    2 2 2 2 2, ,G Z Z A   (20) 
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where we can call φi information functions and Ai poten- 
tial functions (i = 1,2), their algebraic branches will con- 
struct their interior dynamics. This process (called 3I) 
includes the following steps. 

3.1. Gene Interaction 

A multiple of two genes will produce a Cayley-Dickson 
branch, a Grassman branch, and a Euclidian branch. 

The Cayley-Dickson branch determines the main- 
stem: 

 1 2 1 2 2 1 1 2 2,G G Z Z Z Z Z Z Z Z            (21) 

A scalar-vector branch produces various branches, and 
new genes will be produced when information functions 
and quality-quantity functions interact in a Grassman 
branch 

 
 

1 1 2

1 2 1 2 1 2 1 2 1 2

1 1

,

,

N

N N

G G G

A A A A A A

A

   





     



   (22) 

and a Euclidian branch: 

 
 

2 1 2

1 2 1 2 1 2 1 2 1 2

2 2

,

,

N

N N

G G G

A A A A A A

A

   



 

     



  (23) 

3.2. Gene Interchange 

The combination or mutation of two genes will also pro- 
duce new genes such as 

 3 2 ,N N NG A 1 4 1,N N NG ,       (24) 2A

3.3. Gene Interpretation 

A gene may develop or represent in time-space (t, s) and 
interact with its environment. During this process, frac- 
tals will be generated at the ends. 

When genes and time-space are present, a physical 
body will be generated naturally. This is a unified interi- 
or mechanism of nature. 

4. Exterior Dynamics of Branches 

Synthesizing mathematical quaternion and multi-vector 
and physical theories [10-12], the world is described by 
notations 

;M A B M A B               (25) 

;i i                       (26) 

;A U iV A U iV                  (27) 

and 
M A G           

 G G G ig G G G G

G T B

        

 
  

     

  
    (29) 

Keeping the local gauge invariance of physical laws, 
we know 

e , e ;i i  1                (30) 

1 1 1A A RA R R R
g   

                  (31) 

1G G UG U  
                      (32) 

where R means Lorentz rotation and matrix UU–1 = I. 
When the left branch is driven by M+ = Ψ – B and right 

branch by M   = A and Ψ = φ – iθ and A are linked by 
following equation 

1
0A

c t


  


                (33) 

we see that the exterior dynamics is mastered by 

 F ig B B        
               (34) 

and 

F A A   
                   (35) 

so the system Lagrangians become 

1
,

4
L F F f


      B           (36) 

 1

4
L F F f


     A

x

             (37) 

As action 4dS L   and 0S  , one knows dyna- 

mical mechanism. 

5. Branch Dynamics of the Physical and 
Biological World 

Branch dynamics can naturally produce physical and bio- 
logical branching in cases where two genes act with each 
other in quaternion space-time. Via the main-stem proc- 
ess of gene-interaction, gene-interchange and gene-inter- 
pretation in interior dynamics, various branches are gen- 
erated and form fractals at the ends. When left and right 
branching are controlled by physics, exterior developing 
can be naturally formed. 

5.1. Two Branching 

When interior genes are mastered by gene functions Gi 
and Gj, it will produce a Grassman branch 

 ,i j i j i j i j i j i jG G A A A A A A            (38) 

             (28) and a Euclidian branch 
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 ,i j i j i j i j i j i jG G A A A A A A            (39) 7. Acknowledgements 
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At present, whether exterior development is dominated 
by left or right action, two branching will be produced. 
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