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Abstract 
 
In the prequel to this paper we introduced eight reproducing graph models. The simple idea behind these 
models is that graphs grow because the vertices within reproduce. In this paper we make our models more 
realistic by adding the idea that vertices have a finite life span. The resulting models capture aspects of sys-
tems like social networks and biological networks where reproducing entities die after some amount of time. 
In the 1940’s Leslie introduced a population model where the reproduction and survival rates of individuals 
depends upon their ages. Our models may be viewed as extensions of Leslie’s model-adding the idea of net-
work joining the reproducing individuals. By exploiting connections with Leslie’s model we are to describe 
how many aspects of graphs evolve under our systems. Many features such as degree distributions, number 
of edges and distance structure are described by the golden ratio or its higher order generalisations. 
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1. Introduction 
 
Networks are everywhere, wherever a system can be thought 
of as a collection of discrete elements, linked up in some 
way, networks occur. With the acceleration of infor- 
mation technology more and more attention is being paid 
to the structure of these networks, and this has led to the 
proposal of many models [1-3]. 

In many situations networks grow-expanding in size as 
material is produced from the inside, not added from 
outside. To study network growth we introduced a class 
of pure reproduction models [4,5], where networks grow 
because the vertices within reproduce. These models can 
be applied to many situations where entities are intro- 
duced which derive their connections from pre existing 
elements. Most obviously they could be used to model 
social networks, collaboration networks, networks within 
growing organisms, the internet and protein-protein interaction 
networks. One of our systems (model 3) has also been 
introduced independently [6], proposed as a model for 
the growth of online social networks. 

In our pure reproduction models networks grow 
endlessly in a deterministic fashion. This allows a rigo- 
rous analysis, but costs a degree of realism. Nature in- 
cludes birth and death and entities may be destroyed for 

reasons of conflict, crowding or old age. In this paper we 
consider age; and extend our models by including vertex 
mortality. 
 
2. The Models 
 
In [5] we defined a set { : {0,1, ,7}}mF m   of eight 
different functions mF  which map graphs to graphs. 

( )mF G  is the graph obtained by simultaneously giving 
each of G ’s vertices an offspring vertex and then 
adding edges according to some rule. The connections 
given to offspring depend upon the binary representation 
  of m  (i.e. = 4 2m     ) as follows: 

= 1   offspring are connected to their parent’s 
neighbours, 

= 1   offspring are connected to their parents, 
= 1   offspring are connected to their parent’s 

neighbour’s offspring. 
In our age capped reproduction models we think of the 

vertices as having ages. Graphs grow under these models 
exactly as before, except that vertices grow and then die 
when their age exceeds some pre-specified integer Q . 
Our new update operator ,m QT  is defined so that , ( )m QT G  
is the graph obtained by taking the graph G  and perfor- 
ming the following process; 
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1) Increase the age of each vertex by one. 
2) Give every vertex an age zero offspring, born with 

connectivity dependant upon m , as above (i.e. the new 
graph is ( )mF G ). 

3) Remove every vertex with age greater than the age 
cap Q . 

We are interested in the sequence }{ tG  of graphs 
which evolve from an initial structure 0 0 0= ( , )G V E  in 
such a way that 1 ,= ( )t m Q tG T G , 0t  . We always 
suppose that initial vertices have age Q . 
 
3. The Number of Vertices 
 
The number of vertices | |tG  in tG  is deeply connected 
with the golden ratio and its generalisations. The number 

t
in  of age i  vertices in tG  can be conveniently descri- 

bed in terms of Leslie matrices. 
In Leslie’s population model [7,8] individuals of age 

i  have a survival rate is  and fertility rate if . The 
expected number of individuals of a given age, at a given 
time, is kept track of via repeated multiplication of the 
state vector with the ‘Leslie matrix’ 
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In our case 1 = .t tn L n  where  0 1= , , ,
Tt t t t

Qn n n n  
and L  is the Leslie matrix with = = 1i is f , i . 

L  is a primitive matrix with characteristic polyno- 
mial 

1

=0

=
Q

i Q

i

x x   

and principle eigenvalue Q  (also known as the 1Q   step  

Fibbonacci constant). The golden ratio is 
1/2

1

1 5
=

2
 

,  

2 = 1.8393 , 3 = 1.9276 , 4 = 1.96559  and 2Q   as 

Q  . When t is large 1 =t t
Qn n  where  

      1 2
= 1, , , ,

TQt
Q Q Qn c   

  
  is the stable age  

distribution and c  is a constant which depends upon the 
initial state of the system. 

Let ,0 ,1 ,= ( , ,..., )T
i i i i Qd     where ji,  is the Krone- 

cker delta. The n  step Fibonacci numbers [ ]n
if  are 

natural generalisations of the famous Fibonacci numbers 
[9] which can be generated by repeatedly multiplying 

0d  by L . When 0G  is age zero (i.e. all its vertices have  

zero age)  0 0=| | .t t
i i

n G L d , where   [ 1]
0 1. =t Q

t ii
L d f 

  . In  

such a case tG  will have [ 1]
0 2| | . Q

tG f 
  vertices. 

4. Binary Strings 
 
As we update our graphs, their vertex sets will grow, and 
a good way to keep track of these vertex sets is to use 
binary strings. Suppose v  is a vertex of 0G . When we 
update G  we write ( ,0)v  and ( ,1)v  to denote v ‘s 
offspring, and v  itself (respectively), in the graph 1G . 
This means, for example, that (( ,0),0)v  is the grand 
child of (( ,1),1)v  in 2G . We use short hand by omit- 
ting the parenthesis, so for example we write ,0),0)((v  
as 00v . An example of the evolution of model 2  is 
shown in Figure 1. 

When our age cap =Q   an initial graph 0 0 0= ( , )G V E  
will evolve in exactly the same way as in pure repro- 
duction i.e. 0= ( )t

t mG F G ; this will have vertex set 

0 {0,1}tV   and edge set as specified in [5]. When Q  is 
finite the situation is more complex, but our binary string 
notation allows us to keep track of the ages of vertices in 
a convenient way. 

Let ab  denote the concatenation of binary strings a  
and b  and let ta  denote the string obtained by conca- 
tenating a  with itself t  times. Suppose ( 01 )nv a  is a 
vertex of tG  for some 1{0,1}t na   . Now ( 0)v a  is a 
new born offspring in t nG   and every subsequent 1  in 

( 01 )nv a ’s name corresponds to an update within which  
 

 

Figure 1. A depiction of the evolution of model 2 when 
= 2Q , starting with an isolated vertex named p . 
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this vertex survives as a parent and gets older by one. It 
follows that ( 01 )nv a  will be an age n  vertex in tG . 

Theorem 1 
If every vertex of the initial graph ),(= 000 EVG  is 

age zero then tG  will be the subgraph of 0( )t
iF G  in- 

duced upon the vertex set t
QWV 0 , where tt

QW {0,1}  
denotes the set of all t  length binary strings which do 
not contain a run of 1Q   consecutive 1 ’s. 

Proof 
Suppose tG  is the subgraph of 0( )t

iF G  induced 
upon 0

t
QV W , as is clearly the case when = 0t . An age 

n  vertex va  in tG , with 0v V , will produce an 
offspring ( 0)v a  in 1tG . va  will also survive to 
become ( 1)v a  iff <n Q . Such an a  must be of the 
form 01n  or 1n . It follows that 1tG   will be the 
subgraph of 1( )t

iF G  induced upon 0V X  where X  
is the set of all ax  with t

QWa  and {0,1}x  such 
that 1

1 2 1Q
t n t n ta a a x 
     . Clearly X  is 1t

QW   so 
we can use induction with t  to prove the result  . 

If the initial graph holds vertices of non-zero age; tG  
can be obtained by taking the structure described in 
theorem 1 and removing every vertex of the form 

(1 )nv a , where n  plus the age of v  (in 0G ) is greater 
than Q . 
 
5. How Edges Connect Vertices of Different  

Ages 
 
To keep track of the number of edges of tG  it helps to 
consider how vertices of different ages link to one 
another. Let S  denote the Leslie matrix with all 
survival rates set at one and all fertility rates set at zero. 
Let F  denote the Leslie matrix with all survival rates 
set at zero and all fertility rates set at one (note 

FSL = ). Let us define the age sampling vector 
 0 1= , , ,

T

QX X X X  of a vertex to be such that iX  
is the number of neighbours it has of age i . 

Applying the QmT ,  update will cause an age Qn   
vertex to have an offspring with age sampling vector  

 , , 1( ) = ( ). 1 .m n n Q no X S F X d            (1) 

and also, provided Qn < , this vertex will also survive 
the QmT ,  update to become a parent with age sampling 
vector  

0( ) = ( ). . .mp X S F X d            (2) 

Equations (1)  and (2)  describe how the age sampling 
vector of a vertex determines the age sampling vector of 
itself and its offspring on the next time step. Repeatedly 
using these equations allows us to understand how the 
history of a vertex relates to its connectivity. The sequ- 
ence of zeros and ones in a  tell us the sequence of birth 
and survival stages which lead to the creation of a vertex 

va  in tG  Given this information one can compute the 
age sampling vector of va  by performing the corres- 
ponding sequence of ,m no  and mp  operations-starting 
with the age sampling vector of the initial vertex, v , in 

0G . 
Let ,

t
i je  denote the number of edges of tG  that 

connect vertices of age i  to vertices of age j . We con- 
sider how t

jie ,  evolves in order to describe the growth 
rate of the number of edges in the different models. The 
vector ,0 ,1 ,= ( , , , )t t t t

i i i i Qe e e e  is equal to the sum of the 
age sampling vectors of all of tG ’s age i  vertices and 
hence satisfies the equations 

  1
0 , 1

=0

= ( ) 1 . ,
Q

t t t
j j Q j j

j

e S F e n d   
      (3) 

1
1 1 0> 0 = ( ). . . .t t t

i i ii e S F e n d 
          (4) 

Since the graphs we are concerned with are undirected 
we have t

ij
t

ji ee ,, = , ji, . 
The average asymptotic rates of increase of the 

minimal and maximal degrees for the different models 
are given in Table 1. We use the term average because, 
under some models, these extremal degrees increase at 
varying rates dependant upon the time modulo 1Q . 
These rates where found by determining which binary 
string describes a vertex with maximal (or minimal) de- 
gree and using Equations (1)  and (2) . For example, su- 
ppose the initial graph 0G  is age zero, and holds a 
vertex v  with maximal degree, ( )deg v , also suppose 

= .( 1)t n Q c  , for Qc  . When = 1m  the vertex 
va , with  = 1 0 1

nQ ca , will have maximal degree in 

tG . This vertex will have age sampling vector 
 .

nc QL S L  0( ( ). )deg v d . The degree of the vertex with 
this form will increase by  1

Q

Q   every subsequent 
1Q   time steps, and so it follows that the average 

asymptotic rates of increase of the maximal degree when 
= 1m  is   / ( 1)

1

Q Q

Q


 . 
 
Table 1. A table showing the average asymptotic growth 
rates of the minimal and maximal degrees under the 
different models m . The notation LIN( x ) indicates that 
the extremal degrees increase linearly (as opposed to 
exponentially) with time with gradient x . 

m  growth rate of the 
minimal degree 

growth rate of the 
maximal degree 

0 0 0 

1 0 /( 1)

1( )Q Q

Q


  

2 0 1 

3 1 /( 1)

1( )Q Q

Q


  

4 1 1 

5 Q  Q  

6 LIN( Q ) LIN( 1Q  ) 

7 Q  Q  
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6. Connectivity, Degrees and Distances in  
Specific Models 

 
In this section we will focus on reproduction mechanisms 
with {1,2,3,5,6,7}m , one after another, and discuss 
the development of: connected components, number of 
edges, degree distributions, average path length and 
diameter. We do not discuss the dynamics when = 0m  
or = 4m  because they are relatively uninteresting. 

Before we discuss the specifics it is worth pointing out 
an effect that occurs under many models. We say that a 
graph is age mixed when each of it edges connect a pair 
of vertices with different ages. 

If = 0  and Qt >  then tG  will be age mixed. 
The reason is that when 0=  offspring are not born 
connected to one another. So when Qt >  all of the 
initial vertices will be dead, and tG  will never again 
produce linked vertices with the same age. 

Saying that tG  is age mixed has many implications, 
for example it means that tG  has chromatic number 

Q  because its vertices may be coloured according to 
their ages. 
 
6.1. Aspects of Model 1 
 
Suppose = 1m  and we begin with a connected graph. 

tG  will typically consist of a growing connected 
component and lots of isolated vertices. 

In the special case when > = 1t Q , updates do not 
cause the connected part of tG 's structure to change. 
The reason is that tG  is age mixed and every new born 
vertex either has a dead parent, which it replaces, or no 
surviving neighbours. 

Suppose 0 0 0= ( , )G V E  is an age zero graph with 

0u V . Any vertex ua  of tG  will be isolated iff a  
holds a run of 1Q  consecutive zeros. 

To see this note that theorem 1, together with results 
from [5], imply that vb  will be a neighbour of ua  iff 

0{ , }u v E , t
Qb W  and = 0 = 1i ia b , i . Now if 

a  holds a run of 1Q   consecutive zeros then this 
means b  holds a run of 1Q  consecutive ones, which 
means t

Qb W , so no neighbour vb  can actually exist. 
On the other hand if a  does not hold a run of 1Q  
consecutive zeros, and 0},{ Evu   then tEvbua },{ , 
where ii ab 1= , i . 

Let t
iY  denote the set of t  length binary strings of 

the form iax  where a  is any it   length string which 
does not hold a run of 1Q  consecutive 0 ’s or a run 
of 1Q  consecutive 1’s, and {0,1}: t ix x a   . By 
our argument above the number of non-isolated vertices  

in tG  will be 0 =1
| | | |

Q t
ii

G Y . For example consider a  

string 6
1100110 Y  (when 2=Q ), this string can be 

thought of as being responsible for generating the strings 
7

11001101 Y  and 7
21001100 Y  at the next time step. 

Following similar reasoning one can see that, for generic 
Q , we have the difference equation; 

1
1 1

1
2 2

1
3 3

1

| | | |1 1 1 1

| | | |1 0 0 0

= ,| | | |0 1 0 0
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which involves the QQ  Leslie matrix. It follows that 
the number of non-isolated vertices in tG  increases 
asymptotically at a rate of 1Q   (whilst the total number 
of vertices grows at a rate of Q ), meaning eventually 
almost every vertex of tG  will be isolated. 

Although vertices do get destroyed during the the 1,QT  
they are always replaced by offspring which link to their 
old neighbours. The only way that a component of 0G  
could be disconnected under the update (in a non-trivial 
way) is if 0G  has a cutset of edges that connect pairs of 
age Q  vertices. This can only happen during the first 
Q  updates. 

Regarding the edges, Equations (3) and (4) lose their 
dependance upon t

in  and ,> = 0,t
i it Q e i  . Given 

these considerations we can reduce (3) and (4) to the 
following system of linear difference equations: 

, {1, 2, , }i j Q    such that <i j ,  

2
1

0, , 1 1,
=0 =

=
Qi

t t t
i n i i n

n n i

e e e



               (5) 

1
, 1, 1= .t t

i j i je e
                  (6) 

We can cast this system as a matrix difference equation 
which describes the evolution of  

0,1

0,2

0,
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t

t

t
Q

t
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t
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t
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t
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e
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e 
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                    (7) 
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The matrix which describes how (7) changes is primi- 
tive with principle eigenvalue Q  so the number of edges 
in tG  increases at a rate of Q  asymptotically. 1=1 , 

2 2= = 1.8393  , 3 = 2.3336  and 2.6077=4 . In 
general Q  increases with Q  and 3= . 

Let )(nDt  denote the number of vertices of degree 
n  in tG . Computer simulations suggest that when 

nt <1  we have     1

1 1. = . ( )t Q Q tD n D n 


    so it 
appears at the high end, as if the distribution obeys a 
geometric law. Whilst it seems there is some pattern in 
the degree distribution at the high degrees, the behaviour 
of the distribution of the lower degree vertices is more 
mysterious. For example it appears that when 1>Q  
there will be less degree 1 vertices than degree 2 vertices 
when t  is large. 

Global notions of distance (such as diameter) do not 
really make sense when 1=m  because the structure is 
disconnected, with many isolated vertices. 
 
6.2. Aspects of Model 2 
 
Introducing an age cap into the 2=m  model leads to 
fascinating self replicative behaviour. Whatever graph 
we begin with we end up with a set of special tree graphs 
that grow up and break into more tree graphs. Let t

QS  
denote the graph obtained by starting with an age zero 
isolated vertex and evolving updating it with 2,QT , t  
times. This graph will have vertex set t

QW  and a pair of 
vertices ba,  will be adjacent iff {1, 2, , }k t    such 
that {1, 2, , }i t    we have ii baki =<  , =i k    

i ia b  and 1==> ii baki  . 
To understand the self replicative behaviour in t

QS  it 
helps to understand the self similarity of tS , the oldest 
and most central vertex of which is t1 . Consider any 
neighbour nnt 011 1  of t1 . Since structures grow out of 
every vertex in the same way; the subgraph, t

nX , 
induced upon the vertices 1{1 0 : {0,1} }t n nx x    which 
grew out of nnt 011 1 , over n  time steps, will be 
age-isomorphic to the graph nS  which grew out of the 
initial vertex, over n  time steps (by age-isomorphic we 
mean there is a one to one mapping, from one vertex set 
to the other, which preserves the adjacency, non-adjacency 
and ages of the vertices). 

More generally =t t
QS S  when Qt  , and 1Q

QS  is 
the graph obtained by taking 1


QS  and removing the 

oldest vertex, 11 Q . Since 1t
QS  is a tree, the removal of 

11 Q  causes the graph to break into numerous components, 
namely 1 1 1

0 1, , ,Q Q Q
QX X X   . Since 1Q

nX   is age-iso- 
morphic to nS , it follows that 1Q

QS  consists of 1Q  
different connected components, one age-isomorphic to 

nS  for each Qn  . Each of these connected components 
will evolve in the same manner-growing until the age of 
its central vertex exceeds Q , at which point it will 

fragment into yet more of these special trees. 
Any initial graph will evolve to become a set of these 

trees after 1Q  time steps. The reason is that when 
2= Qt  all of the initial vertices will have died. This 

means the oldest surviving ancestor of any vertex in 

2QG  will be a vertex which was born when 0>t . If a 
pair of vertices lie within the same connected component 
in 2QG  then they will have the same oldest surviving 
ancestor, and it follows that every connected component 
of 2QG  is a tree structure which grew out of a vertex 
that was not initially present, and is hence age 
isomorphic to nS  for Qn  . 

Let t
nC  denote the number of connected components 

of tG  which are age-isomorphic to nS  for Qn  . 
The vector 0 1= ( , , , )t t t t T

QC C C C  satisfies the matrix 
equation tt CC .=1  , where 

0 0 0 1

1 0 0 1

= .0 1 0 1
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is equivalent to the transpose of the Leslie matrix L . It 
follows that when t  is large t

nC  will increase at a rate 
of Q  and the probability that a random connected 
component is age-isomorphic to iS  will be  

( 1)

=0

( 1)

=0 =0

1
= = .

1
1

1

i
x

iQ
Qx

i Q y Q
x Q

Q
y x

Q

p

Q

 





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



 
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
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     (8) 

The number of edges is described by the equations: 
1

1
0 1

=0

= . ,
Q

t t
j j

j

e n d



               (9) 

1
1 1 0> 0 = . . .t t t

i i ii e S e n d
          (10) 

When Qt >  we will have 0=,
t

iie , i . This implies 
that , {0,1, , }: <i j Q i j    we have 1

, 1=t t i
i j j ie n  

   and so 
the number of edges in tG  increases at a rate of Q  
asymptotically. 

We can gain the asymptotic form of the degree 
distribution of tG . First note that the graph iS  has i2  
vertices. The number of degree k  vertices in iS  will 
be  

  , ,0 ,0 ,0= 2 1 . .i i k
k k i k i k             (11) 

Now the probability 
( )

| |
t

t

D k

G
 that a randomly selected  

vertex of tG  will be of degree k  will be equal to [the 
probability that a randomly selected vertex of tG  be- 
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longs to a connected component isomorphic to iS ] times 
[the probability that a randomly selected vertex of iS  
will have degree k ], summed over all {0,1, , }i Q  . 

For large t  the probability that a randomly selected 
vertex of tG  belongs to a connected component isomor- 
phic to iS  is  

 ( 1)

=0

2 1.2
=

.2

i ii
Qi

Q
r Q

r
r

p

p

 


         (12) 

where  
1

1 1

2
1

= 2 1 .
2

1

Q

QQ
Q Q

Q








 

            
  

      

    (13) 

The probability that a randomly selected vertex of iS  
will be of degree k  will be  

  , ,0 ,0 ,02 1 .
.

2

i k
k i k i k

i

       
     (14) 

Hence as t   we have 
( )

| |
t

t

D k

G
 will be equal to 

   ( 1)
, ,0 ,0 ,0

=0

2 1 2 1 .
.

.2

i i i kQ
Q k i k i k

i
i Q

           


 (15) 

Suppose t  is large. 

,
1

=
||

(0)
1

Q

Q

t

t

G

D



 
             (16) 

 ( 1)2 1( )
= ,

| |

Q
Qt

t Q

D Q

G

 


          (17) 

If 1 1k Q    then 
( )

| |
t

t

D k

G
 will be  

( 1)

2
1

2
2 . ,

2
1

Q k

QQ k k k
Q Q

Q

Q


 





  

              
    

         

    (18) 

and if {0,1,2, , }k Q   then 0=
||

)(

t

t

G

kD
. 

Once again we do not discuss distances because global 
notions of distance do not really make sense upon graphs 
which constantly disconnect. 
 
6.3. Aspects of Model 3 
 
Growth model 3  produces complicated structures; we 

can say a little about their connectivity using reasoning 
like that used when 1=m . Since newborn vertices are 
never linked, Qt >  implies that tG  will not hold any 
linked vertices with the same age. If 0G  is connected 
then tG  will usually be connected. When 0G  has a 
cutset of edges connecting pairs of vertices with the same 
age then 3, 0( )QT G  will be disconnected. This is the only 
way that structures can become disconnected, and it can 
only happen during the first Q  updates. 

With respect to edge numbers, there are many 
similarities in the way that tG  evolves when 1=m  
and 3=m . The only difference is that when 3=m  
offspring are connected to their parents, and this means 
that the equations which describe the evolution of t

jie ,  
gain a dependance upon the number of vertices. When 

Qt >  we will have 0=,
t

iie , i , and we will hence 
have that: 

, {1,2, , }i j Q    such that ji < ,  
2

1
0, , 1 1, 1

=0 =

=
Qi

t t t t
i n i i n i

n n i

e e e n



              (19) 

1
, 1, 1=t t

i j i je e
                  (20) 

In the 1=m  case the number of edges increase asym- 
ptotically at a rate of Q . The 3=m  case is similar 
except that the number of edges is bolstered by the 
number of vertices t

in , which increases at a lesser rate 
of Q . For large t  the effect of these additional edges 
is hence negligible and the number of edges again 
increases at a rate of Q . 

Like the 1=m  case computer simulations again 
suggest that when nt <1  we have  

    1

1 1. = . ( ),t Q Q tD n D n 


          (21) 

so the distribution again obeys a geometric law at the 
high end. 

When 1=Q  we can describe the evolution of the 
degree distribution exactly for any initial graph 0G  that 
is age mixed with no isolated vertices. Applying 3,1T  to 

0G  is equivalent to changing the age of each vertex 
(from 0 to 1, and from 1 to 0) and then, for each age 1 
vertex v , adding an age zero vertex that is only adjacent 
to v . 

Let )(dN t
x  denote the number of vertices of age x  

and degree d  in tG . 0t  we have  

0,=(1)1
1
tN                   (22) 

,(1)=)((1)=(1) 010
1=

1
1

0
ttt

i

tt nNiNNN 


     (23) 

),(=)(1> 1
1

0 dNdNd tt            (24) 

1).(=)( 0
1

1  dNdN tt              (25) 

Solving these equations implies , > 0t d  {0,1}x   
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that when 
2

1
>

 xt
d  we have  

 ,)/2()(1=)( 0
2mod1,1,   xtdNdN xtdx

t
x     (26) 

when 
2

1
=

 xt
d  we have  

(1),=)( 0
1

0
0 NndN t

x              (27) 

and when 
2

1
<

 xt
d  we have  

.=)( 21
0

dxtt
x ndN              (28) 

When we introduce mortality our graphs seem to get 
longer. Diameter and average path length become greater. 
This is a result of the death of old vertices (which tend to 
be more central), this decreases the ease with which one 
can travel between the extremities. 

Let tL  denote the sum of ),( vud  for each ordered 
pair of vertices ),( vu  in tG . The average length tl  is 
equal to 2. | |t tL G  . Let t

jiU ,  denote the sum of the 
distances ),( vud  between each ordered pair of vertices 

),( vu  from tG  such that either u  is of age i , v  is 
of age j  or u  is of age j , v  is of age i . When 

1=Q  the average length is given by  

 
0,0 0,1 1,1

2

0 1

= .
t t t

t
t t

U U U
l

n n

 


             (29) 

When 3=m  it seems as if both the average length 
and diameter of tG  increase linearly with t  whenever 
Q  is finite. In the special case where 1=Q  we can 
gain an exact description. 

Suppose that ),(= EVG  is a connected age mixed 
graph; if u  and v  are age zero vertices of G  then, 
after applying the 3,1T  update, ),(=1)1,( vudvud , 

1),(=1)0,( vudvud  and (provided vu  ), ( 0, 0)d u v  
= ( , ) 2d u v  . If u  is age zero and v  is age one in 

)(3,1 GT  then after the update we have ( 1, 0)d u v = ( , )d u v  
and 1),(=0)0,( vudvud . If u  and v  are both of 
age one then after the update ),(=0)0,( vudvud . The 
diameter of tG  will increase by two every two time 
steps and moreover the system obeys the equations  

 1
0,0 0,0 0,1 1,1 0 0 1= 2. 1 ,t t t t t t tU U U U n n n         (30) 

 1
0,1 0,1 0,0 0 0= 2 .t t t t tU U U n n             (31) 

.= 0,0
1

1,1
tt UU                   (32) 

These equations imply that 1tL  is equal to  

 
   

2

1 2 0

1 1
1 0 1 0

2. 2. 4

2. 3. 2 2. 1 ,

t
t t t

t t t t

L L L n

n n n n

 

 

  

   
       (33) 

which means that when t  is large, the average length 

increases linearly with  

.
15.10

14.8
=

1

1
1 





 tt ll              (34) 

For 1>Q  we have that )(3,1 GT t  is a partial subgraph 
of )(3, GT t

Q  which is a partial subgraph of )(3, GT t
 . 

This implies that the curve which describes tl , for 
generic Q  is bounded below by a constant (because of 
the =Q  case, see [5]) and bounded above by a 
straight line. 
 
6.4. Aspects of Model 5 
 
In this case, when 0G  is age zero, tG  may be obtained 
by replacing each vertex v  of 0G  with a cluster vC  
of [ 1]

2
Q

tf


  isolated vertices, and then connecting each 
vertex of uC  to each vertex of vC  whenever u  and 
v  where adjacent in 0G . It follows that  

[ 1]
2 0 [ 1]

2

( ) = . .Q
t t Q

t

n
D n f D

f


 


 
 
 

          (35) 

Equations (3) and (4) which describes the development 
of the edges may be cast as the matrix equation 

1
0 0

1
1 1

1
2 2

1

0 0 0

= .0 0 0

0 0 0 0

t t

t t

t t

t t
Q Q

e eL L L L

e eL

e eL

e eL









    
    
    
    
    
    
    

    





     
 

The matrix involved is clearly the Kronecker product 
of L  with itself, it is hence primitive with principle 
eigenvalue 2

Q . It follows that the asymptotic growth 
rate of the number of edges will be 2

Q . 
Suppose our initial graph is connected, non-trivial and 

age zero. tG  can be obtained by replacing each vertex 
by a cluster of [ 1]

2
Q

tf


  vertices. This means every ordered 
pair ),( vu  such that kvud =),( , in the initial graph 
gives rise to 1][

2
1][

2 . 





Q
t

Q
t ff  ordered pairs, spaced by 

distance k , in tG . In addition to this, every cluster 
adds  [ 1] [ 1]

2 22. 1Q Q
t tf f 
    to the total distance, by the fact 

that every pair of distinct vertices within a given cluster 
will be spaced by distance 2. It follows that the total 
distance of tG  will be  

 [ 1] [ 1] [ 1] [ 1]
2 2 0 2 2 0= . 2. 1 | | .Q Q Q Q

t t t t tL f f L f f G   
      (36) 

This means (irrespective of Q ) that when t  is large the  

average length approaches the constant 
||

2
=

0
0 G

llt  .  

The diameter of tG  will be the maximum of the diameter 
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of 0G  and 2 . 
 
6.5. Aspects of Model 6 
 
In this case tG  will be a connected graph that can be 
obtained by taking the t  dimensional hypercube graph 
and removing some vertices. The next graph in a 
sequence can be obtained by fusing together previous 
structures. For example when 1=> Qt , 1tG  can be 
obtained by taking the disjoint union of tG  and 1tG , 
choosing an isomorphism f  from 1tG  to the subgraph 
of tG  induced upon its age zero vertices (such an 
isomorphism always exists) and adding an edge from 
each v  vertex of 1tG  to )(vf . The age one vertices 
of 1tG  will be those which came from 1tG  , vertices 
which came from tG  will be age zero. 

The number of edges |||| tG , in tG , satisfies 1
0,0 =te   

|| ||tG , t
ji

t
ji ee 11,
1

, = 
  and ,= 1

1
0,

t
i

t
i ne 
  0>, ji . This 

implies  

1
1 ,

=0 =

|| ||= ,
Q Q

t
t i j

i j i

G e 
               (37) 

we can split the sums to get  

1
,

1=

1

0=

1
,

0=
1 ||=|| 






   t
ji

Q

ij

Q

i

t
ii

Q

i
t eeG          (38) 

making substitutions we find  

.||||||=||
1

0=

1

0=0=
1

it
j

iQ

j

Q

i
it

Q

i
t nGG 



          (39) 

When t  is large the minimal degree of tG  becomes 
large-implying that the average degree also becomes 
large. This implies  

1 1 1

=0 =0 =0 =0

|| || | | >
Q Q Q Q i

t i
t i t i j

i i i j

G G n
   


          (40) 

and so the asymptotic growth rate of the number of edges 
will be Q . 

Determination of the degree distribution when 6=m  
appears to be a difficult problem. Although some progress 
can be made when 1=Q  the resulting formulae are 
long and complicated. 

With respect to distances it appears that the diameter 
and average length of tG  increase linearly when t  is 
large. We can show explicitly that this is the case when 

1=Q . 
We say a graph is zero spanning if there is a shortest 

path between each pair of age zero vertices that only 
passes through age zero vertices. Updating any connected 
graph with 6,1T  will always yield a zero spanning graph. 
Supposing that tG  is a zero spanning graph, if u  and 
v  are age zero vertices of tG  then after updating with 

6,1T  we will have ),(=0)0,(=1)1,( vudvudvud  and 

1),(=1)0,( vudvud . If u  is age zero and v  is age 
one in G  then after the update we will have  

1),(=0)1,( vudvud and ),(=0)0,( vudvud . If u  
and v  are both age one vertices of G  then after 
updating we will have ),(=0)0,( vudvud . This implies 
that the system obeys the equations:  

1
0,0 0,0 0,1 1,1=t t t tU U U U              (41) 

  1
0,1 0,1 0,0 0 0 1= 2t t t t t tU U U n n n            (42) 

1
1,1 0,0=t tU U                (43) 

These equations imply that as t  the average 
length increases linearly with  

1
2

=
5t tl l   

The reasoning behind this is very similar to that when 
1=Q  and 3=m . The diameter of tG  will increase 

by one every time step once the graph becomes zero 
spanning. 
 
6.6. Aspects of Model 7 
 
When our initial graph 0G  is age zero tG  may be 
obtained by replacing each vertex v  of 0G  with a 
complete graph vK  on 1][

2



Q

tf  vertices, and then con- 
necting each vertex of uK  to each vertex of vK  when- 
ever u  and v  where adjacent in 0G . It follows that  

[ 1]
[ 1] 2

2 0 [ 1]
2

1
( ) = . .

Q
Q t

t t Q
t

n f
D n f D

f


 

 


  
 
 

      (44) 

With respect to the edges this case is similar to the 
5=m  case, except that there is an extra dependence 

upon t
in  caused by the presence of edges linking 

offspring to their parents. 
1

0 0
01

1 1
11

2 2

11

1

0 0 0

0 0 0
=

0 0 0

0 0 0 0

t t

t t

t t

Qt t
Q Q
t t

L L L L Se e

L Be e

L Be e

L Be e

Ln n











    
    
    
    
    
    
    
            





      



 

where nB  is the 1)(1)(  QQ  matrix such that 
, {0,1, , 1}i j Q    we have 0=,

n
jiB , except that 

1=0,
n

nB . 
In the 5=m  case the number of edges increase 

asymptotically at a rate of 2
Q . This 7=m  case is 

similar except that the number of edges is bolstered by 
the number of vertices t

in , which increases at a lesser 
rate of Q . For large t  the effect of these additional 
edges is hence negligible and the number of edges again 
increases at a rate of 2

Q . 
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Suppose our initial graph is connected, non-trivial and 
age zero. tG  can be obtained by replacing each vertex 
by a complete graph on [ 1]

2
Q

tf


  vertices. This means 
every ordered pair ),( vu  such that kvud =),( , in the 
initial graph gives rise to [ 1] [ 1]

2 2.Q Q
t tf f 
   ordered pairs, 

spaced by distance k , in tG . In addition to this, every 
cluster adds  [ 1] [ 1]

2 2. 1Q Q
t tf f 
    to the total distance, by 

the fact that every pair of distinct vertices within a given 
cluster will be spaced by distance 1. It follows that the 
total distance of tG  will be  

 [ 1] [ 1] [ 1] [ 1]
2 2 0 2 2 0= . 1 | | .Q Q Q Q

t t t t tL f f L f f G   
       (45) 

Interestingly this means that when t  is large tl  loses 
its dependance upon Q  and approaches the constant  

||

1
=

0
0 G

llt  . The diameter of tG  will be equal to the  

diameter of 0G . 
 
7. Discussion 
 
We have discussed many properties of age capped 
models, however many open problems remain. These 
include describing degree distribution when {1,3,6}m  
and demonstrating the linearity of average length when 

{3,6}m  (for generic Q ). 
There are many directions in which our models may 

be expanded. As highlighted by theorem 1, our models 
may be regarded as an extension of pure reproduction 
models by adding restrictions upon the language of 
binary strings which the vertices can possess. Many other 
restrictions could be considered, e.g. forbidding the 
subword 01 1Q  (which would correspond to saying 
vertices of age Q>  become infertile). 

Our models can be viewed as an extension of Leslie's 
population model, introducing the idea of a network 
which connects the reproducing individuals. We will 
further develop this connection by considering the evo- 
lution of generic Leslie matrices (so that individuals of a 
given age can have differing numbers of offspring and 
chances of survival). Taking this approach and consi- 
dering connectivity as stochastic (so that ,   and   
are probabilities, rather then binary integers) should yield 
models which directly simulate the development of ani- 
mal social networks and other phenomena. 

This paper demonstrates how our original reproducing 
graph models can be generalised in different directions 
whilst remaining analytically tractable. Perhaps the main 
reason these models are amenable to analysis is that the 
growth of one part of a graph is not influenced by the 
structure of another. This spatial independence allows 

one to understand the evolution of generic structures by 
studying the evolution of simple ones. 

There are many extensions of these models that it 
would be interesting to consider. In the future papers we 
will discuss the fascinating dynamics which can ensue 
when game theory is incorporated into these models. In 
this case we lose the spatial independence and dynamics 
of immense complexity become possible. It is also 
possible to extend many of the results here to cases 
where individuals produce several offspring-connected 
up in different ways. This kind of generalisation allows 
one model how the social networks of specific types of 
organisms grow in a more direct way. 
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