
International Journal of Modern Nonlinear Theory and Application, 2013, 2, 7-13 
http://dx.doi.org/10.4236/ijmnta.2013.21002 Published Online March 2013 (http://www.scirp.org/journal/ijmnta) 

Classic and Non-Classic Soliton Like Structures for  
Traveling Nerve Pulses 

Fidel Contreras1, Hilda Cervantes1, Máximo Aguero1, Ma. de Lourdes Najera2 
1Facultad de Ciencias, Universidad Autónoma del Estado de México,  

Toluca de Lerdo, México 
2Plantel Nezahualcoyotl, Universidad Autónoma del Estado de México,  

Toluca de Lerdo, México 
Email: maaguerog@uaemex.mx 

 
Received December 10, 2012; revised January 18, 2013; accepted January 28, 2013 

ABSTRACT 

After some reduction procedure made on the nonlinear evolution equation for nerve pulses, based on thermodynamic 
principles, new classic and non-classic traveling solutions have been obtained. We have studied this model for par- 
ticular values in the parameter space, and obtained both the bell and compacton like solutions. These nonlinear traveling 
waves could be responsible for transmitting efficiently the necessary information along the axons. The non-classic 
structures named as compactons, due to their robust configuration, could be considered in some sense a more realistic 
type of nonlinear chargers of information. The last solutions do not have tails and as adiabatic waves could propagate 
along the nerve with constant velocity that could be equal, smaller or higher than the sound velocity.  
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1. Introduction 

One of key fundamental problems in biophysics is to 
understand how nature makes to carry information with- 
out significant distortion along distances between two 
considerable long separated centers. Now it is well estab- 
lished that the dynamic of ionic currents through voltage 
channels is responsible for the change of the membrane 
potential in nerve tissues. As is well known the first 
measurements on ionic currents were performed by 
Hodgkin and Huxley (HH) in the 50s [1]. In 1966 Katz 
[2] proposed for traveling pulse the soliton traveling pul- 
se as a simplest model for this activity.  

Later, the Hodgkin and Huxley system was developed 
independently by Richard FitzHugh, and Jin-ichi Na- 
gumo [3,4]. Based on the work of Balthazar Van Der Pol, 
FitzHugh proposed a simplified neuronal model of Hodg- 
kin and Huxley. For its part, Nagumo suggested as ana- 
logous neuronal, a nonlinear electrical circuit, controlled 
by an equation system also similar to those of Van Der 
Pol currents. The proposed simplified analog of these 
authors, is called FitzHugh-Nagumo model. Being sus- 
ceptible fairly complete analysis, the FHN system allows 
a qualitative understanding of the phenomenon of excit- 
ability, from the point of view of dynamic systems [5] 
and constitutes a classical model of neurophysiology. 
The current importance of this model is beyond the scope  

of biophysics and neurophysiology, being of interest to 
researchers who need to understand the wide range of 
nonlinear phenomena accompanying the phenomenon of 
excitability. By introducing an approximate scheme to 
the famous model of Hodgkin-Huxley, Muratov in his 
paper [6] obtained solitary wave pulse for nerve conduc- 
tance and obtained the value of velocities that are in 
agreement with experimental results.  

Recently, Heimburg and coworkers have developed a 
model for nerve pulses that support soliton like solutions 
[7-10]. The model is constructed considering the nerve 
axon as a one dimensional cylinder with lateral density 
excitations moving along the axes that is represented by 
the coordinate z. This model shows the appearance of 
lipid phase transition slightly below physiological tem- 
peratures. Given measured values of the compression 
modulus as a function of lateral density and frequency, 
soliton properties can be determined by the velocity of 
the traveling waves. That is, resuming we can say that 
this theory is based on the lipid transition from a fluid to 
a gel phase at slightly below of body temperatures. The 
effects of nonlinearity and dispersion as is common 
would be responsible for appearance of soliton like struc- 
tures in nerve membrane in the gel state [10] and more 
recent results on soliton and periodical solutions can be 
found in [11].  

On the other hand, as is well known, classical solitons 
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possess infinite tails that could implicate some distortions 
at long distances far from the excited zone. This constric- 
tion could also be applied to nerve solitons as well. How- 
ever, according to several important results from experi- 
ments made on nerve axon, there is a suggestion that the 
nerve pulse need to be narrow and probably they could 
posses depreciable tails. Fortunately, several types of 
non-classic solutions without or depreciable tails were 
found in a wide class of nonlinear processes in physics.  

We suppose that along the axon, not only well famous 
bell solitons could propagate, but also non-classical soli- 
ton like solutions named compactons could be excited 
and travel carrying needed information. Thus, our main 
interest in this contribution is to show the appearance of 
compactons along the nerve, that is, solitons without tails. 
This nonlinear robust entity will eventually fit more real- 
istically to the features of that waves that are reported on 
nerve pulses in the literature. We use the model of Heim- 
burg and coworkers [9] and by applying the trivial boun- 
dary condition we found some non-classic soliton like 
solutions. Thus, in the next section we briefly expose the 
main nonlinear evolution equation for nerve pulses. In 
the III section we show that compact solutions with the 
trivial boundary condition could appear and will travel 
with sonic, subsonic and supersonic velocities along the 
nerve. The section IV is devoted to discuss the main 
properties of the found solutions, and finally in the last 
section we discuss some features around the found solu- 
tions and outline further implications of the model pre- 
sented.  

2. Equation of Motion for Nerve Pulses  

The detailed discussion on methods and proposals for 
obtaining the nonlinear differential equation which is the 
subject of our analysis, could be found in the appropri- 
ated literature, see for example [7-10]. The theory is 
based on hydrodynamic properties of a density pulse in 
the presence of dispersion. The authors started with the 
classic wave propagation equation in the absence of dis- 
persion along the quasi-one dimensional axon:  

2
2

2

U
c

U

x xt

     


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                 (1) 

being 0
AU   

A
 the change of density in the mem- 

brane, 0  is the density of the membrane at physio- 
logical condition slightly above of melting transition. 
This “field” is supposed to have dependence of coordi- 
nate x and time t. The excitations are moving along the 
coordinate x. Here c is the sound velocity with the value 

  1 2A A
sc  


 , being A

s  the compressibility. Subse-  

quently, it is added the additional term responsible for  

dispersive effects 
4

4
Uh
x




. This term appears by ex-  

perimental evidence on the relation between frequencies 
and velocities. For getting available nonlinear real dis- 
persion relation the next term after the second derivative 
with respect to the variable x would stay the correspond- 
ing fourth derivative [11]. Next, Since the compressibil- 
ity depends on the “field” U in the similar fashion of the 
Kerr Effect from nonlinear optics (is this the Nerve Kerr 
effect in biomembranes?) it is assumed that the velocity 
of the traveling waves can be represented in terms of 
Taylor series around the velocity of sound and now de- 
pends on the variable U as [9]   

2 2 2 3
0c c pU qU rU     .            (2) 

Finally, one can conclude that the partial differential 
equation for propagating waves can be represented as  
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  
.     (3) 

As can be easily seen this equation is similar if we re- 
strict ourselves to take only the first two terms of the 
Taylor series in the rhs of Equation (2), to the well 
known Boussinesq like equation.   

 26u u u u  
0.                (4) 

It is possible then to study the nerve pulse in the 
framework of a completely integrable system like Bous- 
sinesq one (with restrictions) as a very special case for 
which the solutions obtained there could fit some ex- 
perimental results. The Boussinesq like Equation (4) de- 
scribes in addition to the bright or regular solutions, also 
singular or anti-cusp travelling solitons [12]. For these 
solitons (for instances, superficial waves under gravity, 
ionic acoustic waves) with wave numbers 1,k �  their 
vacuum state will not collapse under the effect of weak 
perturbations like ie kz    [13]. The complete analy- 
sis at the first approximation leading to the well posed or 
improved Boussinesq equation should be reported else- 
where.  

Despite the great effort for research concerning these 
type of models, and results, there is a question that still is 
waiting its successful solution. Indeed these theories pre- 
dict the appearance of solitary waves with broad exten- 
sion i.e. broad excitation region that contradicts experi- 
ment results. The experiments made with nerve pulses 
show the existence of narrow localized region of excita- 
tion. Thus, there is a big possibility that these pulses are 
in fact solitons but without tails. As is well known the 
classical solitons possess tails that could eventually in- 
teract at long distances that subsequently would degener- 
ate the whole pulse to charge the needed information. So, 
the effort in this sense will be assumed to find solitons 
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without tails i.e. solitary waves named regular or singular 
compactons.  

As is well known, such solution with finite span is 
currently found in many natural processes. Thus, in this 
direction Rosenau and Hyman [14] discovered the com- 
pactons in the generalized nonlinear model of KdV equa- 
tions that described the pattern formation in liquid drops. 
The equation they analyzed was the modified KdV (m, n) 
equation  

    0, 0,1 3m n
t x xxx

u u u m n      .        (5) 

For the case m = 2, n = 2 It is possible to found  

  24
cos

3 4c

x t
u x t

   
 


               (6) 

where the solution is valid only inside the interval 
2πx t  , and vanishes outside of this interval. These 

solutions including interact elastically like hard spheres 
do not possess infinite tails. The invariance under the 
transformation  and t  produces the anti- 
compactons.  

u u t 

After this important discovery, compactons have found 
diverse applications in natural science, we cite here a few 
of them, for example in viscous films [15], DNA dy- 
namics [16], ocean dynamics [17], nonlinear lattices [18], 
stability of compactons was investigated in [19], etc.  

3. Traveling Non Classic Solutions  

Let us investigate different kind of solutions that can be 
obtained by making suitable transformations of parame- 
ter values on the Equation (3). By making the standard 
transformation for considering the existence of traveling 
waves along the nerve, we introduce the new independ- 
ent variable . Thus, the Equation (3) can be 
transformed to the next one  

z x vt 

 
2

2 2 2 3
02

d 1 1

2 3d

U
h c v U pU qU C

z
           (7) 

here C is a constant that is obtained after integration. 
This equation is very similar to a common equation that 
represents the Newton second law of mechanics. After 
subsequent standard transformation one can obtain the 
next equation  

 
2

2 2 2 3 4
0 0

d
+2

d 3 6

U p q
h c v U U U CU

z
       
 

V    (8) 

with being  and  the parameters that appear in the 
Taylor expansion and  the constant of integration.  

p q

0

Now let us study this equation by taking in mind the 
trivial boundary condition, that means at long distances 
from the main excited zone the perturbation pulse van- 
ishes and also its first derivative. Thus, we have for this 
boundary condition the standard requirement  

V

d
if , then 0 and 0

d

U
z U

z
   .         (9) 

By applying this restriction the constant of integration 

0  satisfies: 0V 0V  . It is important to mention that this 
value does not depend on any experiment conditions, the 
only restriction is that far from the excited zone of exci- 
tation the perturbation wave disappears.  

3.1. Traveling Solutions with Sound Velocity 

First, let us consider the case: , when the nonlin- 
ear wave will move with the sound velocity along the 
axis z. Analyzing the possible consequences of this re- 
duction, one can find that at the maximum amplitude 
value of solitary waves the right hand side of the Equa- 
tion (8) for trivial boundary condition has three solutions, 
i.e. we face with an algebraic cubic equation. At the sim- 
plest case when 

2
0c v 2

0C   we can obtain two solutions for 
the U difference density. So, in both cases the maximum  

amplitude (when d 0
d
U
z
  and 

2

2
d 0
d

U
z

 ) of possible  

solitons is not equal to zero and the solution could exist 
as we demonstrate in the next subsection. Thus, we per- 
form analytic studies for two sub cases, indeed. 

1) Sub-case: 0C  . In this simple case by integrating 
the Equation (8) we obtain the following solution  

 
 

2
2

0

2

6

p
U z

p
z z q


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.            (10) 

By avoiding singular behaviors, the possible solution 
in this case is achieved by assuming the negative value of 
the parameter q. If this is satisfied, we can obtain a soli- 
tary wave that resemble the well known bell like soliton, 
see Figure 1. This analytic solution is named also alge- 
braic soliton solution. Such solutions are less tightly lo- 
calized than their hyperbolic counterparts; their tails fall  
 

 

Figure 1. Algebraic soliton that travels with same velocity of 
sound along the axon. For illustrative purposes we put the 
following values for parameters: p = 3, q = −18. The high 
amplitude corresponds to small values of parameter p. 
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off with a power-law distribution, i.e., algebraically. 
2) Sub-case: . For this sub-case it was also 

possible to find a particular physical interesting compact 
solution when the parameters of the equation of motion 
(8) satisfy the condition  

0C 

2

3

8

81

q

Cp
  .                  (11) 

For all compact type solutions we will follow the next 
strategy. Compacton solutions will be constructed by 
patching a compact portion of a periodic solution that is 
zero at both ends to a solution that vanishes outside the 
compact region to give a weak solution to the equation. 
We see that the condition for a weak solution for Equa- 
tion (3) in the case of traveling waves with independent 
variable  is that the jump across the boundary 
of the equation of motion at  is  
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0z

0
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The integration of the Equation (8) yields the follow- 
ing compact soliton like solution  

   
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2

2

Tan
for π,π

3 2 Tan
U
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
 


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with the new variable  0
6
2
BC z z      and the 

parameter 2

18
p

B
C

  .  

This solution survive only in the segment mentioned 
above and exactly vanishes outside of this region and 
satisfies the trivial boundary condition. The points π,π  
are that points where the solutions and its first derivative 
vanish and satisfy the condition of solvability (12). Next,  

it is assumed that 0
3
p
  or . The Figure 2 shows  0C 

that this solution does not possess the long tails and is 
confined in a narrow segment of the nerve membrane.  

3.2. Traveling Compact Soliton Solutions  
When  v c

2

0 0

Now we can show other type of solutions that support the 
thermodynamic model [1]. We will investigate the solu- 
tions that have different velocities which has the sound. 
Again we use the Equation (8) but now 0 . If this is 
the case, we obtain solutions that resemble the well 
known compact like solitons. For this case, we slightly 
transform the right hand side of the Equation (8)  

2
0c v


2

2 3d
1

d

U
h CU U aU bU

z
     

 

 

Figure 2. Compact soliton like structures that travels with 
the same velocity of sound along the axon. Here the pa- 
rameters we used are ζ0 = 1.57, B = 0.33, C = 4.  
 
with the renamed parameters   

 2 2
0

, ,
2 6

c v p
a b

C C



  

12

q

C
.          (15) 

Without lost of generality we can choice 1h  . In 
order to solve the differential Equation (14) it seems 
natural to introduce the following ansatz: Soliton like 
structures are available if the parameters of the strong 
model satisfy the following relation:  

  22 , 2 3b A A a A    2A .        (16) 

Then, after integration we again obtain a perfect com- 
pact like solution.  

When this is satisfied, one trivially can obtain the so- 
lution for the density displacements  U   that takes 
the form of compact soliton like solution  

   
     

2

2

Tan
, for 2π

3 2 Tan
U

A A


 

  
 

  
  (17) 

with    0

1
3

2
C A z z     

0

. As can be observed  

this specific solution exists by avoiding singularities i.e. 
in the particular case only for negative parameter values  

2B A   .                 (18) 

The Figure 3 shows the robust configuration of the 
soliton like solution. For these moving compactons with 
velocities differing from the sound one, the parameters a 
and b satisfy the following relation  

  2
2 21

2 3 3
27

b k a a       .     (19) 

       (14) 

This expression depends on the soliton velocity by vir- 
tue of Equation (15). Outside of this dependence between 
the parameters the solutions probably will not admit com- 
pact support. The Figure 4 is the graphic representation  
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Figure 3. Subsonic traveling compacton like structure, simi- 
lar to the case of sonic compactons. Here the utilized pa- 
rameters are ξ0 = 1.57, A = 1, k = 1, C = 2.  
 

 

Figure 4. The Taylor coefficients p, q from Equation (8) are 
related as shown in this picture according to the Equation 
(19) in order to find traveling compact solutions. 
 
of the Equation (19). This expression gives to us the wide 
spectrum for using the parameter values.  

By deploying the constraint (18) we obtain the pa- 
rameter region of available velocities. Thus, when 0   
the velocity corresponds to subsonic waves, i.e.  

2
0 2

3

pC
v c  .                (20) 

If the values of  we obtain supersonic soliton 
waves with the next segment of values  

0 

2 2 2
0 0 2

3

pC
c v c   .             (21) 

One of the implications of these relations is that it 
would travel along the axon robust solitonic waves with 
speed greater than the sound velocity.  

4. Energy of the Classical and Non-Classical 
Structures 

The energy of solutions obtained for the ordinary nonlin- 
ear differential equation i.e. for traveling solutions can be 
calculated by using the energy density, which in some 

sense could be considered as energy density of a me- 
chanical analog particle. The integration with respect to 
the variable   in the interval  π π   for compactons 
can be directly evaluated using the energy density. From 
the Equation (8) one can notice that the kinetic energy is 
equal to the potential one for the “mechanical analog 
particle”. This leads to find the total energy as  

 0

0

d
z

z

W U
E

h





  z                   (22) 

with the “potential” piece of energy density  

   2 2 2 3 4
0 2

3 6

p q
W u c v U U U CU     .    (23) 

Thus for the first algebraic soliton that moves with the 
same sound velocity the energy in dependence of the 
main parameters p and q is expressed as (where h = 1)  

     5 2 3 22 2

2

6π 5π

6
s

p q p q
E

p q

 
      (24) 

The energy for the second compacton solution that 
moves with the sound velocity is  

 
   

3
1 4

2

π
1536 2 6
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cE B
B

Bp q


   

     

C
   (25) 

with 2
6
2
BC  . 

Finally the last compacton solution has the following 
expression for its energy. 

 
 2 2 2

2 04

2π
2 6

3 2 2
cE q pA A

A C A k
c v     

. 

This total energy depends on the velocity of the non- 
classical solution. For avoiding singular solutions, when 
the values 0C  , traveling compact solution could 
emerge only when the velocities satisfy the relation 
2A 0  , that is in complete accordance with the 
previous analysis made on the parameter space (18) for 
obtaining subsonic and also supersonic compact solutions. 
Here the parameters A and  are determined by the 
Equations (15) and (16).   



5. Conclusion 

We have discussed in this contribution the appearance of 
classical and non-classical soliton like pulses along the 
axon based on the pioneering work of [9]. The classical 
bell shape soliton shows infinite tails in contrast to the 
non classical solitons i.e. compactons without tails. These 
solutions could eventually be responsible for various fun- 
damental processes inside the nerve. The evaluation of 

Copyright © 2013 SciRes.                                                                              IJMNTA 



F. CONTRERAS  ET  AL. 12 

density displacements U along the nerve can be carried 
out straightaway by integrating their corresponding non- 
linear equations. We consider that the displacements va- 
nish at distances sufficiently far from the excitated zone. 
Therefore, in both direction of the axis  , at long dis- 
tances from the active zone, the density displacements 
will disappear forming the physical interesting case of 
zero boundary conditions. By taking in mind this physi- 
cal reason and by integrating the nonlinear equation pro- 
posed in the work (3), for specific parameter regions, 
several soliton like solutions have been obtained. We 
have found solutions that move with the same velocity of 
the sound i.e. sonic solitons and also subsonic and su- 
personic compactons. These last structures could repre- 
sent apparently more realistic the propagation of nerve 
pulses with narrow width along the quasi-one-dimen- 
sional model of axons. The compact solutions do not 
possess the infinite tails like common traditional solitons 
and are similar to hard spheres. They appear as a conse- 
quence of the physical trivial boundary condition and 
weak condition of solvability plus due to some restric- 
tions on the parameter space of the model. The velocity 
of the traveling compactons is restricted by the values of 
physical concrete parameter values, i.e. by the relation 
(18) where k is defined from Equation (15). This inequal- 
ity determines the maximum value of the pulse velocity. 
This means that these waves could charge the informa- 
tion efficiently faster between the two significant sepa- 
rated centers along the nerve axon. It should be interest- 
ing to check which one or both of these possibilities take 
place in real experiments. The properties (including its 
shape and its energy) can be determined uniquely as a 
function of compacton velocity. Given a measured com- 
pacton velocity, the theory contains freely adjustable 
parameters and has the virtue of being feasible. As soon 
as the nonlinear excitations in whichever segment of the 
axon structure is being activated by the presence of ex- 
ternal agents for example, phonons, etc, nonlinear com- 
pacton waves could appear, describing realistically the 
density displacements.  
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