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ABSTRACT 

Given an asset with value , we revisit the Black and Scholes dynamics tS  d log dtS t t       when the driving 

noise t  is a non-Gaussian super-diffusive stochastic process with variance of the type 2t t . This super-diffusive 

quadratic variance behavior, synthesizes a ballistic component which would occur in strongly fluctuating environments. 
When   , the assets can, with high probability, be driven towards the bankruptcy . This extra dynamic fea-

ture significantly affects the management of an optimal portfolio. In this context, we focus on basic decisions like: 1) 
determine the optimal level to sell the asset; 2) determine how to balance a portfolio which incorporates such a high 
volatility asset; and 3) when facing incertitudes on the asset’s growth rate 

0S

 , construct an optimal adaptive portfolio 

control. In all mentioned cases and despite the presence of this highly non-Gaussian noise source, we are able to deliver 
simple exact and fully explicit optimal control rules. 
 
Keywords: Black-Scholes Dynamics; Non-Gaussian Volatility; Optimal Stopping; Adaptive Optimal Control; Exact 

Solutions 

1. Asset Dynamics Driven by a 
Super-Diffusive Noise Source 

For time , let us consider the basic scalar Black 
and Schole (BS) type dynamics 

t 

  0, 0,t t tS S S      0,        (1) 

where the driving process t  is generally a not White 
Gaussian noise (WGN) stochastic process. In presence of 
such a general noise source, the solution process tS  
Equation (1) is generally not Markovian. Accordingly, 
besides the initial position 0 , additional information re- 
garding the state of the noise source t

S
  is mandatory to 

characterize the time-dpendent statistical properties of 

t . Contrary to the “classical” BS driven by the WGN, 
optimal asset management, based on optimal stopping 
rules and/or optimal dynamic portfolio composition, 
cannot be taken based solely on information of the 
asset’s value level at a given initial time. This seems 
truly natural, indeed decisions taken under random en- 
vironments often rely not only on 0  but possibly on 
additional features characterizing the underlying fluctu- 
ation processes, in particular non vanishing correlations. 
Hence, often actual applications requires that one escapes 
the pure WGN’s world. In finance, this aspect has been 
essentially pioneered in [1] and subsequently it triggered 
a strong research activity involving non-Gaussian vo- 

namic feature of the environment is definitely played by 
correlations affecting the assets volatility. This last 
aspect motivated a former work of ours [2], in which we 
fully and exactly discuss optimal stopping issues for the 
dynamics Equation (1) when t

S

S

latility models. Another, though intimately related, dy- 

  is an alternating Mar- 
kovian renewal process, (i.e. a continuous time two- 
states Markov chain). In this particular case, besides 0S , 
the additional information required to construct opti l 
decisions is the knowledge of the initial state of the noise 
source, i.e. one basically needs to know whether initially 
the noise tendency is to increase or decrease the nominal 
growth rate 

ma

 . As general noise sources are finitely 
correlated, co trary to the n  -correlated WGN, they 
potentially offer a more realistic stylization of actual 
environment. This general remark contributes to motivate 
our present note where we shall unveil a class of ele- 
mentary correlated noise sources in the BS dynamics for 
which we are still able to analytically master the mathe- 
matical description. In the sequel, for 0t t , we focus on 
the dynamics: 

  0

0

, 0,

tanh[ | , 0,
t t t

t t t

S dt dZ S

dZ Z dt dW Z

 
 

dS  0, 


  
 


   (2) 

where the -noise source obeys the scalar diffusion tdZ
process 

0tanh[ | , 0,t t tdZ Z dt dW Z         (3) 
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a given constant and  a standatW
ian

0   
s. Fo

rd Wiener with 
proces r the highly non-Gauss  process defined by 
Equation (3), one can nevertheless derive the very simple 
properties of the transition probability density, (see for 
examples [3] and [4]): 

     0 0 0, | 0, , | 0, ,
2

z t t G z t t     (4) 

with the definition: 

1
, | 0,P z t t G  

 

 
 

 

2
0

02

0

0

e
, | 0, .

2π

z t t

t t

G z t t
t t

    


 


         (5) 

The use of Equation (4) implies that the first moment 
and the covariance respectively read: 

 2

0,tZ

min , .t sZ Z st s t 
        (6) 

Besides enjoying the simple moments given in Equation 
(6

 


), it has been shown in [5], that the process tdZ  is the 
unique non-Gaussain stochastic process that exhibits 
Brownian bridges. The superposition of a couple of Gaussian 
densities appearing in Equation (4), suggests that the 
process Equation (3) can alternatively be represented in 
another manner and indeed, as it has been rigorously 
shown in [6], the tZ  realizations coincide with those ob- 
tained from the couple of drifted Brownian motions: 

  0, 0,t tdZ dt dW Z        (7) 

where  is a -independent  1, 1  
 variable (r.v

tW
ng t

Bernoulli 
random .) taki he values  1  with 
symmetric probability 1 2 . In other words, th rocess 
described by Equation (7) should be understood as 
follows: “at initial time operate the Bernoulli choice of 
the drift and then evolve according to the resulting 

e p

 -drifted Brownian motion”. 
At this stage, we emphasize that the process 

 , , lnW S  is a degenera
process on the

t t te Markovian diffusion 
  state space      21 , 1   . Using the 

noise representation given b to the basic 
dynamics Equation (2), we can directly calculate the mar- 
ginal probability density 

   0 0, | : , | ,0 dmP s t s P s z s z   and it takes the form: 

y Equation (4) in

     

 
     

 
2

0

0 0 0

log log

2
0

1
, | , |

2

1
, | e log .

2π

m

s s t

t

P s t s ds G s t s

G s t s ds d s
t

 

 

     



   


    

 

Hence, for strong ballistic component occurring w

, | ,G s t s ds

(8) 

hen 
, the minus part of th  margin

de
proba

e  0, |G s t s  al 

nsity converges, in the long run, to the Dirac delta 
bility mass: 

   lim , | .G s t s s          (9) 0
t



Equation (9) therefore shows that ev
positive asset’s growth rate, (i.e. 

en for strictly 
0 

e S 

), the super- 
diffusive noise in Equation (2) can actually drive the 
process towards the bankrupt stat 0  with pro- 
bability  1 2  given by Equation (8). The possibility to 
reach a bankrupt state with high probability should pre- 
pare us t ive new optimal management policies for 
such strongly fluctuating assets. At this stage, it should 
already be clear that the noise source representation in 
Equation (4) offers a very simple mathematical approach 
to discuss several non trivial problems in finance and this 
will be explicitly explored in the next sections. 

2. Optimal Level to Sell an Asset 

o der

n by Equation Consider the standard BS dynamics as give
(2) with 0  , (hence dZ dW ). One t t

to determine the critical level S  at which one should 
optimally sell the asset w lity function is: 

naturally asks 

hen the uti

  0e | .S a S


            (10) 

In Equation (10)   is a discounting
be chosen such tha

 rate, which will 
t    and 

co
0a   

al st

is a transaction 
st. As it is explicitly discussed in Section 10.2.2 in [7], 

the exact solution of this optim opping problem 
recommends sale of the asset when its value equals or 
exceeds the optimal level S  given by: 

2

with
1

S a



 



1 1
2 1.

2 2
   

                  

  (11) 

For 0   
n. He

 to ta

in Equation (2), the process  alone is 
Markovia nce, only the observation of the asset level 
en

 tS

e ables ke the optimal decision. On th contrary, 
when 0  , the tS  process alone does not remain 
Markovian, (due to correlations of the noise source tdZ ), 
and th  an optimal selling decision can only be 
taken if we provide additional information regardin e 
noise source. The Bernoulli representation in Equation (7) 
shows that the knowledge of the initial realization of the 
r.v.   is here the required additional information. Once 
this information is available, one is very directly driven 
to consider separately the following couple of regimes:  
 The realization of the Bernoulli variable is 1

erefore
g th

 . 
This implies: 

a)        never sell the asset (i.e the utility 
steadily continues to increase leading the stopping time 
to be =  ). 
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b)        use directly the result given by 
Equation (11) with the substitution    . 
 The realization of the Bernoulli variable is 1  . 

This implies: 
a) 0         use directly the result given by 

Equation (11) with the substitution    . 
b) 0      bankruptcy is reached with pro- 

bability  1 2  and according to Equation (9) one should 
sell the asset imm tely at time 0edia   . 

3. Optimal Portfolio Dynam alic B ancing 

pro- 
 one 

he d

Here, one asks to determine the optimal portfolio 
portion between a risky asset S  and a fully safe1,t

2,tS , in order to ensure that, at a given time horizon T , 
the maximal utility, say  U T , ll be achieved. For the 

N driving noise, this problem is explicitly solved  
Example 11.2.5 in [7]. T ynamics of the couple of 
assets reads: 



 wi
WG  in

1, 1, 1, 0 1,0

2, 2, 2, 0 2,0,
t t t t

t t tdS bS dt S s



 

, ,dS S adt dW S s   


.
  (12) 

where  are the asset’s growth rates. Bya b  writing 
 p t  the proportion 

t , the r
of the capital invested in the risky asset 

at time esulting capital dynamics tC  evolves as 

      1 .t t t tdC p t C adt dW p t bC      (13) 

For the specific class of utility functions given b

14) 

it is established in [7] that the optimal proportion 

y: 

 U t 
     (
 
0 for 0 ,

for , 1,T

t T

C t T 

 

 

p  is 

.
1

a b
p


 



            (15)   

Accordingly the optimal portf
realized by: 

 (16) 

When replacing  in Equation (12) with our corre- 
lated noise source defined in Equation (3), the re- 
su

onl

olio balance will be 

1

2

0 1 compose with fixed proportion

as in Equation (15),

0 invest all the capital in the fully

safe asset .

p

p

p

S





  


  



1 invest all the capital in asset ,p S



  


tdW

tdZ  
eslting process 1,tS  do  not remain Markovian. Hence, 

the optimal portfolio can y be determined provided 
additional information on the noise tZ  is given. Again 
this information is contained in the initial value taken by 
the r.v.   in Equation (7). Accordingly, the optimal 
portfolio composition initially given by Equation (15) 
now has to be modified to take into account the noise 

correlations. According to the value taken by  , two 
alternative optimal proportions are found: 

when the initial realization is 1,
1

a b
p




 

when the initial realization is 1.
1

a b
p








   
     

will be given by
give

ence o

 

 

(1
and consequently, the optimal decisions  
Equation (16) with the modified proportions n by 
Equation (17). 

 Sections 2 and 3, that, in pres f the 



7) 

4. Adaptive Optimal Control Problem 

We have seen in
ballistic noise source tZ , the construction of 
decisions necessarily require knowledge of the i

optimal 
nitial 

realization of  . Now, one may wonder, whether only a 
partial knowledge of tZ  could be compensated by an 
ad-hoc adaptive control policy enabling, as time evolves, 
to estimate part of the missing information. Specifically, 
let us assume that we riori know the value of a p   in 
Equation (3) but we however ignore the actual realization 
    1 , 1   initially taken by  . As time evolves, an 

ad-hoc estimator gains sufficient information on tZ  to 
enable the construction of optimal stategies. This proble- 

en formalized by I. aratzas [8] for WGN 
driving noise. In this section, we will extend Karatzas’ 
results for the t

matic has be K

Z  noise source. Following the lines 
exposed in [8], we start by considering the stochastic 
process: 

 , 0, ,t tY W bt t T           (18) 

where b  is a random variable with known probability 
density  b db

the W

 directly


ndent of 

. The r.v.  is assumed
depe iener process . We fur

n ntrol pro

b  to be in- 
ther assume t

that neither the process tW  nor the value of b  can be 
observed . Observations can however be made on 
the process tY  itself and we define; 

   0 00
π d , 0,1 .

T

t s tX x s Y x X       (19) 

In Equatio (19), we introduce a co

W

cess  π   

e 
which aims at maximizing the probability to r
right-endpoint of the interval within a 
ho

ea
fixed tim

ch the 
  

rizon t T . To fix the ideas, one may for exa  
interpret the process t

mple
X  to represent the logarithm of an 

asset value tS  as in Equation ( . Let us write 1)  0V x  
for the value function of the resulting adaptive optimal 
control problem (AOCP) and therefore we formally 
express: 

 
 

     0 ,π
0 0

π
sup 1 , 0,1 .P xV x X T x


     (20) 

̂Writing  the corresponding optimal control, Equ-  
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ation (20) therefore reads: 

 noise sources. For this case, 
is shown to obey a dynamic programming equ- 



and Equation (21) is supplemented by a set o
priate boundary conditions to be found in [8]. The asso- 
ciated optimal control  is given by: 

        0 ˆ,π
0 1 0,1 , 0,1 .P xV x X T x     0

In a remarkable contribution [8], Karrazas solves the 
above AOCP for pure BM
 0V x  

ation (DPE) exhibiting the form of a parabolic Monge- 
Ampère partial differential equation: 

   

      2

,

, , , ,

, , , , , , ,

s xx

xx yy x y

Q s x y Q s x y

Q s x y Q s x y Q s x y
    


  (21) 

   0 0

2

, ,0 :Q T x V x





 

f appro- 

 π̂ t

      0 ˆ,ππ̂ , , , 0 .xy x

xx

Q
t T t X t Y t t T

Q
       (22) 

Let us now consider a fully similar problem by re- 
placing the BM with the super-diffusive noise E
(3). Thanks to the noise representation given in Equation 
(7

quation 

), one concludes that when substituting tdZ  in place 
of tdW  in Equation (18), the Karatzas’ approach and 
results Equations (18)-(20) can be straight-forwardly 
used provided one simply modifies the inal pro- 
bability distribution  b  by the convolution: 

 

orig

     
  

1 2 d

.

b b u u u u

b b

    

 

        
  




 (23) 

2

 

Hence, invoking [8] together with Equation (23
possible regimes differentiated by the support of 

), two 
 b  

have to be considered separately: 

pt ma

 

 rev

1)  b  has its support strictly lying on either the 
positive or the negative axis. In this case, the o i l 
control policy can be derived and it obeys a certainty- 
equiva principle (CEP) holds. To briefly explain the 
CEP mechanism, assume first that the optimal policy 
holding when the parameter db b  is known with cer- 
tainty in Equation (18) is explicitly known. When b  is 
unknown but drawn from a probability distribution 

 b , the CEP ensures that ng db  by a suitable 
optimal time-depend estimator of  b̂ t  yields the opti- 
mal control. 

2)  b  has its support simultaneously lying on the 
positive and negative axis. In this situation, [8] shows 
that drastically different optimal control policy holds. 

p

lence 

replaci

The ious classification therefore depends inti- 
mately on the noise amplitude   in Equation (3) and 
for both situations 1) and 2) and fully explicit results are 
available, (see Appendix). For large values of  , i.e. 
highly volatile noise sources, (see Equation (6)), the 
drastic difference between cases traced 

back to the possibility to effectively have negative drifts 
(i.e. 0

1) and 2) can be 

   ) with probability  1 2 . When such 
negative drifts occur, the use of the certainty-equivalence 
principle (CEP) is precluded and the resulting optimal 
control is structurally different. 

Ex tration. Consider the where  
0db b

 

 case plicit illus
   is exactly known and therefore  
   db b b    in presence of the tZ  noise source. 

In this case, Equation (23) reduces to 

     1 2 d db b b b b                (2

e that db

4) 

and let us assum  , hence we are in case 1). 
For the WGN, i.e. when 0  , it follows from the 
pion rk [9], ndix), that th
spon functio  and optimal

eering wo
ding value 

 (see Ap
n 0 ,V x

pe
 T

e corre- 
 control 

 π̂ t  read: 

   

      

1
0 0

1
0

, ,

sign
π̂

d

d

V x T x b T

b T x
t





      

.
Y t

T t T t


  



  

    
where the notation are given in Appendix, see Equations 
(29) and (30). Now in presence of the 

   (25) 

tZ  no
ation (3), i.e. when 

ise Equ- 
 and assuming 0 db 0  , the 

use of Equation (6.5’) in [8], (i.e. Equation (28) in the 
Appendix) with Equation (24) implies that Equation (25) 
has to be modified as:  

     
    

1
0 0

1

1
,

2 dV x T x b T

 
     

   

0

1
0

1
0

ˆsign
π̂

1
.

dx b T

b t Y t T x
t

T t T t

Y t T x

T t T t

















        

      
  


          
         

   (26) 

Equation (26) directly follows from the CEP which 
holds since db 

port. Hen
ˆsignb b

 implies that  has a positive 
definite sup ce substitutin

t

 b
g 

   sign d
 
 

esence of the super-diffusive noise. Here the explicit 
form of the e or 


pr

 yields the optimal control in 

stimat  b̂ t  can be explicitly found by 
using of Equation (4.4) of [8] and Equation (24) and for 
0 t T  , we have: 

     

    

 

2ˆ e d
d

tanh .

d

by t
2

1
,

2

d
log

d

b

y Y t

d

b

b b b
y

b Y t



b b b b

t

    

 





       


  


     
     


     


    (27) 
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and therefore as already written in Equ- 
ation (26). 

Let us close this section by a couple of remarks: 
a) For a given fixed drift, when

 ˆsign 1b t     

    db b , b  
al control is given 

ependent of the 
and with BM driving noise, the optim
by Equation (25) and its form is ind
volatility amplitude. This is drastically different for non- 
Gaussian tZ  as the volatility amplitude   drastically 
affects the stru imal control; 

b) In this
cture of the opt

 model, the information a priori required to 
co
of

nstruct the optimal control is the volatility amplitude 
   only and not initial knowledge o - 

zation of  . It is the adaptive filtering mechanism 
which provides the missing information on  . This has 
therefore to be contrasted with the former situations en- 
countered sections 2 and 3 where both 

f the initial reali

in   and initial 
realization of   are a priori needed. 

5. Conclusion 

While several dynamical situations involving stochastic 
differential equations driven by the super-diffusive noise 
source Equation (3) have recently received attention in 
physics [3,4] and various optimal control problems [10], 
the use of this noise source in finance rem ins yet un- 
explored and this motivates our pre

a
sent note. As the

produces a quadratic increase of the
tility) with time, it may lead the asset

fit 
from constructive discussions with Dr. R. Filliger and Dr. 

Uhlenbeck-Based Models and Some of Their 
Uses in Financial Economics,” Journal of the Royal Sta-
tistical Society p. 167-241. 

[2] R. C. Dalang an t Time to Sell 

 
 super-diffusive noise 

variance, (i.e. vola s 
towards the bankrupt state with high probability. When 
bankruptcy becomes highly probable, one observes rather 
drastic modifications in all optimal stopping decisions 
and portfolio’s compositions. These modifications are 
easily calculated for the super-diffusive noise source 
Equation (3). This offers the possibility, in a very simple 
way, to investigate exactly non-Gaussain and correla- 
tion’s effects in assets dynamics. The super-diffusive 
noise source used here provides a simple and quite effi- 
cient didactical tool to escape the ubiquitous Gaussian 
world in which most exactly soluble models belong. 
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Appendix 

Here we simply list, some of the results derived in [8]. 
For  0,1x  and , we have: y

Case 1), Probability distribution  has positive 
support: 

 b

 

 

   

     

 
    

 

2

2

2
1

0

12
0

2

1

2

e d ,

0 ,
, ,

e d , 0,

1
π̂ e

T s
by b

b T
by

Y t T x

T t

x b s b b

s T
Q s x y

b b x s

t
T t








 

 
 

  

    





      

  
 
    
  











  

(28) 

where we use the notation: 

 
2

2
1

e d 12 1 Erf ,
2π 2

z
x x

x z




  
     

  
    (29) 

 
2

2
1

e .
2π

x

x


           (30) 

For the case probability distribution  b  with 
purely negative support, the situation is, up appropriate 
signs changes, entirely similar and we do not reproduce it 
here. 

Case 2) Support of the probability distribution  b  
without definite sign. 

For  0,1x  and y  and the notation  
 : , ;A A s y x ,  ; x : : ,B B s y
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2
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1

2 2

, ; , d

0 ,
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e d , 0
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π̂( ) e e ,

2π

T s
by b

b T
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Y t A Y t B
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e L s y bs A B b

s T
Q s x y

b b x s
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,

,
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(31) 

where: 

 , ; , 2
A y y B

L s y bs A B
s s

   
        

   


  (32) 

and, for fixed s  and , the quantities y A B  are deter- 
mined by the couple of transcendent equations 

 

 
 

 
 2 2

2 2

, ; , ,

e e e e

b T b T

b A b B

L s y A B x

 
 


  

 


 

      (33) 

and the optimal value function reads  
   0 0, ,0V x Q T x . 
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