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ABSTRACT 

Magnetic resonance imaging (MRI) measurements are 
essential for the diagnosis of pelvic organ prolapse 
given the inaccuracy of clinical examination. However, 
MRI pelvic floor measurements are currently per-
formed manually and can be inconsistent and time- 
consuming. In this paper, we present a scheme for 
semi-automatic measurement modeling on MRI based 
on image segmentation and intersecting point identifi-
cation methods. The segmentation algorithm is a multi- 
stage mechanism based on block grouping, support 
vector machine classification, morphological operation 
and prior shape information. Block grouping is achi- 
eved by classifying blocks as bone or background 
based on image texture features. The classified blocks 
are then used to find the initial segmentation by the 
first phase morphological opening. Prior shape infor-
mation is incorporated into the initial segmentation to 
obtain the final segmentation using registration with 
the similarity type transformation. After segmentation, 
points of reference that are used for pelvic floor meas-
urements are identified using morphological skeleton 
operation. The experiments on the MRI images show 
that the presented scheme can detect the points of ref-
erence on the pelvic floor structure to determine the 
reference lines needed for the assessment of pelvic or-
gan prolapse. This will lead towards more consistent 
and faster pelvic organ prolapse diagnosis on dynamic 
MRI studies, and possible screening procedures for 
predicting predisposition to pelvic organ prolapse by 
radiologic evaluation of pelvic floor measurements. 
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1. INTRODUCTION 

Pelvic organ prolapse (POP) is a major health problem 

affecting up to 30% - 50% of women [1]. POP is a herni-
ation of the female pelvic floor organs (bladder, uterus, 
small bowel and rectum) into the vagina. This condition 
can cause significant problems including a bothersome 
vaginal bulge, incontinence, incomplete bowel and blad- 
der emptying and pain/discomfort. In the US, approxi- 
mately 300,000 women undergo surgery for this condi- 
tion each year [2]. Unfortunately, POP procedures are 
associated with high failure rates, with approximately 
30% of women who undergo surgical repair requiring 
another surgery for recurrence of symptoms within four 
years [3]. There are different types of pelvic organ pro- 
lapse based on the underlying organ involved: cystocele 
(bladder), rectocele (rectum), uterine (uterus) and ente- 
rocele (intestine). POP is normally diagnosed through 
clinical examination since there are few associated symp- 
toms that are specific to each particular type of prolapse. 

The International Continence Society (ICS) recom-
mends the use of the Pelvic Organ Prolapse Quantifica-
tion system, a clinical examination that uses measure-
ments based on site-specific points, which is currently 
considered the gold standard for assessing POP [4]. 
However, clinical examination has been found to be in-
adequate and in disagreement with surgical findings, par- 
ticularly for posterior vaginal wall prolapse [5,6]. Studies 
indicate that the clinical examination for POP concurred 
with surgical findings in only 59% of patients [7,8]. 

Dynamic MRI imaging of the pelvic floor has become 
popular in assessing POP cases that may not be evident 
on clinical examination [9]. This is especially important 
in the diagnosis of patients with multi-compartment 
prolapse or who have failed the previous prolapse sur-
geries. Sequential images of dynamic MRIs for a recto-
cele case are shown in Figure 1, where the displacement 
of the rectum can be observed as the patient goes from 
the rest position to the maximum strain position. 

During the analysis of dynamic MRI images, anatomi-
cal landmarks are identified manually on the midsagittal  
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(a)                          (b) 

Figure 1. Rectocele case, (a) Rest position; (b) Maximum 
strain position. 

 
plane to determine the features including points, lines 
and distances, for grading pelvic organ prolapse as 
shown in Figure 2 [10]. The most commonly used ref-
erence lines for measuring pelvic organ prolapse are 
pubococcygeal line (PCL), mid-pubic line (MPL) and 
M-Line. The PCL is determined by the inferior border of 
the pubic bone and the last visible coccygeal joint while 
the MPL is a midsagittal long axis of the symphysis pu-
bis and extends through the level of the vaginal hymen 
[11,12]. M-Line is also defined as a line from the lowest 
point of the rectum to PCL line. M-Line is then measured 
on the images when the patient is at rest and under 
maximum pelvic strain. Based on M-Line distances, the 
severity of prolapse is graded as mild, moderate, or se-
vere [11-13]. However, the manual identification of these 
points, lines and distances on MRI is a time-consuming 
and inconsistent procedure. Most importantly, the clini-
cal examination and the current MRI measuring tech-
niques do not perform satisfactorily in detecting and dif-
ferentiating the posterior compartment prolapse such as 
rectocele and enterocele [14]. In fact, the posterior pelvic 
floor dysfunction has been identified as one of the most 
understudied of all pelvic floor disorders since its causes 
are still not completely understood [14]. 

Previous studies have tested a variety of reference 
lines with the intent to improve the diagnosis of posterior 
POP [11,13]. Other lines such as the Diagonal, Obstetric, 
and True Conjugate lines (see Figure 3) may be associ-
ated with the type of POP a patient develops. However, 
current lines and other lines of interest have not been 
completely tested and proven on large image samples. 
This is due to the aforementioned problem of manually 
identifying points, lines, and measurements, which is 
time-consuming and inconsistent. 

In this study, we present a novel image-based ap-
proach to semi-automatically identify the reference 
points, lines and distances used for grading POP on MRI. 
The segmentation algorithm is a multi-stage mechanism 
based on block grouping, support vector machine classi-
fication, morphological operation and prior shape infor- 
mation. Block grouping is achieved by classifying blocks 
as bone or background based on image texture features. 

 

Figure 2. Currently used reference lines for grad-
ing rectocele on MRI. 

 

 

Figure 3. Current and proposed reference features. 
 
The classified blocks are then used to find the initial 
segmentation by the first phase morphological opening. 
Prior shape information and initial segmentation are then 
used to obtain the final segmentationusing registration 
with the similarity type transformation. Automating the 
pelvic floor measurement process will enable faster and 
more consistent measurement to test and analyze a vari-
ety of current and new features on large image datasets. 
This will be fundamental towards the design of an 
MRI-based pelvic floor measurement model for auto-
mated diagnosis of POP. 

The remaining of the paper is organized as follows: 
Section 2 describes previous work on medical image 
segmentation Section 3 introduces the proposed method 
based on statistical pattern recognition. The experiments 
are presented in Section 4 and the conclusions in Sec- 
tion 5. 
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2. PREVIOUS WORK 

Medical image segmentation has become increasingly 
important in automating the identification of structures of 
interest on medical images for diagnosis, localization of 
pathology, treatment and surgical planning. The seg-
mentation techniques are influenced by objects’ bounda-
ries, homogeneities and shapes. The object boundaries 
and object homogeneities are image based and affected 
by some specific disturbances like noise. They are also 
highly dependent on the image modality techniques. For 
instance, bones have more visible boundaries in com-
puted tomography (CT) but poor boundaries in magnetic 
resonance images (MRI). On the other hand, soft tissues 
such as organs are better observed on MRI than CT. 
Medical image segmentation techniques are divided into 
two main methods: model-free based algorithms and 
model-based algorithms. 

Model-free based methods are based on local image 
properties such as intensity value, gradient magnitude, 
and textures. Thresholding, image feature-space cluster-
ing, region based and boundary based methods are the 
most frequently used model-free techniques. The thresh-
olding method is the simplest image segmentation me- 
thod and is commonly used for segmenting gray scale 
images [15,16]. The image feature-space clustering me- 
thod is a multi-dimensional extension of the thresholding 
segmentation, and it segments an image by grouping 
similar pixels into one group [17]. The region based im- 
age segmentation approaches such as region growing, 
region splitting, region merging, or hybrid model group 
spatially connect pixels into homogeneous groups [18]. 
Region based segmentations [19] are based on the prin- 
ciple of homogeneity. Image segmentation can also be 
obtained by boundary detection techniques associated 
with regions. The edge detection is an important task for 
object segmentation in image processing, and many dif-
ferent approaches have been proposed [20-22].  

Model-based methods have been widely used in 
medical image segmentation. In these methods, a model 
representing an object, or prior shape, is obtained th- 
rough a training set and then tested on unseen images. 
One of the methods with locally modeled shape prior 
technique is the active contour or snakes [23]. An active 
contour is a flexible spline that detects the specific prop-
erties of an image, and can be dynamically fit to the 
edges of a structure by minimizing the energy function 
using both internal and external energy terms. Successful 
applications have been reported on the segmentation of 
the brain [24] and lung [25]. 

Traditionally, MRI has been used to study soft tissues, 
whereas computed tomography (CT) scanning has been 
associated with the imaging of hard tissues such as bones. 
However, the use of MRI for imaging both bone and soft 

tissue has become commonplace since MRI has no ion-
izing radiation. This has led to challenges in the segmen-
tation of bones on MRI due to their poor boundaries. 
Recently, methods have been proposed for the segmenta-
tion of bones on MRI, such as region growing ap-
proaches, medial models, active shape models, general 
deformable models (i.e., live-wire, active contour or ac-
tive surface models), clustering methods, and graph- 
based approaches. Lorigo et al. [26] used texture-based 
geodesic active contours to perform segmentation of the 
knee bone. Fripp et al. [27] used three-dimensional ac-
tive shape models initialized by affine registration to an 
atlas for the segmentation of the knee bone. Bourgeat et 
al. [28] used features extracted from the phase of MR 
signal to improve texture discrimination in bone seg-
mentation. Graph-based approaches such as graph-cuts 
have been successful in bone segmentation. It is based on 
selecting edges from a graph, where each pixel corre-
sponds to a node in the graph. Weights on each edge 
measure the dissimilarity between pixels. Shape models 
[29], normalized cuts [30] and graph cut [31,32] have 
been applied to the segmentation of the femur and hip 
bones, spinal, and femoral head, respectively.  

Dynamic MRI provides better information about soft 
tissues and their movement than any other available im-
aging technique. However, bones are not easily differen-
tiable from the soft tissue since fat tissues tend to have 
intensity characteristics that are very similar to the inten-
sity of the bone structures. This constitutes great chal-
lenges for current segmentation algorithms that tend to 
fail during bone segmentation by erroneously expanding 
into soft tissue areas. Consequently, fat or soft tissue is 
often misclassified as bone structures on MRI.  

3. METHODOLOGY 

Pelvic floor measurements on MRI begin with the identi-
fication of reference points. As shown in Figure 4, these 
reference points are located on three areas: pubic bone, 
sacral promontory, and coccyx, and each group of points 
has specific characteristics. Therefore, different ap-
proaches will be applied to find these points. Points lo-
cated on the pubic bone (points 1, 2, and 3) can be found 
through segmentation of the pubic bone. On the other 
hand, points located on the sacral promontory and coc-
cyx (points 4 and 5) can be defined as intersecting points, 
and can be found by applying a corner detection algo-
rithm. After all the points of interest are identified, the 
points can be linked to each other through lines to per-
form pelvic floor measurements. 

The proposed method to identify the reference points 
and lines semi-automatically is divided into three main 
stages: pre-segmentation, segmentation, and point identi- 
fication (see Figure 5). The first stage starts with manual 
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Figure 4. Points of interest and regions. 
 
segmentation of the anatomical structures of interest for 
data training, and statistical mean shape generation. In 
the second stage, feature extraction is done using inten-
sity and texture features. Sequential forward selection is 
performed for subset feature selection. Then, blocks are 
classified as image blocks and background blocks using 
support vector machines (SVM) followed by first phase 
morphological operations to have the initial segmented 
image. Segmentation is further improved by incorporat-
ing prior shape information to the initial segmented im-
age. The final step is the identification of the points to 
build the pelvimetry model. Following are the detailed 
descriptions of the proposed method. 

3.1. Pre-Segmentation Process 

3.1.1. Mean Shape Extraction 
Since bone structures are not easily identified on MRI 
because of noise and low contrast, feature classification 
is not sufficient for properly identifying the border of the 
pubic bone. Prior shape information about the object can 
help to compensate for missing information. 

Prior shape information can be obtained by building a 
mean shape. To achieve this, the pubic bone is seg-
mented manually from a set of training images, and the 
results are stored as a binary mask as shown in Figure 
6(b). These images are used for building the mean shape 
and grouping the pixels. As shown in Figure 7, the re-
gions of interest (ROIs) are cropped through an M × N 
size window to build the statistical mean shape of the 
images from the training set. 

The extracted structures are aligned with respect to a 
set of axes to filter out the differences in shapes due to 
translation, scaling, and rotation. An image is selected 
arbitrarily as the reference shape, and all the other shapes 
are aligned with respect to the reference shape. A mean 

shape can be generated as a binary image as shown in 
Figure 8(a) as follows: 

 
1

1
mean shape

N

i
i

S
N 

   

where i (i = 1···N) are the shapes in the training set and 
N denotes the number of the shapes. 

S

3.1.2. Feature Extraction and Feature Subset 
Selection 

The region of interest for the pubic bone is further di-
vided into small blocks of m × n size as seen in Figure 9. 
These small blocks will be grouped instead of each pixel 
during the classification for computational efficiency and 
to use texture features for classification. 

For classification, the main issue in the feature extrac-
tion task is to identify suitable features that characterize 
different patterns accurately. Since MRI has low-level 
contrast intensity, using only the gray level based fea-
tures that are commonly used does not provide enough 
information for the classification. Another set of features 
that has been successful for medical images is texture 
features. Texture perception has a very important aspect 
in the human visual system of recognition and interpreta-
tion. Texture features have shown to provide more reli-
able results on MRI because they provide relative posi-
tion information of any two pixels with respect to each 
other. Medical images possess different textures de-
pending upon the area of the body considered for imag-
ing. 

Average gray level, standard deviation (average con-
trast), smoothness, third moment (skewness), uniformity 
and entropy are extracted as intensity features. Moreover, 
Gray Level Co-occurrence matrix is used to extract the 
texture features suggested in Haralick [33]. GLCM ma-
trix provides information regarding the relative position 
of two pixels with respect to each other. 

To avoid irrelevant or redundant features, we have 
implemented sequential forward selection method, which 
starts with an empty feature subset. On each iteration, 
exactly one feature is added to the feature subset. To 
determine which feature to add, the algorithm tentatively 
adds to the candidate feature subset one feature that is 
not already selected, and tests the accuracy of a classifier 
built on the tentative feature subset. The feature that re-
sults in the highest accuracy is added to the feature sub-
set. The process stops after an iteration where no feature 
additions result in improved accuracy. 

3.2. Segmentation Process 

Classification and First Phase Morphological  
Operations 
T he classification of the blocks involves two steps. The 
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Figure 5. Overview of the stages of the proposed method. 
 
first step is to construct a classifier structure based on the 
training data set. The second step is to apply the model to 
test example images. The blocks were trained according 
to the specified features which are contrast, mean, in-
formation measure of correlation 1, energy and cluster 
prominence and groups using SVM. Finally, the model is 
tested on test images. The anticipated outcome at the end 
of this process is a set of two groups of blocks that are 

automatically classified as foreground and background. 
The bone segmentation may occasionally include regions 
with similar intensity characteristics such as soft tissue. 
We will call these segmentation problems as “leaks”. 
Such occasional leak problems can take place when ROI 
and background regions become joined together due to 
the lack of strong edges between them. This situation 
requires operations to separate the two regions. Filling  
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(a) 

 
(b) 

Figure 6. (a) Original image; (b) Manually seg-
mented image. 

 

 

Figure 7. Regions of interests. 

 
(a) 

 
(b) 

Figure 8. (a) Mean shape; (b) Overlap of mean 
shape to the segmented pubic bone. 

 

 

Figure 9. M × n size cropped original image and m 
× n size blocks. 
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operation was used to fill the small holes and gaps on the 
contours first and then a leak check is applied by per-
forming an image opening using “disk” structuring ele- 
ments. In case no leak is present, this operation results in 
shrinking or reducing the bone structure and leaving out 
small fragments that form the actual boundaries of the 
bone. A threshold of 100 pixels is used to identify the 
small fragments. If a leak is present, then the opening 
operation results in two reduced objects. The segmenta-
tion process is shown in Figure 10. 

After obtaining the initial image, segmentation can be 
improved by incorporating prior shape information to the 
initial image as seen in Figures 11(c)-(d). Prior shape is 
registered with the initial image by using registration 
with the similarity type transformation. 

3.3. Points of Interest Identification 

The points located in the pubic bone can be found after 
the segmentation is performed. These points are located 
 

 
(a)                  (b)                  (c) 

Figure 10. Segmentation of pubic bone with the proposed 
method. (a) Ground truth image; (b) Block classification image; 
(c) First phase image with morphological operation-filling and 
opening. 
 

   
(a)                       (b) 

   
(c)                      (d) 

Figure 11. (a) The first phase image; (b) the mean shape; 
(c) and (d) final segmentation of pubic bone. 

on the tips of the pubic bone and can be found by mor-
phological skeleton operation. Skeleton operation re-
moves pixels on the boundaries of the pubic bone but 
does not allow the object to break apart. The remaining 
pixels make up the image skeleton as seen in Figure 12. 

On the other hand, points in the region of sacral prom-
ontory and coccyx are defined as a corner points for 
which there are two dominant and different edge direc-
tions on the local neighborhood of the point. For this 
reason, these points will be detected using corner detec-
tion algorithms. In our experiments, we adapted the Har-
ris corner detection algorithm to detect the bony joints as 
shown in Figure 13. The Harris corner detector [34] is a 
very useful intersecting point detector. It is based on the  
 

 

Figure 12. Morphological skeleton of final 
segmentation. 

 
 Selected points 

Image Origin

 

Figure 13. Reference bony joints for sacral promontory and 
coccyx. 
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local auto-correlation function of a signal that measures 
the local changes of the signal with patches shifted by a 
small amount in different directions. 

If I denotes a 2-D grayscale image, then, taking an 
image patch over the area  ,u v  and shifting it by 
 , x y . The weighted sum of squared differences be-
tween these two patches is given by: 

        2
, , ,

u v

S x y w u v I u x v y I u v    ,



 

 ,I u x v y   can be approximated by a Taylor ex-
pansion and xI  and yI  are the partial derivatives of I, 
such that 

        2
, , , ,x y

u v

S x y w u v I u v x I u v y   

This produces the approximation 

        2
, , , ,x y

u v

S x y w u v I u v x I u v y    

which can be written: 

   ,
x

S x y xy A
y

 
  

 
 

where A is the structure tensor, 

 
2 2

2, 2
x x y x x y

u v x y y x y y

I I I I I I
A w u v

I I I I I I

   
    

      
  

The matrix indicates the Harris matrix, and angle 
brackets denote averaging (i.e., summation over  ,u v ). 
A corner is characterized by a large variation of S in all 
directions of the vector  ,x y . By analyzing the eigen-
values, denoted λ, when both eigenvalues are small there 
is little change for any (u, v). 

Once one of the eigenvalues is large and the other is 
small it indicates there is an edge, since one direction has 
high change, while the orthogonal direction has small 
change. A corner is indicated when both eigenvalues are 
large. 

Since the algorithm detects several corner points, the 
points that have the smallest X value are selected as 
points of interest in each region. This is due to the par-
ticular location and orientation of the bone along the 
spine’s curvature. 

Once the reference points that are located on the ROIs 
are identified, they are moved onto the original MR im-
age as seen in Figure 14. These points are then linked to 
each other using lines that represent the reference lines 
normally used to characterize the presence and severity 
of pelvic organ prolapse: PCL and MPL. The identified 
points are also used to determine other reference lines 
such as Diagonal, Obstetric and True Conjugate lines, 
which could possibly be used for the diagnosis of differ-
ent types of POP. 

 

Figure 14. Semi-automatically generated reference 
and pelvic floor lines. 

4. RESULTS 

The anonymized midsagittal MR images of four subjects 
were analyzed in this study as seen in Figure 15. The  
study consisted of three parts: 1) extraction of regions by 
selecting a seed point manually; 2) classification of 
blocks by using SVM; and 3) identification of the inter-
secting points located in the regions of pubic bone, sacral 
promontory and coccyx. 

Table 1 presents the percentage of pixel-based dis-
tance between the points that were identified manually 
and semi-automatically over images of 512 × 512 pixels. 
The semi-automatically identified reference points were 
consistent with the points identified manually by an ex-
pert. Moreover, the points and lines generated semi- 
automatically were consistent throughout the trials on the 
same image. Therefore, the presented model can semi- 
automatically identify the points of interest to determine 
the reference lines for staging POP for all the subjects. 

5. CONCLUSION 

In this paper, we presented a scheme to semi-automati- 
cally identify the reference points and lines for the char-
acterization of pelvic organ prolapse (POP) using MRI. 
The points were identified semi-automatically by using 
image segmentation based methods and intersecting 
points detection methods. The segmentation of bones is 
not an easy task because of weak boundaries. To over-
come this problem, a multi-stage segmentation mecha-
nism using texture based classification and prior shape 
information is presented. The presented method aims to 
overcome the current limitations of manually identifying 
points, lines, and measurements on MRI and enable the 
analysis of larger image samples. Experiments demon-
strate that the presented semi-automated model provides  
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(a)                          (b) 

   
(c)                        (d) 

   
(e)                       (f) 

   
(g)                        (h) 

Figure 15. Manual measurement and semi-automatic meas-
urement for (a)-(b) subject A; (c)-(d) subject B; (e)-(f) subject 
C; and (g)-(h) subject D. 
 
consistent and fast measurement points on MRI com-
pared with points identified manually by an expert. The 
automation of the pelvic floor measurements on ra-
diologic studies will allow the use of imaging in predict- 
ing the development of POP in genetically predisposed 
patients, and will lead to preventive strategies. In the 
future, we will design a technique for the automated 

Table 1. Percentage of pixel-based distance between manually 
and automatically identified landmarks. 

Points of interest 
Subject 

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 

A 2.98 1.08 2.92 1.27 2.78 

B 0.35 0.87 2.39 2.43 2.54 

C 0.29 1.18 4.03 1.95 3.73 

D 1.37 1.11 2.57 3.04 0.76 

 
identification of other points of interest to enable the 
analysis of measurements between different subjects and 
among groups. 
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