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ABSTRACT 

A proper edge t-coloring of a graph G is a coloring of its edges with colors 1,2,···,t such that all colors are used, and no 
two adjacent edges receive the same color. A cyclically interval t-coloring of a graph G is a proper edge t-coloring of G 
such that for each its vertex x, either the set of colors used on edges incident to x or the set of colors not used on edges 
incident to x forms an interval of integers. For an arbitrary simple cycle, all possible values of t are found, for which the 
graph has a cyclically interval t-coloring. 
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1. Introduction 

We consider undirected, simple, finite and connected 
graphs. For a graph , we denote by  and  

 the sets of its vertices and edges, respectively. 
The set of edges of  incident with a vertex  

G  V G
E G

G




x V G  is denoted by  GJ x . For any  x V G
d x

, 

G  denotes the degree of the vertex  x  in . For a 
graph ,  denotes the maximum degree of a 
vertex of . A simple cycle with  edges 

G

G
G  G

n  3n   is 
denoted by . A simple path with  edges  C n n  1n   
is denoted by . The terms and concepts that we do 
not define can be found in [1]. 

 P n

For an arbitrary finite set A , we denote by A  the 
number of elements of A . The set of positive integers is 
denoted by . For any subset  of the set , we 
denote by  0  and  1  the subsets of all even and all 
odd elements of , respectively. 

 

p q


D
D D

D
An arbitrary nonempty subset of consecutive integers 

is called an interval. An interval with the minimum ele-
ment  and the maximum element  is denoted by 

,p q D h. An interval  is called a -interval if  
D h . 

For any real number  , we denote by          
the maximum (minimum) integer which is less (greater) 
than or equal to  . 

For any positive integer  define k

  1
2 2

k k           
k

 
0,   if  0

1   otherwise.

k
k


 


k . 

For any nonnegative integer  define 

 

  A function : 1,E G t 
t

t
G

 is called a proper edge 
-coloring of a graph G, if all colors are used, and no 

two adjacent edges receive the same color. 
The minimum value of  for which there exists a 

proper edge t -coloring of a graph  is denoted by 
 G

G
 [2]. 

If  is a graph, and   is its proper edge -color- 
ing, where 

t
   ,t G E G  , then we define   

      , 1U G e E G e t     . 

    0E E G , If ,t G E G    is a  , and  
proper edge -coloring of a graph , then we set  t G

    0 0E e e E  

t    

. 

 ,t G E G   A proper edge -coloring     

of a graph  is called an interval -coloring of  [3- G t G

 V G  G, the set x J x     is a  5] if for any 

 G -interval. For any , we denote by t  the 
set of graphs for which there exists an interval -color- 
ing. Let 

d x t N
t

1
t

t

N N

G

. 

N  w G, we denote by int  and For any  

respectively, for which tG

intW G  
the minimum and the maximum possible value of t , 

N . For a graph G , let us 
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set    G t G    N

A g 
t . 

dge t -colorin   proper e   E G     ,t G   

a ly interval t -coloringof a graph G  is c lled a cycl  ical
of G , if for any  x V G , at least one of the following 
two nditions ho

1)  G

 
lds:  co

J x     is a  d x -interval, G

2)    x  is  t d x1, \t 

 any t
fo

For any 

GJ   a  G -interval. 

 ,  by tM  graphs 

1
t

t

M M . 

GM , we d te by 

For  denote the set of we
r which there exists a cyclically interval t -coloring. 

Let 

eno  cycw G  and 
inimu ossible  cyc G  the m m and the maximum p value 

pectively, for which tGM . For a graph G , 
let us set  

W
of t , res

 G t G    M
It is cle

t . 
Nar th

co
t -col

at for any G t - 
ap

, an arbitrary interval 
loring   t G  of a gr h G  is also a cyclically 

interval  of G . Th , for any toring us  , 

t tN M nd N M . Let us also note that for an 
raph   G  . It is also clear that 

for any GN , e followi ality is true: 

      intcycG w G w G    

 a
arbitrary g



and 

G
th

,  G
ng ineq

   

u

G

 int cycW G W .G E G   

r any tree G hat GIn [5,6], fo , it is proved t N , 
e para

erval t

 3n  , it is proved that 

 G  is an interval, and the exact values of th - 
  intw G ,  intW G  are found. In [7,8], for any 

tree G    G G  . Some interest- 
ing results on cyclically in ings and related 
topics were obtained in [9-14]. 

In this paper, for any integer


meters

C

, it is proved that 
t -color

 n M , and the set   C n ound.  is f

y integer 3n  ,  

 

2. Main Results 

Remark 1. Clearly, for an

    3C n n    ,  E C n n . 

 3 ,t n n   , then a proper edge t - Therefore, if 
co

 
loring of  C n , and   tC n N .  does 

It is at for any integer 

not exist

Remark 2  not difficult to see th. 
k 2 ,  2C k N  and     2 2, 1C k k   . 

Proposition 1. For any integer 3n  ,  C n M ,  

4 2,3,4 .  

ial. 
y in s n  and t , satisfying the 

 

  .C n     3 3 ,C   Cn

Proof is triv

co



Theorem 1. For an teger
nditions 5n   and 3 ,t n n    ,   tC n M  if 

and only if 


  
4 2 , 1

2 2
n

n n
t n n



 
                 

. 

Proof. First let us prove, that if n , 5n   and  

 



  
4 2 , 1

2 2
n

t n n


 


              
  

then 

n n    

  tC n M . 
ume the contrary: there are 0n  , 0 5n   and 

 

Ass

  0

0 0 04 2 , 1 ,
2 2

n

t n n


 


              
 

for which a cyclically interval 0t -coloring 

0 0n n    

 of the 
graph  0C n  exists. 

Let nstruct a graph us co 00H  rem  froving om the 
graph  0C n  the subset  0 ,U C n   of its edges. 
Let us construct a graph 0H  removing from the graph 

00H  all its isolated vertice
Case A. 0

s. 
H  is a connected graph. 

oLet us den te by F  the simple path with pendant 
edges e  and e  which is isomorphic to the graph 

  0 0P n H 2E  . 
odd. Case A.1. 0n  is 

Clearly,   0 0 0
4, 1t n  . It means that 0t  is an even 

number, satisfying the inequality 0 04 1t n   . 

Case A.1.1.  0E H  is odd. 

Clearly,  0 3H E . Since   is a cyclically inter- 
va ring of l 0t -colo  0n , we c clude from the defini- 
tion f 0

C on
o H , that fo ph r a gra F , there exists an interval 

 0 1t  - loring 1co   with    1 1e e   . Conse- 
que , the number ntly  0n E H0 2   is odd, 

y of 0n  and 
what con- 

tradicts the same parit  0H . 
Case A.1.2. 

E
 0E H  is en.  ev

Clearly,  0 2E . Since H   is a cyclically inter- 
va ing of l 0t -color 0 , we c clude from the defini- 
tion f 0

C n n
o

o
H , that fo ph r a gra F , there exists an interval 

0t -colo g 2rin   with  2 1e   and   2 0e t   . 
Consequently, the number  0 0n E   is even

parity of 
2H , 

what contradicts the different 0n  and 
 0E H . 

A.2. n  is even. Case 0

Clearly, 
 

0
0 0

1

, 1
2 2

n
n0 2

n
t 

      
  

. It means that  

0t  is an odd number, satisfying the inequality  

0 02 1
n

t n  
0 02 2

n
     .  

 

Case A.2.1.  0E H  is odd. 

Clearly,  0 3H E . Since   is a cyclically inter-  

val 0t -coloring of  0C n , we can conclude from the 
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definition of 0H , that for a graph F , there exists an 
interval  0 1t  -col 3oring   with    3 3e e   . 
Consequently, 

   0 0 0E H E F 

0
0

2

2 3 1 2 ,
2

n

n
n



       
 

 

h is impos
.2  

0 0t n

n

sible. 
. 

whic
Case A.2 0E H  even.  is
Clearly,  0E H  2 . Since   is a cyclically inter- 

  C n nclude from the de- va lori g ofl 0t -co n 0 , we can co
ition of fin 0H , that for a graph F , there exists an in- 

terval 0t -coloring 4  with  4 1e    and  4 0e t   . 

Since 0t  is odd, the number  0 0 2n E H   is also  

odd, bu  it is impossible bec he sam f 



t ause of t e parity o
d 0n  an  0E H . 

Case B. 0H  is a graph with m  connected compo- 
nents, 2m 

Assume
. 

1

 that: 
1) , , mH H  are connected components of 0H  

number  ed in s
 n  in some fi

uccession at bypassi  the graph ng of

0 xed direction, 
2) 

01, , nv v  are vertices of 
C

0C n  numbered in 
suc ion at bypassing mentioned in 1), 

, ,e  are edges of C
cess

01 ne  num3)  0n bered in suc-
cession at bypassing mentioned in 1), 

4)  1 1 2 1 1H ,  

 1 1 2,e v v . 
v V H ,  v V H ,  

0nv V

ine functions  Def

   01, 1m n  , : 1,

   01, 1m n  , : 1,

   , 2 0,1y m   


: 1

llows. For any as fo 1,i m , set: 




   min ,i k e E   

   

k iH

 maxi k

For any 
k ie E H  . 

1, 2j m , set 

 
1

2

2

1 ,

1 ,  

  if   is odd

    if   is even.j

j

y j

e j


 

 


 
 

 
 
 

   
  

je
 

  
      
  
         

 

w let us define subgraphs 1, , m

 

No H H   of the graph 
 0 . C n
For any  1, 1i m  , let iH   be the subg

    

raph of 
 0n  induced by the subset  



C

   1 1, , ,i i iv v   

of its v

1 1, iv v     

ertices. Let mH   be the subgraph of 0C n  in- 
duced by the subset  

    , ,

Let 

   

0 1 21 , , ,nm mv v v v v     

of its vertices. 

 1, 1 ,im E H        

   

1M i

 2 01, iM i m t E H       . 

For any  1, 2j m , we define a point π j  of the 2- 
dimensional rectangle coordinate system by e follow- 
ing way: 

 th
  π ,j j y j . 

 grapLet us define a h H . Set 

   1π , ,π ,mV H    2

         1 1,2 1 .j j m    

Clearly, 

2 1π ,π π ,πm jE H 

 2H C m . 
Let 

     1 2 1 2π ,π 1,E H q m  , q q

     2 1\E H E H E H   . 

An edge  π ,π   of the graph H  is called horizon- 
tal if the points π  and π   have the same ordinate. 

Let us denote by  E H
  the set of all horizontal  

ed  graph ges of the H . Set      | \E H E H E H
   . It 

is easy to note that the nu bers  


m E H  and   |

e both even. 
E H  

ar
e tion    0: 1,E H n    

rary e  set: 

1  Now let us defin a func

by the following way. For an arbit  E H

 

    

     
   

2 2 1

2 1

re  1,

,   if  , ,where  1, 1

,   if  , .

q q q

m m

q m

E H e q m

E H e

 

 




 

2 1 2,   if  , ,wheq q qE H e  
 


e

   


 

 

Clearly, 

 
 

0 2
e E H

e n m


 


. 

0n  is odd. 
Clearly, 
Case B.1. 

  0 0 0
4, 1t n  . It means that 0t  is an even 

number, satisfying the inequality 0 04 1t n   . It is not 
di se  this case, for an arbitrary fficult to e that in

 E H   e e  is odd  , , and, moreover, for an arbi- 

trary  |e E H  ,  e  is even. Since  E H
  is 
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even, we conclude that the odd number  

   n m e e    
   |H e E H 

0 2
e E

 
 

ers, which is 
impossible. 

Case B.2. 0n  is even. 
Clearly, 

is represented as a sum of two even numb

 

0 0
0 0

1

2 , 1
2

t n     
  

. 

0t  is an odd number, satisfying the ine- 

2

n n  

It means that 
quality 

0 0
0 02 1

n n
t n       . 

ot difficult to see that in this case, for an arbitrary 
 H  ,  e  is odd, and, oreover, for  

 E H  ,  e  is even. 

2 2 
 

It is n
 H E

ary 
2e E

an arbitr

 m

 1 |H e E

Case B.2.1.    2 |

ently, there are di

2E H E H   . 

fferent integers iIn this case, evid   
and i  in the set  1, m , for which th terval ere exist in

0t -colorings    and   e g i of th raphs H   and iH  , 
onsequently, respectively. C

      
      
   

0 0 i i

i i i i

n E C n E H E H

E H E H E H E

 

   

  

     





0

0
0 0

2 2 2

2 2 ,
2

i i

H

E H E H t

n
n n

      

     
 

 

which is impossible. 

 Case B.2.2.  2 | 1E H   . 

Without loss of generality assume that  

   0
|E H e  . 

E H

 E2 H 

Since  E H
  is even, we conclude 

mber 
that the even 

 
 

 
e E H

e

e







 


 

is represented as a sum of one odd and two even numbers, 
which is impossible. 

 

nu

 
   

 
   

 
   

   
     

|

2 | 1 |

1 |

0

0

2

H e E H

e E H E H e E H E H

e E H E H e E H

n m

e

e e

e e



 

 




 

 



 

  

 

 

 

    

  

 
e E

e


  

Case B.2.3.  

Clearly, for any  1,i m , the set  iE H     con- 
tains exactly one of the colors 1 and 0t . 

). 1MCase B.2.3.a  , 2M   . 
It is not difficult to see that in this case there is 

1 1i M , for which the set  1i
E H   s the 

color 1t
  contain

2 | 0E H E H   . 

0  . It means that there exists an interval 
 1t0  -coloring of th ape gr h 

1i
H 

ed
 w h colors pendant 

ges of 
1i

hic
H   by the color 1. Conseque ,  

 

ntly

1

0
0 0 02 3 1 20 2

n 

mpos
Case B.2.3.b). 1M

i

n
E H t n n         

 
, 

which is i sible. 
  , 2M   . 

It is not difficult to see that in this case there is 

2 2i M , for which the set 
color 2. It means tha

 2i
E H     contains the 

t there exists an interval  0 1t  - 
coloring of the graph 

2i
H   which colors pendant edges 

 of
2i

H   by the color 1. Consequently

 

,  

2

0
0 0 0 02 3 1 2

2

ch 
Case B.2.3.c). 1M

i

n
n E H t n n         

 
, 

whi is impossible. 
  , 2M   . 

Let us choose 3 1i M  and 4 2i M  satisfying the 
conditions  

   
3i iH E H

1i M
maxE       , 

   
4

2

maxi i
i M

E H E H 


       . 

Let  3j  be the maximum color of the set  

 3i
E H    . 

 4jLet  be the minimum color of the set  

 4i
E H   

rly,
 

 3j -coloring of the graph 
3i

. 

Clea     3 4 1j j  . 
It is not difficult to see that there exists an interval

H   hich colors pendant 
edge

3i

w
s of H  by the colo 1. Hence,  r 

   
3

32 1iE H j   . 

It is not difficult to see that there exists an interval 
  0 14t j  -col

4i
oring of the graph H   which colors 

pendant edges of 
4i
H  by the color 1 ence,  . H

      
4

4 4
0 02 1 1 2 2 1iE H t j t j         . 

Consequently, we obtain that 

      
    

3 4 3 40

0
0 02 2 ,

2

i i i in E H E H E H E H

n
n n

     

     
 


 

3 4
0 02 2 2 2t j j t    
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which is impossible. 
Thus, we have pr n , 5n   and  oved that if 

 
  

, 1
n

n


  
   

  
, 

Now let us prove that if  

n

4 2
2 2

n n
t n             

then   tC n M . 

 , 5n  ,  3 ,t n   n ,   tC n M , 

then 

 
  

2 , 1
2 2

n

n
n



    4
n

t n 
   

            
. 

ume the contrary. It m re 0nAss eans that there a  ,  

 0 0 03 ,t n n    , which satisfy the con-  

 0 tC n M  and  

0 5n  , and 

ditions 
0

 
  0n   

0 0
0 0 04 2 , 1

n n
t n n 

  
.

2 2

          


 

1. 0n  is odd

 

Case . 
In this case  0 03,t n  and   0 0 0

4, 1t n  , and,  

therefore,  0 0 1
3,t n . It means that there exists 

r which 0m  , fo

0 0t n
m  . 

Let us note that the equality 

0

1 1
2

2 2

 


0 1n 
0 2

m   implies  

0 0t n , which is incompatible with the condition 
 0C n  0 02 1n m  . 
Now, t  contradiction, it is enough to note that 

th loring of 
 2P m

0t
M . Hence, 
o see a

e existence of an interval 0t -co a graph 

0

of a grap
cy

1  with the existence of an interval 2-coloring 
h  0 02 1P n m   provides the existence of a 

clically interval 0t -coloring of the graph  0C n . 
Case 2. 0n  is even. 

se In this ca 0 02,t n  and  

 

00
0 02

n 

an  

1

2 , 1
2

n
t n       

  
, 

d, therefore, 

 

00 0
0 2, 1 3

2 2

n n
t      

 0

0

,
2

n
n

          
. 

 Remark 2 that  It follows from

 

0 0
0 0

0

3 ,
2 2

n n
t n

    
  

.  

Clearly, there exists 0m  , 

0 0
0

1
1

2 2 2

n n
m 

      
  

, 

for which  

0 0
0 01 2

2 2

n n
t m      

 

e that the equality  

. 

Let us not

0 0
0

1
1

2 2 2

n n
m 

      
  

im

 

plies 0 0t n , which is incompatible with the condi- 
tion  

00 tC n M . Hence,  

0 0
01 2

n n
m       

even number, satisfying the inequality  

2 2 

is an 

0 0
01 2

2 2

n n
m  

2    
 

. 

to note that 
the existence of an interval 0t -coloring of a graph  

Now, to see a contradiction, it is enough 

0 0
01 2

n n
P m
        

  

2 2  

with the existence of an interval 2-coloring of a graph

0 0
01 2

2 2

n n
P m
      

  

r- 
ing of the graph 

 

provides the existence of a cyclically interval 0t -colo
 0C n . 

Thus, we have proved, that if n , 5 ,  n

 3 ,t n n    tM

then 

,  C n  , 

 
  

4 2 ,
2 2

n

t n n


 


        
    

. 

rem 1 is proved. 
It means that we also have 
Theorem 2. For an arbitrary integer 5n  , 

1  

n n    

Theo

  
  

 0

if  is odd

2, 1 3 , , if  is even.
2 2 2

C n

n

n n
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