On a Number of Colors in Cyclically Interval Edge Colorings of Simple Cycles

Rafayel R. Kamalian
Institute for Informatics and Automation Problems, The National Academy of Sciences of Republic of Armenia,
Yerevan, Republic of Armenia
Email: rrkamalian@yahoo.com

Received November 23, 2012; revised December 23, 2012; accepted December 31, 2012

Abstract

A proper edge t-coloring of a graph G is a coloring of its edges with colors $1,2, \cdots, t$ such that all colors are used, and no two adjacent edges receive the same color. A cyclically interval t-coloring of a graph G is a proper edge t-coloring of G such that for each its vertex x, either the set of colors used on edges incident to x or the set of colors not used on edges incident to x forms an interval of integers. For an arbitrary simple cycle, all possible values of t are found, for which the graph has a cyclically interval t-coloring.

Keywords: Proper Edge Coloring; Cyclically Interval Coloring; Simple Cycle

1. Introduction

We consider undirected, simple, finite and connected graphs. For a graph G, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. The set of edges of G incident with a vertex $x \in V(G)$ is denoted by $J_{G}(x)$. For any $x \in V(G)$, $d_{G}(x)$ denotes the degree of the vertex x in G. For a graph $G, \Delta(G)$ denotes the maximum degree of a vertex of G. A simple cycle with n edges $(n \geq 3)$ is denoted by $C(n)$. A simple path with n edges $(n \geq 1)$ is denoted by $P(n)$. The terms and concepts that we do not define can be found in [1].

For an arbitrary finite set A, we denote by $|A|$ the number of elements of A. The set of positive integers is denoted by \mathbb{N}. For any subset D of the set \mathbb{N}, we denote by $D_{(0)}$ and $D_{(1)}$ the subsets of all even and all odd elements of D, respectively.

An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by $[p, q]$. An interval D is called a h-interval if $|D|=h$.
For any real number ξ, we denote by $\lfloor\xi\rfloor(\lceil\xi\rceil)$ the maximum (minimum) integer which is less (greater) than or equal to ξ.

For any positive integer k define

$$
\varepsilon(k) \equiv 1+\left\lfloor\frac{k}{2}\right\rfloor-\left\lceil\frac{k}{2}\right\rceil .
$$

For any nonnegative integer k define

$$
\delta(k) \equiv\left\{\begin{array}{lc}
0, & \text { if } k=0 \\
1 & \text { otherwise }
\end{array}\right.
$$

A function $\varphi: E(G) \rightarrow[1, t]$ is called a proper edge t-coloring of a graph G, if all colors are used, and no two adjacent edges receive the same color.

The minimum value of t for which there exists a proper edge t-coloring of a graph G is denoted by $\chi^{\prime}(G)$ [2].

If G is a graph, and φ is its proper edge t-coloring, where $t \in\left[\chi^{\prime}(G),|E(G)|\right]$, then we define

$$
U(G, \varphi) \equiv\{e \in E(G) / 1<\varphi(e)<t\} .
$$

If $E_{0} \subseteq E(G), \quad t \in\left[\chi^{\prime}(G),|E(G)|\right]$, and φ is a proper edge t-coloring of a graph G, then we set

$$
\varphi\left[E_{0}\right] \equiv\left\{\varphi(e) / e \in E_{0}\right\}
$$

A proper edge t-coloring $\left(t \in\left[\chi^{\prime}(G),|E(G)|\right]\right) \varphi$ of a graph G is called an interval t-coloring of G [35] if for any $x \in V(G)$, the set $\varphi\left[J_{G}(x)\right]$ is a
$d_{G}(x)$-interval. For any $t \in \mathbb{N}$, we denote by \mathfrak{N}_{t} the set of graphs for which there exists an interval t-coloring. Let

$$
\mathfrak{N}=\bigcup_{t \geq 1} \mathfrak{N}_{t}
$$

For any $G \in \mathfrak{N}$, we denote by $w_{\text {int }}(G)$ and $W_{\text {int }}(G)$ the minimum and the maximum possible value of t, respectively, for which $G \in \mathfrak{N}_{t}$. For a graph G, let us
set $\theta(G) \equiv\left\{t \in \mathbb{N} / G \in \mathfrak{N}_{t}\right\}$.
A proper edge t-coloring $\left(t \in\left[\chi^{\prime}(G),|E(G)|\right]\right) \varphi$ of a graph G is called a cyclically interval t-coloring of G, if for any $x \in V(G)$, at least one of the following two conditions holds:

1) $\varphi\left[J_{G}(x)\right]$ is a $d_{G}(x)$-interval,
2) $[1, t] \backslash \varphi\left[J_{G}(x)\right]$ is a $\left(t-d_{G}(x)\right)$-interval.

For any $t \in \mathbb{N}$, we denote by \mathfrak{M}_{t} the set of graphs for which there exists a cyclically interval t-coloring. Let

$$
\mathfrak{M} \equiv \bigcup_{t \geq 1} \mathfrak{M}_{t}
$$

For any $G \in \mathfrak{M}$, we denote by $w_{c y c}(G)$ and $W_{\text {cyc }}(G)$ the minimum and the maximum possible value of t, respectively, for which $G \in \mathfrak{M}_{t}$. For a graph G, let us set $\Theta(G) \equiv\left\{t \in \mathbb{N} / G \in \mathfrak{M}_{t}\right\}$.

It is clear that for any $G \in \mathfrak{N}$, an arbitrary interval t coloring $(t \in \theta(G))$ of a graph G is also a cyclically interval t-coloring of G. Thus, for any $t \in \mathbb{N}$, $\mathfrak{N}_{t} \subseteq \mathfrak{M}_{t}$ and $\mathfrak{N} \subseteq \mathfrak{M}$. Let us also note that for an arbitrary graph $G, \theta(G) \subseteq \Theta(G)$. It is also clear that for any $G \in \mathfrak{N}$, the following inequality is true:

$$
\Delta(G) \leq \chi^{\prime}(G) \leq w_{c y c}(G) \leq w_{\mathrm{int}}(G)
$$

and

$$
W_{\mathrm{int}}(G) \leq W_{c y c}(G) \leq|E(G)| .
$$

In $[5,6]$, for any tree G, it is proved that $G \in \mathfrak{N}$, $\theta(G)$ is an interval, and the exact values of the parameters $w_{\text {int }}(G), W_{\text {int }}(G)$ are found. In [7,8], for any tree G, it is proved that $\Theta(G)=\theta(G)$. Some interesting results on cyclically interval t-colorings and related topics were obtained in [9-14].
In this paper, for any integer $n \geq 3$, it is proved that $C(n) \in \mathfrak{M}$, and the set $\Theta(C(n))$ is found.

2. Main Results

Remark 1. Clearly, for any integer $n \geq 3$,

$$
\chi^{\prime}(C(n))=3-\varepsilon(n),|E(C(n))|=n
$$

Therefore, if $t \notin[3-\varepsilon(n), n]$, then a proper edge t coloring of $C(n)$ does not exist, and $C(n) \notin \mathfrak{N}_{t}$.

Remark 2. It is not difficult to see that for any integer $k \geq 2, C(2 k) \in \mathfrak{N}$ and $\theta(C(2 k))=[2, k+1]$.
Proposition 1. For any integer $n \geq 3, C(n) \in \mathfrak{M}$, $n \in \Theta(C(n)) . \Theta(C(3))=\{3\}, \Theta(C(4))=\{2,3,4\}$.
Proof is trivial.
Theorem 1. For any integers n and t, satisfying the conditions $n \geq 5$ and $t \in[3-\varepsilon(n), n], C(n) \notin \mathfrak{M}_{t}$ if and only if

$$
t \in\left[4+\varepsilon(n) \cdot\left(\frac{n}{2}+\varepsilon\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-2\right), n-1\right]_{(\varepsilon(n))} .
$$

Proof. First let us prove, that if $n \in \mathbb{N}, n \geq 5$ and
$t \in\left[4+\varepsilon(n) \cdot\left(\frac{n}{2}+\varepsilon\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-2\right), n-1\right]_{(\varepsilon(n))}$
then $C(n) \notin \mathfrak{M}_{t}$.
Assume the contrary: there are $n_{0} \in \mathbb{N}, n_{0} \geq 5$ and

$$
t_{0} \in\left[4+\varepsilon\left(n_{0}\right) \cdot\left(\frac{n_{0}}{2}+\varepsilon\left(\left\lfloor\frac{n_{0}}{2}\right\rfloor\right)-2\right), n_{0}-1\right]_{\left(\varepsilon\left(n_{0}\right)\right)}
$$

for which a cyclically interval t_{0}-coloring α of the graph $C\left(n_{0}\right)$ exists.

Let us construct a graph H_{00} removing from the graph $C\left(n_{0}\right)$ the subset $U\left(C\left(n_{0}\right), \alpha\right)$ of its edges. Let us construct a graph H_{0} removing from the graph H_{00} all its isolated vertices.

Case A. H_{0} is a connected graph.
Let us denote by F the simple path with pendant edges e^{\prime} and $e^{\prime \prime}$ which is isomorphic to the graph $P\left(n_{0}-\left|E\left(H_{0}\right)\right|+2\right)$.

Case A.1. n_{0} is odd.
Clearly, $t_{0} \in\left[4, n_{0}-1\right]_{(0)}$. It means that t_{0} is an even number, satisfying the inequality $4 \leq t_{0} \leq n_{0}-1$.

Case A.1.1. $\left|E\left(H_{0}\right)\right|$ is odd.
Clearly, $\left|E\left(H_{0}\right)\right| \geq 3$. Since α is a cyclically interval t_{0}-coloring of $C\left(n_{0}\right)$, we conclude from the definition of H_{0}, that for a graph F, there exists an interval $\left(t_{0}-1\right)$-coloring β_{1} with $\beta_{1}\left(e^{\prime}\right)=\beta_{1}\left(e^{\prime \prime}\right)$. Consequently, the number $n_{0}-\left|E\left(H_{0}\right)\right|+2$ is odd, what contradicts the same parity of n_{0} and $\left|E\left(H_{0}\right)\right|$.

Case A.1.2. $\left|E\left(H_{0}\right)\right|$ is even.
Clearly, $\left|E\left(H_{0}\right)\right| \geq 2$. Since α is a cyclically interval t_{0}-coloring of $C\left(n_{0}\right)$, we conclude from the definition of H_{0}, that for a graph F, there exists an interval t_{0}-coloring β_{2} with $\beta_{2}\left(e^{\prime}\right)=1$ and $\beta_{2}\left(e^{\prime \prime}\right)=t_{0}$. Consequently, the number $n_{0}-\left|E\left(H_{0}\right)\right|+2$ is even, what contradicts the different parity of n_{0} and $\left|E\left(H_{0}\right)\right|$.

Case A.2. n_{0} is even.
Clearly, $t_{0} \in\left[\frac{n_{0}}{2}+2+\varepsilon\left(\frac{n_{0}}{2}\right), n_{0}-1\right]_{(1)}$. It means that t_{0} is an odd number, satisfying the inequality
$\frac{n_{0}}{2}+2+\varepsilon\left(\frac{n_{0}}{2}\right) \leq t_{0} \leq n_{0}-1$.
Case A.2.1. $\left|E\left(H_{0}\right)\right|$ is odd.
Clearly, $\left|E\left(H_{0}\right)\right| \geq 3$. Since α is a cyclically interval t_{0}-coloring of $C\left(n_{0}\right)$, we can conclude from the
definition of H_{0}, that for a graph F, there exists an interval $\left(t_{0}-1\right)$-coloring β_{3} with $\beta_{3}\left(e^{\prime}\right)=\beta_{3}\left(e^{\prime \prime}\right)$. Consequently,

$$
\begin{aligned}
n_{0} & >n_{0}-\left|E\left(H_{0}\right)\right|+2=|E(F)| \\
& \geq 2 t_{0}-3 \geq n_{0}+1+2 \cdot \varepsilon\left(\frac{n_{0}}{2}\right)>n_{0},
\end{aligned}
$$

which is impossible.
Case A.2.2. $\left|E\left(H_{0}\right)\right|$ is even.
Clearly, $\left|E\left(H_{0}\right)\right| \geq 2$. Since α is a cyclically interval t_{0}-coloring of $C\left(n_{0}\right)$, we can conclude from the definition of H_{0}, that for a graph F, there exists an interval t_{0}-coloring β_{4} with $\beta_{4}\left(e^{\prime}\right)=1$ and $\beta_{4}\left(e^{\prime \prime}\right)=t_{0}$. Since t_{0} is odd, the number $n_{0}-\left|E\left(H_{0}\right)\right|+2$ is also odd, but it is impossible because of the same parity of n_{0} and $\left|E\left(H_{0}\right)\right|$.

Case $B . H_{0}$ is a graph with m connected components, $m \geq 2$.

Assume that:

1) H_{1}, \cdots, H_{m} are connected components of H_{0} numbered in succession at bypassing of the graph $C\left(n_{0}\right)$ in some fixed direction,
2) $v_{1}, \cdots, v_{n_{0}}$ are vertices of $C\left(n_{0}\right)$ numbered in succession at bypassing mentioned in 1),
3) $e_{1}, \cdots, e_{n_{0}}$ are edges of $C\left(n_{0}\right)$ numbered in succession at bypassing mentioned in 1),
4) $v_{1} \in V\left(H_{1}\right), \quad v_{2} \in V\left(H_{1}\right), \quad v_{n_{0}} \notin V\left(H_{1}\right)$, $e_{1}=\left(v_{1}, v_{2}\right)$.

Define functions

$$
\begin{aligned}
& \zeta:[1, m] \rightarrow\left[1, n_{0}-1\right] \\
& \eta:[1, m] \rightarrow\left[1, n_{0}-1\right] \\
& y:[1,2 m] \rightarrow\{0,1\}
\end{aligned}
$$

as follows. For any $i \in[1, m]$, set:

$$
\begin{aligned}
& \zeta(i) \equiv \min \left\{k / e_{k} \in E\left(H_{i}\right)\right\}, \\
& \eta(i) \equiv \max \left\{k / e_{k} \in E\left(H_{i}\right)\right\} .
\end{aligned}
$$

For any $j \in[1,2 m]$, set

$$
y(j) \equiv \begin{cases}\delta\left(\alpha\left(e_{\zeta\left(\frac{j+1}{2}\right)}\right)-1\right), & \text { if } j \text { is odd } \\ \delta\left(\alpha\left(e_{\eta\left(\frac{j}{2}\right)}\right)-1\right), & \text { if } j \text { is even. }\end{cases}
$$

Now let us define subgraphs $H_{1}^{\prime}, \cdots, H_{m}^{\prime}$ of the graph $C\left(n_{0}\right)$.
For any $i \in[1, m-1]$, let H_{i}^{\prime} be the subgraph of $C\left(n_{0}\right)$ induced by the subset

$$
\left\{v_{\eta(i)}, v_{\eta(i)+1}, \cdots, v_{\zeta(i+1)}, v_{\zeta(i+1)+1}\right\}
$$

of its vertices. Let H_{m}^{\prime} be the subgraph of $C\left(n_{0}\right)$ induced by the subset

$$
\left\{v_{\eta(m)}, v_{\eta(m)+1}, \cdots, v_{n_{0}}, v_{1}, v_{2}\right\}
$$

of its vertices.
Let

$$
\begin{gathered}
M_{1} \equiv\left\{i \in[1, m] / 1 \in \alpha\left[E\left(H_{i}^{\prime}\right)\right]\right\} \\
M_{2} \equiv\left\{i \in[1, m] / t_{0} \in \alpha\left[E\left(H_{i}^{\prime}\right)\right]\right\}
\end{gathered}
$$

For any $j \in[1,2 m]$, we define a point π_{j} of the 2 dimensional rectangle coordinate system by the following way: $\pi_{j} \equiv(j, y(j))$.

Let us define a graph \tilde{H}. Set

$$
\begin{aligned}
& V(\tilde{H}) \equiv\left\{\pi_{1}, \cdots, \pi_{2 m}\right\} \\
& E(\tilde{H}) \equiv\left\{\left(\pi_{2 m}, \pi_{1}\right)\right\} \cup\left\{\left(\pi_{j}, \pi_{j+1}\right) / j \in[1,2 m-1]\right\} .
\end{aligned}
$$

Clearly, $\tilde{H} \cong C(2 m)$.
Let

$$
\begin{aligned}
& E_{1}(\tilde{H}) \equiv\left\{\left(\pi_{2 q-1}, \pi_{2 q}\right) / q \in[1, m]\right\}, \\
& E_{2}(\tilde{H}) \equiv E(\tilde{H}) \backslash E_{1}(\tilde{H}) .
\end{aligned}
$$

An edge $\left(\pi^{\prime}, \pi^{\prime \prime}\right)$ of the graph \tilde{H} is called horizontal if the points π^{\prime} and $\pi^{\prime \prime}$ have the same ordinate.

Let us denote by $E_{-}(\tilde{H})$ the set of all horizontal edges of the graph \tilde{H}. Set $E_{\mid}(\tilde{H}) \equiv E(\tilde{H}) \backslash E_{-}(\tilde{H})$. It is easy to note that the numbers $\left|E_{-}(\tilde{H})\right|$ and $\left|E_{\mid}(\tilde{H})\right|$ are both even.

Now let us define a function $\psi: E(\tilde{H}) \rightarrow\left[1, n_{0}-1\right]$ by the following way. For an arbitrary $e \in E(\tilde{H})$ set:

$$
\begin{aligned}
& \psi(e) \\
& \equiv\left\{\begin{array}{l}
\left|E\left(H_{q}\right)\right|, \text { if } e=\left(\pi_{2 q-1}, \pi_{2 q}\right), \text { where } q \in[1, m] \\
\left|E\left(H_{q}^{\prime}\right)\right|, \text { if } e=\left(\pi_{2 q}, \pi_{2 q+1}\right), \text { where } q \in[1, m-1] \\
\left|E\left(H_{m}^{\prime}\right)\right|, \text { if } e=\left(\pi_{2 m}, \pi_{1}\right) .
\end{array}\right.
\end{aligned}
$$

Clearly,

$$
\sum_{e \in E(\tilde{H})} \psi(e)=n_{0}+2 m
$$

Case B.1. n_{0} is odd.
Clearly, $t_{0} \in\left[4, n_{0}-1\right]_{(0)}$. It means that t_{0} is an even number, satisfying the inequality $4 \leq t_{0} \leq n_{0}-1$. It is not difficult to see that in this case, for an arbitrary $e \in E_{-}(\tilde{H}), \psi(e)$ is odd, and, moreover, for an arbitrary $e \in E_{\mid}(\tilde{H}), \psi(e)$ is even. Since $\left|E_{-}(\tilde{H})\right|$ is
even, we conclude that the odd number

$$
n_{0}+2 m=\sum_{e \in E_{-}(\tilde{H})} \psi(e)+\sum_{e \in E_{\|}(\tilde{H})} \psi(e)
$$

is represented as a sum of two even numbers, which is impossible.

Case B.2. n_{0} is even.
Clearly,

$$
t_{0} \in\left[\frac{n_{0}}{2}+2+\varepsilon\left(\frac{n_{0}}{2}\right), n_{0}-1\right]_{(1)}
$$

It means that t_{0} is an odd number, satisfying the inequality

$$
\frac{n_{0}}{2}+2+\varepsilon\left(\frac{n_{0}}{2}\right) \leq t_{0} \leq n_{0}-1
$$

It is not difficult to see that in this case, for an arbitrary $e \in E_{2}(\tilde{H}) \cup E_{-}(\tilde{H}), \psi(e)$ is odd, and, moreover, for an arbitrary $e \in E_{1}(\tilde{H}) \cap E_{\mid}(\tilde{H}), \psi(e)$ is even.
Case B.2.1. $\left|E_{2}(\tilde{H}) \cap E_{\mid}(\tilde{H})\right| \geq 2$.
In this case, evidently, there are different integers i^{\prime} and $i^{\prime \prime}$ in the set $[1, m]$, for which there exist interval t_{0}-colorings β^{\prime} and $\beta^{\prime \prime}$ of the graphs $H_{i^{\prime}}^{\prime}$ and $H_{i^{\prime \prime}}^{\prime}$, respectively. Consequently,

$$
\begin{aligned}
n_{0} & =\left|E\left(C\left(n_{0}\right)\right)\right| \geq\left|E\left(H_{i^{\prime}}^{\prime}\right) \cup E\left(H_{i^{\prime}}^{\prime}\right)\right| \\
& =\left|E\left(H_{i^{\prime}}^{\prime}\right)\right|+\left|E\left(H_{i^{\prime}}^{\prime}\right)\right|-\left|E\left(H_{i^{\prime}}^{\prime}\right) \cap E\left(H_{i^{\prime}}^{\prime}\right)\right| \\
& \geq\left|E\left(H_{i^{\prime}}^{\prime}\right)\right|+\left|E\left(H_{i^{\prime}}^{\prime}\right)\right|-2 \geq 2 t_{0}-2 \\
& \geq n_{0}+2+2 \varepsilon\left(\frac{n_{0}}{2}\right)>n_{0},
\end{aligned}
$$

which is impossible.
Case B.2.2. $\left|E_{2}(\tilde{H}) \cap E_{\mid}(\tilde{H})\right|=1$.
Without loss of generality assume that

$$
E_{2}(\tilde{H}) \cap E_{\mid}(\tilde{H})=\left\{e^{0}\right\}
$$

Since $\left|E_{-}(\tilde{H})\right|$ is even, we conclude that the even number

$$
\begin{aligned}
& n_{0}+2 m \\
& =\sum_{e \in E_{-}(\tilde{H})} \psi(e)+\sum_{e \in E_{1}(\tilde{H})} \psi(e) \\
& =\sum_{e \in E_{2}(\tilde{H}) \cap E_{1}(\tilde{H})} \psi(e)+\sum_{e \in E_{1}(\tilde{H}) \cap E_{1}(\tilde{H})} \psi(e)+\sum_{e \in E_{-}(\tilde{H})} \psi(e) \\
& =\psi\left(e^{0}\right)+\sum_{e \in E_{1}(\tilde{H}) \cap E_{1}(\tilde{H})} \psi(e)+\sum_{e \in E_{-}(\tilde{H})} \psi(e)
\end{aligned}
$$

is represented as a sum of one odd and two even numbers, which is impossible.

Case B.2.3. $\left|E_{2}(\tilde{H}) \cap E_{\mid}(\tilde{H})\right|=0$.

Clearly, for any $i \in[1, m]$, the set $\alpha\left[E\left(H_{i}^{\prime}\right)\right]$ contains exactly one of the colors 1 and t_{0}.

Case B.2.3.a). $\quad M_{1} \neq \varnothing, \quad M_{2}=\varnothing$.
It is not difficult to see that in this case there is $i_{1} \in M_{1}$, for which the set $\alpha\left[E\left(H_{i_{1}}^{\prime}\right)\right]$ contains the color $t_{0}-1$. It means that there exists an interval $\left(t_{0}-1\right)$-coloring of the graph $H_{i_{1}}^{\prime}$ which colors pendant edges of $H_{i_{1}}^{\prime}$ by the color 1 . Consequently,

$$
n_{0}>\left|E\left(H_{i_{1}}^{\prime}\right)\right| \geq 2 t_{0}-3 \geq n_{0}+1+2 \varepsilon\left(\frac{n_{0}}{2}\right)>n_{0}
$$

which is impossible.
Case B.2.3.b). $\quad M_{1}=\varnothing, \quad M_{2} \neq \varnothing$.
It is not difficult to see that in this case there is $i_{2} \in M_{2}$, for which the set $\alpha\left[E\left(H_{i_{2}}^{\prime}\right)\right]$ contains the color 2. It means that there exists an interval $\left(t_{0}-1\right)$ coloring of the graph $H_{i_{2}}^{\prime}$ which colors pendant edges of $H_{i_{2}}^{\prime}$ by the color 1 . Consequently,

$$
n_{0}>\left|E\left(H_{i_{2}}^{\prime}\right)\right| \geq 2 t_{0}-3 \geq n_{0}+1+2 \varepsilon\left(\frac{n_{0}}{2}\right)>n_{0}
$$

which is impossible.
Case B.2.3.c). $\quad M_{1} \neq \varnothing, \quad M_{2} \neq \varnothing$.
Let us choose $i_{3} \in M_{1}$ and $i_{4} \in M_{2}$ satisfying the conditions

$$
\begin{aligned}
& \left|\alpha\left[E\left(H_{i_{3}}^{\prime}\right)\right]\right|=\max _{i \in M_{1}}\left|\alpha\left[E\left(H_{i}^{\prime}\right)\right]\right|, \\
& \left|\alpha\left[E\left(H_{i_{4}}^{\prime}\right)\right]\right|=\max _{i \in M_{2}} \mid \alpha\left[E\left(H_{i}^{\prime}\right)\right] .
\end{aligned}
$$

Let $j^{(3)}$ be the maximum color of the set

$$
\alpha\left[E\left(H_{i_{3}}^{\prime}\right)\right]
$$

Let $j^{(4)}$ be the minimum color of the set

$$
\alpha\left[E\left(H_{i_{4}}^{\prime}\right)\right]
$$

Clearly, $j^{(3)} \geq j^{(4)}-1$.
It is not difficult to see that there exists an interval $j^{(3)}$-coloring of the graph $H_{i_{3}}^{\prime}$ which colors pendant edges of $H_{i_{3}}^{\prime}$ by the color 1 . Hence,

$$
\left|E\left(H_{i_{3}}^{\prime}\right)\right| \geq 2 j^{(3)}-1
$$

It is not difficult to see that there exists an interval $\left(t_{0}-j^{(4)}+1\right)$-coloring of the graph $H_{i_{4}}^{\prime}$ which colors pendant edges of $H_{i_{4}}^{\prime}$ by the color 1. Hence,

$$
\left|E\left(H_{i_{4}}^{\prime}\right)\right| \geq 2 \cdot\left(t_{0}-j^{(4)}+1\right)-1=2 t_{0}-2 j^{(4)}+1
$$

Consequently, we obtain that

$$
\begin{aligned}
n_{0} & >\left|E\left(H_{i_{3}}^{\prime}\right) \cup E\left(H_{i_{4}}^{\prime}\right)\right|=\left|E\left(H_{i_{3}}^{\prime}\right)\right|+\left|E\left(H_{i_{4}}^{\prime}\right)\right| \\
& \geq 2 t_{0}+2\left(j^{(3)}-j^{(4)}\right) \geq 2 t_{0}-2 \geq n_{0}+2+2 \varepsilon\left(\frac{n_{0}}{2}\right)>n_{0}
\end{aligned}
$$

which is impossible.
Thus, we have proved that if $n \in \mathbb{N}, n \geq 5$ and

$$
t \in\left[4+\varepsilon(n) \cdot\left(\frac{n}{2}+\varepsilon\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-2\right), n-1\right]_{(\varepsilon(n))}
$$

then $C(n) \notin \mathfrak{M}_{t}$.
Now let us prove that if

$$
n \in \mathbb{N}, \quad n \geq 5, \quad t \in[3-\varepsilon(n), n], \quad C(n) \notin \mathfrak{M}_{t}
$$

then

$$
t \in\left[4+\varepsilon(n) \cdot\left(\frac{n}{2}+\varepsilon\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-2\right), n-1\right]_{(\varepsilon(n))}
$$

Assume the contrary. It means that there are $n_{0} \in \mathbb{N}$, $n_{0} \geq 5$, and $t_{0} \in\left[3-\varepsilon\left(n_{0}\right), n_{0}\right]$, which satisfy the conditions $C\left(n_{0}\right) \notin \mathfrak{M}_{t_{0}}$ and

$$
t_{0} \notin\left[4+\varepsilon\left(n_{0}\right) \cdot\left(\frac{n_{0}}{2}+\varepsilon\left(\left\lfloor\frac{n_{0}}{2}\right\rfloor\right)-2\right), n_{0}-1\right]_{\left(\varepsilon\left(n_{0}\right)\right)}
$$

Case 1. n_{0} is odd.
In this case $t_{0} \in\left[3, n_{0}\right]$ and $t_{0} \notin\left[4, n_{0}-1\right]_{(0)}$, and, therefore, $t_{0} \in\left[3, n_{0}\right]_{(1)}$. It means that there exists $m_{0} \in \mathbb{N}$, for which

$$
2 \leq m_{0}=\frac{t_{0}+1}{2} \leq \frac{n_{0}+1}{2} .
$$

Let us note that the equality $m_{0}=\frac{n_{0}+1}{2}$ implies $t_{0}=n_{0}$, which is incompatible with the condition $C\left(n_{0}\right) \notin \mathfrak{M}_{t_{0}}$. Hence, $n_{0}-2 m_{0} \geq 1$.
Now, to see a contradiction, it is enough to note that the existence of an interval t_{0}-coloring of a graph $P\left(2 m_{0}-1\right)$ with the existence of an interval 2-coloring of a graph $P\left(n_{0}-2 m_{0}+1\right)$ provides the existence of a cyclically interval t_{0}-coloring of the graph $C\left(n_{0}\right)$.

Case 2. n_{0} is even.
In this case $t_{0} \in\left[2, n_{0}\right]$ and

$$
t_{0} \notin\left[\frac{n_{0}}{2}+2+\varepsilon\left(\frac{n_{0}}{2}\right), n_{0}-1\right]_{(1)},
$$

and, therefore,

$$
t_{0} \in\left[2, \frac{n_{0}}{2}+1\right] \cup\left(\left[\frac{n_{0}}{2}+3-\varepsilon\left(\frac{n_{0}}{2}\right), n_{0}\right]_{(0)}\right)
$$

It follows from Remark 2 that

$$
t_{0} \in\left[\frac{n_{0}}{2}+3-\varepsilon\left(\frac{n_{0}}{2}\right), n_{0}\right]_{(0)}
$$

Clearly, there exists $m_{0} \in \mathbb{N}$,

$$
m_{0} \leq \frac{1}{2}\left(\frac{n_{0}}{2}+\varepsilon\left(\frac{n_{0}}{2}\right)-1\right)
$$

for which

$$
t_{0}=\frac{n_{0}}{2}+1-\varepsilon\left(\frac{n_{0}}{2}\right)+2 m_{0} .
$$

Let us note that the equality

$$
m_{0}=\frac{1}{2}\left(\frac{n_{0}}{2}+\varepsilon\left(\frac{n_{0}}{2}\right)-1\right)
$$

implies $t_{0}=n_{0}$, which is incompatible with the condition $C\left(n_{0}\right) \notin \mathfrak{M}_{t_{0}}$. Hence,

$$
\frac{n_{0}}{2}+\varepsilon\left(\frac{n_{0}}{2}\right)-1-2 m_{0}
$$

is an even number, satisfying the inequality

$$
\frac{n_{0}}{2}+\varepsilon\left(\frac{n_{0}}{2}\right)-1-2 m_{0} \geq 2
$$

Now, to see a contradiction, it is enough to note that the existence of an interval t_{0}-coloring of a graph

$$
P\left(\frac{n_{0}}{2}+1-\varepsilon\left(\frac{n_{0}}{2}\right)+2 m_{0}\right)
$$

with the existence of an interval 2-coloring of a graph

$$
P\left(\frac{n_{0}}{2}+\varepsilon\left(\frac{n_{0}}{2}\right)-1-2 m_{0}\right)
$$

provides the existence of a cyclically interval t_{0}-coloring of the graph $C\left(n_{0}\right)$.

Thus, we have proved, that if $n \in \mathbb{N}, n \geq 5$,

$$
t \in[3-\varepsilon(n), n], \quad C(n) \notin \mathfrak{M}_{t}
$$

then

$$
t \in\left[4+\varepsilon(n) \cdot\left(\frac{n}{2}+\varepsilon\left(\left\lfloor\frac{n}{2}\right\rfloor\right)-2\right), n-1\right]_{(\varepsilon(n))}
$$

Theorem 1 is proved.
It means that we also have
Theorem 2. For an arbitrary integer $n \geq 5$,

$$
\begin{aligned}
& \Theta(C(n)) \\
& = \begin{cases}{[3, n]_{(1)},} & \text { if } n \text { is odd } \\
{\left[2, \frac{n}{2}+1\right] \cup\left(\left[\frac{n}{2}+3-\varepsilon\left(\frac{n}{2}\right), n\right]_{(0)}\right),} & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

3. Acknowledgements

The author thanks P.A. Petrosyan and N.A. Khachatryan for their attention to this work.

REFERENCES

[1] D. B. West, "Introduction to Graph Theory," PrenticeHall, Upper Saddle River, 1996.
[2] V. G. Vizing, "The Chromatic Index of a Multigraph," Kibernetika, Vol. 3, 1965, pp. 29-39.
[3] A. S. Asratian and R. R. Kamalian, "Interval Colorings of Edges of a Multigraph," Applied Mathematics, Vol. 5, Yerevan State University, 1987, pp. 25-34. (in Russian)
[4] A. S. Asratian and R. R. Kamalian, "Investigation of Interval Edge-Colorings of Graphs," Journal of Combinatorial Theory, Series B, Vol. 62, No. 1, 1994, pp. 34-43. doi:10.1006/jctb.1994.1053
[5] R. R. Kamalian, "Interval Edge Colorings of Graphs," Doctoral Dissertation, The Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990. (in Russian)
[6] R. R. Kamalian, "Interval Colorings of Complete Bipartite Graphs and Trees," Preprint of the Computing Centre of the Academy of Sciences of Armenia, 1989. (in Russian)
[7] R. R. Kamalian, "On a Number of Colors in Cyclically Interval Edge Colorings of Trees," Research Report LiTH-MAT-R-2010/09-SE, Linkoping University, 2010.
[8] R. R. Kamalian, "On Cyclically-Interval Edge Colorings
of Trees," Buletinul Academiei de Stiinte a Republicii Moldova Matematica, Vol. 68, No. 1, 2012, pp. 50-58.
[9] A. Kotzig, "1-Factorizations of Cartesian Products of Regular Graphs," Journal of Graph Theory, Vol. 3, No. 1, 1979, pp. 23-34. doi:10.1002/jgt. 3190030104
[10] J. J. Bartholdi, J. B. Orlin and H. D. Ratliff, "Cyclic Scheduling via Integer Programs with Circular Ones," Operations Research, Vol. 28, No. 5, 1980, pp. 10741085. doi:10.1287/opre.28.5.1074
[11] W. Dauscha, H. D. Modrow and A. Neumann, "On Cyclic Sequence Type for Constructing Cyclic Schedules," Zeitschrift für Operations Research, Vol. 29, No. 1, 1985, pp. 1-30.
[12] D. de Werra, N. V. R. Mahadev and P. Solot, "Periodic Compact Scheduling," ORWP 89/18, Ecole Polytechnique Fédérale de Lausanne, 1989.
[13] D. de Werra and Ph. Solot, "Compact Cylindrical Chromatic Scheduling," ORWP 89/10, Ecole Polytechnique Fédérale de Lausanne, 1989.
[14] R. R. Kamalian, "On Cyclically Continuous Edge Colorings of Simple Cycles," Proceedings of the Computer Science and Information Technologies Conference, Yerevan, 24-28 September 2007, pp. 79-80. (in Russian)

