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ABSTRACT
Let F:(}' (t),te]l&) be a filtration on some probability space and let X denote the class of all F -adapted

R?-valued stochastic processes M such that E(|M (t)|2 |.7-"(0)) < oo,E(M(t)|]-"(s)) =M(s) forall £>5>0 and
the process E(|M ()|2 |]-" (0)) is continuous (the conditional expectations are extended, so we do not demand that

E|M (t)|2 <o0). It is shown that each M €K is a locally square integrable martingale w. r. t. [F. Let X be the
strong solution of the equation X(t):J;Q(S,X(s))dz(s)+M(t), where M €K, ¢ is a continuous increasing

process with F (0) -measurable values at all times, and Q is an R -valued random function on R, xR“, continuous

in xeR’ and F -progressive at fixed x. Suppose also that there exists an F(0)® B, -measurable in (@,7) non-

negative random process  such that, forall ¢,x, x'Q(t,x)<-y (t)|x|2 and f;(// (s)de(s) <. Then

E’ |X(t)|2 <e 0 |M(0)|2 + e’\"(’)].(:ew(")dEo tr(M)(s), where W(t)= ZJél//(r)dz(r) .

Keywords: Conditional Expectation; Martingale; Stochastic Equation

1. Introduction

The random processes under consideration are assumed,
firstly, given on a common probability space (Q, F ,P)
(without any exception) and, secondly, cadlag (the
exceptions will be stipulated). Let F° be a sub-o-
algebra of F . We introduce the notation:

B’ =B(-+|#7), P* = P{-|£°}; )y —the class of all in-
creasing from zero numeral random processes whose
values at all times are F° -measurable random variables.
If, besides, a filtration IF:(]-' (t),teﬂgr) is given,
then we identify F° with F(0). By M, we denote,
following [1], the class of all R“-valued (d will be
determined by the context, if matters) F -martingales M
such that for every ¢ E|M(t)|2 <o ; (M, signifies
(see ibid.) the class of all locally square integrable
martingales w.r. t. .

The definition of conditional expectation, in particular
E’, adopted in this article is due to Meyer (see [2]). It
admits existence of the conditional expectation of a
random variable with infinite first absolute moment.

Copyright © 2013 SciRes.

Thus generalized conditional expectation inherits most of
the familiar properties (listed, for example, in [2]) of the
classical one, but in this case new proofs are required.
They are gathered in Section 2.

Let X be the solution of a stochastic differential
equation of the kind

X (6)=[0(s, X (s))di(s)+ M (2),

where ¢ is a continuous process from 1" and M is
chosen from some subclass of /M, which is con-
structed and studied in Section 3. The goal of this article
is to find an upper bound, much more exact than that
provided by the Gronwall—Bellman lemma, for
E’ |X (t)|2. This is done in Section 4 containing the only
final result of the article. The reader inclined to accept
that result in less generality, when M is a quasicon-
tinuous process from M, and F°={2,Q} (so that
E’ = E), may skip all the preceding material. But for the
approach underlying the derivations in Section 4 such a
confinement is unnatural. That is a reason why 3/4 of the

AM



136 A. YURACHKIVSKY

article’s volume are allocated to ancillary results. An-
other reason is that those results may prove useful be-
yond the context of this article.

Upper bounds for E|X (t)|p are usually obtained
with the aid of Lyapunov’s functions (see, e.g., [3.,4]).
Our alternative approach is based on a “comparison
theorem” (Corollary 4.2) allowing both to weaken the
assumptions and to refine the conclusion (cf. our
Theorem 4.3 with Theorem 1.4.2 in [3]).

All vectors are thought of, unless otherwise stated, as

columns; Lb means I]a )" The space of all d-dimen-

sional row vectors with real components is denoted R*".
The words “almost surely” are tacitly implied in relations
between random variables, including the convergence
relation, unless it is explicitly written as the convergence
in probability. Indicators are denoted by / with two
possible modes of writing the set: 7, or I{---}.

The reference books for the notions and results of
stochastic analysis used in this paper are [1,5,6].

2. Extended Conditional Expectations

Denote R, =R, U{oo} and, for

aeR, a,=av0,a_=—(an0), so that a=a, —a_.
In what follows, “nonnegative” means “R, -valued” (the
value o is not admitted). The Borel o -algebrain R,
will be denoted B, .

Let G be a sub-o -algebra of F . The conditional
given G expectation of an 11_%+ -valued random variable
y is defined, according to [2], as the G -measurable
]1_%+ -valued random variable E ( 7| g ) such that

Eyl, =E(E(}/|Q)IG) for every GeG. For an R-
valued random variable » such that
P{E(;/+ g):w:E(7_|g)}:0 we set by definition

E(;/|g) = E(;@|Q)—E(7@|g) . Further the conditional
expectation of a C?-valued random variable is defined
in the obvious way. Thus defined conditional expectation
will be called extended. Unlike the classical conditional
expectation (defined only for y €L, (Q,F,P)) it does
not possess, generally speaking, the property

glngDE(E(y|g2)|g1)=E(7|g1)‘ (1)

But for an R, -valued y this property remains
valid—with the same proof as for y €L, .

Obviously, the extended conditional expectation of
BeL (QF,P) coincides with the classical one and
therefore

E(p+7(0)=E(BI9)+E(/9). @

E(c}/|g) = cE(}/|g) (3)
for every B,y eL,(Q,F,P) and ceC. Equality (2)
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holds for ]1_%+ -valued f# and y, as well, which is
immediate from the definition of extended conditional
expectation. In particular,

E(9)=E(r.[9)+E(r-19) @

for every R -valued random variable .

The next two statements are immediate from the de-
finition of extended conditional expectation.

Lemma 2.1. Let y be an R -valued random variable
such that E(}/|g) exists. Then Equality (3) holds for
every ceR.

Lemma 2.2. Let E be an R, -valued random vari-
able. Then forany S eG E(EIS |g) = E(E|Q)IS.

Lemma 2.3. Let f and y be nonnegative random
variables such that <y . Then E(ﬁ|g) < E(}/|g) .

Proof. Denote
7 =1{E(7]9) <e0}.I' =(E(7|G)~E(5]9)) » . The
assumption B <y and the definition of extended con-
ditional expectation yield EI'/; >0 for every GegG.
Consequently I'7{I'<0}=0.0

Lemma 2.4. Let E be an R, -valued random vari-
able. Then forany €>0 and a>0

P{Z> ¢} <a/c+P{E’Z>a}.

Proof. By Formula (1)
P{E >g, E'=2< a} = EEOI{E >g E'2< a}. By Lemma
22 E'I{E>5E'E<af=I1{E'E<a| P'{E>¢}. By
Lemmas 2.3 and 2.1 E’Z>¢P°{E>¢} and therefore

I{EOE < a} P*{E>¢}<a/e . It remains to write the
evident inclusion

{(E>¢}c{E>¢E'E<afU{E'E>4d}.0

Corollary 25. Let F'cGc F and let y be a
nonnegative random variable such that E’y <o . Then
E ( 7| G ) <o,

Proof. Lemma 2.4 and Formula (1) yield for arbitrary
N>0 and a>0

P{E(7|¢)>N}<a/N+P{E% >a}.

Passing in this inequality to the limit at first as
N — o and hereafter as a — o, we get

lim P{E(7|G) > N}=0.0

_Lemma 2.6. Let (ﬁn) be an increasing sequence of

R, -valued random variables. Then Elim f, =limEf, .
Proof. In case the r.h.s is finite this is the Beppo Levi

theorem. Having written Elim g, > Ef,, we obtain the

same equality when EfS, — .0

_Lemma 2.7. Let (1",1) be an increasing sequence of

R, -valued random variables. Then

E(limT, |G)=1imE(T,|G).
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Proof. Denote I =lim[,, ¢, :E(Fn ),¢:lim¢" .
By construction ¢ is G -measurable. Lemma 2.6 and
the definition of conditional expectation yield, for arbi-
trary GegG,

Egl, =limEg ., E¢ I. =El I,, imEl' I. =ElI..
So E¢l, =EI'l;, which in view of G -measurability of
¢ proves the lemma. O

Corollary 2.8. For every sequence (y,) of non-
negative random variables the inequality
E (limy, |g)£1imE(7/ |G) is valid.

Proof. Denote —1nf)/k, =limy,

k>n

E(T, |g)£ikr;£E(;/k|g). Herein T, /'T', whence by

Lemma 2.7 E(T,|G)—>E(T|G). o
Lemma 2.9. Let (Fn) be a decreasing sequence of
nonnegative random variables such that E(F |g)<oo
Then E(hmF |g)—11mE( )
Proof. Retaining the notatlon of the proof of Lemma
2.7, we denote additionally
A= E(l"1 |g),AN ={A<N}(€G). Then from the defi-
nition of conditional expectation we have

B¢l .1, =El1 1, (5)

. By Lemma 2.3

for arbitrary N >0 and G e§. By condition ¢, <A,
so 0<Eg 1  I;<N,0<ET,I ,I;<N, whence, tak-
ing to account monotonicity of ( ) (and therefore of
(4,)) we conclude by the Beppo Levi theorem that
EI/ I, =WmEL, 1  I;, EQI I, =limEg,[ 1.
Juxtaposing these two equalities with (5), we see that

Egl,l , =ETI,I (6)

for any N >0. Herein / y —>1 as N — o, since by
assumption P{A <oo}=1. Then from (6) we get by
Lemma 2.6 E¢l. =EI'l;.0

Theorem 2.10. Let (p,) be a sequence of R’ -
valued random variables almost surely converging to a
random variable p and such that

E[sup

Then E(|p||g) <oo and E(pn Q) - E(p|g) .
Proof. Let first the p,’s be nonnegative. Denote
Y, = jkrlfpk,l"" = skuppk . Then

P, Qj <. (7

yngpnsrn’ (8)

7,/ p, T, p. From the second relation we have
by Corollary 2.8 E(p|g)sli_mE(;/n |g); the third re-
lation together with (7) yields by Lemma 2.9

( p|g) = hmE(F |Q) Comparing these two conclu-
sions with (8), we get E(p|g) —hmE(p |g) Thus we
have proved the theorem for nonnegative random vari-
ables. The transition to the general case is trivial. O

Lemma 2.11. Let B and y be R-valued random

Copyright © 2013 SciRes.

variables such that the conditional expectations
E( ,B|g) and E( 7/| g) exist and are component-wise
finite. Then E(ﬂ + )/|g) exists and Equality (2) holds.
Proof. The assumptions of the lemma together with
Equality (4) imply that

B(Allo)<w E(AlG)<=  ©

For nonnegative random variables Equality (2) ensues,
as was pointed out above, directly from the definition of
extended conditional expectation, so Inequalities (9)

yield
E(|A]+]7]|9) <. (10)
Denote, for each ne N,
_ ”ﬁ . ny
hhe av[p " vl
p,=B,+7, . By construction |B,|<n|y,|<n and

therefore f3,, 7, € L, (©, F,P). Consequently,
E(p,19)=E(8,19)+E(r.19).

Obviously, B, = p,7, > v.p, = f+y. Herein by
construction |ﬁ |<|ﬂ’| 7, <|)/| |pﬂ| <|,B|+|7/| which
together with (10) and (9) implies (7) and the same for

(B,) and (y,). Hence and from the above asymptotic
relations we get by Theorem 2.10

E(8,]9) > E(B9).E(7,19) > E(7]9),
E(p,|6) > E(B+7|9)-

Lemma 2.12. Let F'cGc F and y be a RY-
valued random variable such that E°|7/| <o . Then
E'y =E'E(7|9).

Proof. 1t suffices to consider the case d =1. Then the
last assumption of the lemma amounts to E’y, <.
Denote I', =E(7,|G).T, =E(r. |g) By Formula (1)
E'T,, —E 7, and therefore E’ F12 <o . Then by
Lemma 2.11 EO(F -I,)=E’T, -E°T,, which toge-
ther with the previous 1nequal1ty and the definition of
extended conditional expectation yields
E’(I',-T,)=E"y . The inequalities E°’T,, <co imply,
by Corollary 2.5, that T',, <o, whence by the de-
finitions of I'; and extended conditional expectation we
have T',-T, =E(|G).0

Lemma 2.13. Let Y and = be nonnegative random
variables, Y be G -measurable. Then
E(YE|G)=YE(E|G).

Proof. Denote S, ={k2" <Y <(k+1)
due to G -measurability of Y), J, =1, ,

nm = 2 z nk’ - 27";](‘]%'

Formula (2) (for nonnegative random variables),

Lemma 2.1 and the definition of Y, yield

27} (eg
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E(Y,,E|G)=2">"" kE(J,E|G). Noting that

E(JnkE|Q) = E(E|Q)J”k by Lemma 2.2, we convert
this equality to E(Y,,Z|G)=Y,,E(E|G). Obviously,
Y, /'Y, as m—>oo.Then by Lemma 2.7

E(Y,,|G) 7 E(Y,|G) as m—> oo, which together with
the last equality yields E(Y”E|Q):Y”E(E|Q). It re-
mains to let # — oo and again make use of Lemma 2.7. o

Lemma 2.14. Let Y and E be random variables
with values in R and R?, respectively. Suppose that
Y is G-measurable and E(|E| |g) <oo. Then
E(YE"|g)=YE(2"[9).

Proof. It suffices to consider the case d=1p=1.
Writing, for arbitrary a,b € R, the evident equalities
(ab), =a,b,+ab_,(ab) =ab +ab, , we get from
Lemma 2.13

B((12),9)=T.E(=. [6)+ Y E(2 |9),
E((1=) 9)=1.E(= [9)+ ¥ E(=.[0).

The assumption E(|E| |g)<oo implies finiteness of
the right-hand sides of both equalities. Consequently, the
left-hand sides are finite, too. Then by the definition of
extended conditional expectation
E(YE|G)=E((YE), |G)-E((YE) |G). which together
with the two preceding equalities completes the proof. O

Lemma 2.15. Let F'cGc F, and let Y and =
be random variables with values in RY and R” , re-
spectively, such that:

E°|Y||E| <0, E(|2||G) <©,E(E|G)=0 and Y is G-
measurable. Then E°YZ" =0 (the null matrix).

Proof. From the last three assumptions we get by
Lemma 2.14 E(YE|Q) = O ; the first assumption implies,
according to Lemma 2.12, the equality
E'YE" =E’E(YE"|G) .0

Lemma 2.16. Let (En) be a converging in pro-
bability to zero sequence of nonnegative random vari-
ables such that for some increasing unbounded function

F:R, >R, the sequence (E(E F(E,) g)) is sto-

n

chastically bounded. Then E (En |Q) —250.

Proof. From the first assumption we have
E(E,/{E, <N}|G)——>0 for every N>0, so it
suffices to show that for any & >0

lim imP {E(Z,/{g, > N}|g) > £} =0. (1)

N —>0© n—w

Since F increases to infinity, we shall have
2,1{E, >N} <F(N)'E,F(E,) for sufficiently large
N (suchthat F(N)>0). Then by Lemma 2.3

limP{E(2,/{g, > N}|g) > ¢
<limP{E(E,F (E,)|9)> cF (N)}

for those N. Letting here N — oo, we deduce (11) from

Copyright © 2013 SciRes.

the last assumption of the lemma and unbounded growth
of F.o

Lemma 2.17. Let ¢ be an R, -valued measurable
random process. Then for any F°-measurable random
variable © we have

E’p(z)=E'p(s)

s=7° (12)
Proof. Denote
C={CeFOB, B (7(1) =E'L (+5)| )} - Let

Qe F,BehB,. Then IQXB(w,T(‘U)): IQ(a’)Ir"(B>(w)’

whence by the assumption about 7 and by Lemma 2.2
we have

EOIQXB (T) = [T’I(B)EOIQ = EO ([Q[B (S))|x:‘r .

Thus C contains all sets of the kind Ox B, where
QeF,BeB, (“measurable rectangles”). Then it
follows from (2) (for nonnegative random variables) that
C contains also all possible finite unions of pairwise
disjoint measurable rectangles. According to Lemma 2.6
C contains the union of every increasing sequence of its
members. Consequently, it contains the o -algebra ge-
nerated by measurable rectangles, i.e. Equality (12) holds
for p=1.,CcFQ®B,.

Passing to the general case, we denote
C,= {k2"’ <p< (k+l)2'"} (e F®B, due to mea-

nk

surability of @), x.=1. ,9,=2">ky, . By con-
k=1

struction ¢, (s) /' ¢(s) for all @ and s and
therefore ¢, (7) /" ¢(7). From these relations we get
by Lemma 2.7

E', (s) / Eogo(s), E’, (T) / Eogo(f) (13)

As was shown (in another notation) in the proof of
Lemma 2.13, E’p,(7)=2") kE’y, (7). By what

was proved E’y, (7)=E’z, (s) which together
with the previous equality yields
E'p, (T):EO(Dn (s) _, - Juxtaposing this with (13), we
arrive at (12). o

In the next two statements, the process ¢ need not be
cadlag.

Lemma 2.18. Let He)) and ¢ be a bounded
measurable random process on [a,b]= R, . Then

E['p(s)dH (s) = [[E°p(s)dH (s).  (14)

Proof. 1) Lemma 2.11 allows to consider, without loss
of generality, that ¢ is R, -valued. Then the bound-
edness assumption together with Lemma 2.1 allows to
consider that 0 <@ <1.

Let at first ¢(s)=y/(s), where y and f are a
random variable and a Borel function, respectively. Then

s=r

s
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Equality (14) follows from Lemma 2.13.

2) Let for all se[ab] o,(s) /" ¢(s), where (p,)
is an increasing sequence of [0,1]-valued random pro-
cesses such that for each »n

E'[\o, (s)dH (s) = [ E', (s)dH (s).  (15)

Then: for any s the sequence (Eo(pn (s)) increases by
Lemma 2.3 and E’¢p,(s)—>E’(s) by Lemma 2.13;
Lb(pn (s) dH(s)/'Lb(o(s) dH (s) by the Beppo Levi
theorem. By the same theorem we get from the first
relation I:Eo(pn (s)dH (s) > J.:Eo(p(s)dH(s) . The se-
cond relation jointly with Lemma 2.13 yields
Eoquon (s)dH (s) > onjw(s)dH(s). Comparing these
two conclusions with (15), we obtain (14).

3) Let C denote the class of all
CeF ®(B+ ﬂZ[”’b]) such that Equality (14) holds for

@=1.. According to item 1) C contains the algebra
generated by measurable triangles. Then it follows from

item 2) that ¢ F®(B,N2*"T).
4) Let us define the sequence ((pﬂ) by

271
@, =27" > ky, , where the y,, ’s are the same as in the
k=0

proof of Lemma 2.17. Item 3), Lemma 2.11 and Lemma
2.1 imply together (15) for each n. Herein by con-
struction ¢, /" ¢ . It remains to refer to item 2). O

Theorem 2.19. Let H €V, and ¢ be a nonnegative
measurable random process on [a,b]cR, . Then
Equality (14) holds with possible value «© of both sides.
Proof. By Lemma 2.18 forany neN

B[} (0(s)An)dt (s) = [[E° ((s) An)di (s). (16)
By Lemma 2.6 for any s
E’(p(s)An) > E’p(s). (17)
By the same argument as in the proof of that lemma,
J(o(s)Am)at ()= [o(s)aH (5)  (18)
and, in view of (17),
j:EO ((p(s) A n)dH(s) - .[jEO(p(s)dH(s) (19)
From (18) we have by Lemma 2.6
E°["(p(s) An)dH (s) - [ Ep(s)dH (s) which toge-
ther with (16) and (19) proves (14). O
3. A Subclass of the Class of Locally Square
Integrable Martingales
The stochastic integral L;é’ (s)dX(s) w.r.t. alocal mar-
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tingale X will be written, following [5,6], as ¢ - X (Z) .
The designation of this section is to find the least re-
strictive extra assumptions providing the properties

E'|¢-x(r) <o,
E((-X(tvs)|}'(t/\s)):§~X(t/\s)

of ¢ -X underlying the derivations in Section 4. Herein
we do not demand that E|§'X(t)| <o, so the con-
ditional expectations in these properties are not classical
but extended.

The following statement differs from Doob’s optional
theorem for nonnegative discrete-time submartingales
only with the absence of the demand Ey, <o falling
out of the proof if one uses the extended expectation in-
stead of the ordinary one.

Lemma 3.1. Let (yk,k € Z+) be a sequence of non-
negative random variables adapted to a flow

(Gi-keZ,) and such that E(yk |gk_1)z Vs keN.

Then the inequality E(}/T QG)ZJ/J holds for any
bounded stopping times (w.r.t. the same flow) © and
o<T.

This result leads in the standard way to Doob’s
inequality asserted by the following lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1,

goj£4E(y5 G,). neN.

Let K denote the class of all F -adapted R -
valued (d will be determined by the context, if matters)
random processes M satisfying the conditions:

ML Forall ¢+ E°|M (1) <oo.

E (rrklax}/k2

M2. Forall ¢t>5>0 E(M()|F (s))=M(s).

Lemma 3.3. Let M €. Then
E’ (M(t)—M(s))YT =0 for every t>s20,peN
and F (s) -measurable R? -valued random variable
Y such that E° |M(t)—M(s)||Y| <o,

Proof. Denote = =M (t)—M (s). Then:
E(E|}" (s) =0 by condition M2 and the assumption
that M is T -adapted; E° (|E||]—"(s))<oo by condition
ML1. It remains to refer to Lemma 2.15. o

Corollary 3.4. (from Lemmas 3.3 and 2.3) Let
M eC. Thenforall t>s>0

E®(M(t)-M(s))M(s) =0.
Hence and from the identity |x|2 =trxx’ (xeRd)

we get
Corollary 3.5. Let M €K . Then for all

t>520 E°|M(1)-M(s)] =E°|M (1) —E°|M(s) .
Lemma3.6. Let M €. Then for any t >t, 20

E( sup |M (1) 7 (1, )J < 4E(|M(t)|2‘}"(t0)).

1y <t<y

T
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Proof. Denote
by =ty +k27" (1,1,

)’ 7nk :|M(tnk) H
construction and condition M1

E(;/nk |.7-'(t,,,(71 )) > ‘E(M(tnk )|.7’-'(t,,,(71 ))‘ =¥, Whence
by Lemma 3.2

E(T, |7 (1)) <4E(y

T, —maxyk By

0<k<2"

|7 (4, )4E(|M )17 () )

2/1
Herein M is cadlag (see the first sentence of the

article), so T', /" sup |M (t)|2. It remains to make use
19<1<n
of Lemma 2.7. O

Henceforth “stopping time”
w.r.t. the flow F”.

Lemma 3.7. Let MeK . Then the equality
E(M(a)|f(s)) =M(0'/\s) holds for every seR,
and bounded stopping time o .

Proof. We consider, without loss of generality,
R -valued processes. Writing
M(c)I{oc<s}=M(ons)I{oc<s} and noting that
the r.h.s. of the equality is F (s) -measurable, we get

E(M(o-) [{O‘SS}|.7:(S))=M(O'/\S) I{o<s}.Soit

means “‘stopping time

suffices, in view of Lemma 2.11, to show that
E(M (O')I{O' > s}|.7-"(s))

(20)
=M(S)[{U>S}(EM(U/\S)I{O'>S}).

By assumption there exists a number C such that
oc<C . We will prove Equality (20) for s<C
(otherwise it is trivial). Denote
N=2",5,,=5, 8, =s+k27"(C—s),

Ink = I{Snkfl <o< Snk}’ O-n = Zk lsnklnk9

E,=(M(c,)-M(o))I{c>s}. By construction o,
is a stopping time and o, o for all e Q. From
the last relation and right-continuity of M we have
22 <4sup,. M ()", whence by Lem-

ma 3.6 E"Z2 <16E"M (1), which in view of M1 proves
stochastic boundedness of the sequence (Ei) . Then by
Lemma 2.16

E, — 0. Herein

E(E,|7 (s))—>o0. 1)
Denote 4, =M (s, )st =1{0 <5, }, k=0,---,N
From M1 we have by Corollary 2.5 E(|/l,,k||f(s)) <o

On the strength of M2
E(ﬂnm — |}'(s)) =M (s)-M(s)=0, which toge-
ther with the previous relation results, by Lemma 2.14, in

E((/unkﬂ — My )lnkl{o- > S}|f(S)) =0. (22)
By the same lemma and property M2 of M
E(tl{o>s)|F(s))=M(s)I{c>s}. (23)

By the construction of o,
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N
M (0,)= 2t
N-1
T Mol ~
k=
Herein 1,,/{o>s}=I{s<o<s}=0 and
1,y =1{o<b} =1, which together with (24)-(22) and
Lemma 2.11 yields
E(M(Un ) {o> s}|}'(s)) =M (s)I{o >s}. This equa-
lity jointly with (21) proves (20). o
The class of all random processes M € such that
the process E° |M | is continuous will be denoted .
Lemma 3.8. K contains the sum of every two its
elements.
Proof. Let Z=X+Y, where X,Y €K . Property
M1 of Z ensues from Lemma 2.11. It follows from

Lemma 2.3 that E°|Z (1) <E°|xX (1) +E [ (1),
E'|Z(0)-Z(s)] <E°|X(e)-X(s) +E°|Y(e)-Y(s)
for all + and s. Hence property M2 and, with account
of Corollary 3.5, continuity of E°|Z | emerge. O
Theorem 3.9. K c (M,.
Proof. Let M €K .Denote U =E°|M[",
7, =inf{s: U(s)>n} M, (t1)=M(tnrt, ) . By con-
struction all z,’s are F(0)-measurable random vari-
ables (and therefore stopping times) and 7, /" o . The
process |M | is F -adapted and rlght—contmuous and
therefore, by Theorem 2.1.1 [1], F -progressive and all
the more measurable. Then Lemma 2.17 applied to
¢—|M| and o =tAr, yields
E’ |M | =U(tAt,). By Corollary 3.5 U is an in-
creasing process and therefore U(tA7,)<U(z,). By
the choice of M the process U is continuous, so
U(z,)I{r, <o} =n,U(z,)<n.Consequently,

(24)
(ﬂnkﬂ - lunk )lnk .

= lunN lnN

E°|Mn (t)|2 <n and therefore E|Mn (t)|2 <n. Herein
by Lemma 3.7 E(M (t)|]-"(s)) =M(tn7, N5)
(=M, (s) as t>s). Thus suptE|Mn (t)|2 <o and

M, is a martingale. This means, since (z,) is an in-
creasing to infinity sequence of stopping times, that
MelM,. o

The quadratic variation of a semimartingale S and
the quadratic characteristic of a locally square integrable
martingale M will be denoted [S] and (M), respec-
tively.

The following statement is immediate from Theorem
1.8.1 in [5] and the definition of quadratic characteristic.

Lemma 3.10. Let M be an R -valued locally
square integrable mamngale Then for any stopping time
r B°(M(r)-M(0)) = E°[M](r)=E* (M) r).

Corollary 3.11. Let M be an R?-valued locally
square integrable martmgale Then for any stopping time
e B (M (r) -1 (0)) = E'u[w](c) = Etr () (e).
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Note that all the random variables EO:- in the above
two statements are, generally speaking, R, -valued.

The Lebesgue - Stieltjes integral '[Ot 1 (s)dA(s), where

A is a random process of locally bounded variation,
will be written shortly as /o A(¢).

In the next statement, the process 3 need not be
right-continuous and even may have second-kind dis-
continuities.

Lemma 3.12. Let W be an R?-valued process of
class K and 3 be an R -valued T -predictable
random process such that

E° (|3 otr(W)(r)) <0, 1€R (25)

and the process E’ (|;,|2 otr<W>) is continuous. Then
3Wek.

Proof. Lemma 3.8 allows us to confine ourselves to
the case d =1.

The assumptions of the lemma imply by Theorem
1.4.40 [6] existence of the process M = 3-W . The same
theorem asserts that M € /M, and (M) =3 o(W) ,
From the last equality we also have by Corollary 3.11
E°M? =E° (52 o(W)), which together with (25) proves
property M1 of M and continuity of E’M?.

The relation M € (M, implies existence of an in-
creasing to infinity sequence (Gn) of stopping times
such that forall neN,7>s5>0

E(M(t/\an)|.7:(s)):M(S/\Gn). (26)

Setting in Lemma 3.10 at first 7=¢A0, and then
7=¢ and taking to account that (M ) is an increasing
process, we get with account of Lemma 2.3
E'M (trno, )2 <E'M (t)2 , which together with M1
entails stochastic boundedness of the sequences

(EO (M(t/\a" )2),;1 € N) and (in view of Lemma 2.4)

(E(M(t/\o-n )2 |]-'(s)),n € N) . So Lemma 2.16 asserts
that E(M(t/\Gn)|]-'(s))—"—>E(M(t)|.7:(s)) . Thus,
letting n — o0 in (26), we obtain M2. o

4. The Main Result

Lemma4.1l. Let A be a continuous increasing function,
b and H be bounded in each interval Borel functions
and U be a function satisfying, for all teR,, the
equality

U(t)=[ia(s)dA(s)+ H (1), 27)

where ¢ is a Borel function with values in R U {00}
such that ¢ <—bU . Suppose also that

[[[p(s)]dA(5) <o (28)
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for all ¢. Then U <T, where T is the solution of the
equation

T=—(bT)oA+H. (29)

Proof. By condition (28) and the assumptions about
A the integral boA exists on R, and is a function
of locally bounded variation. Equality (27) and the
assumptions about A and H show that U is a Borel
function. So (bU)oA =Uo(boA). The assumptions of
the lemma imply existence of the integral
g°A(=U — H because of (27)) , as well (so that g >—o0
almost everywhere w.r.t. the measure with distribution
function A ). This entitles us to define the function /4 by
h =(q+bU )oA . It decreases, since, by assumption,
q+bU <0 and A increases. Also, it is continuous,
sincesois A.

Denoting y=U —T and subtracting (27) from (29),
we get the equation y =—yo(boA)+h . Hence, taking to
account that /% is continuous and starts from zero, we
find

(£)=e "M [l Cdn(s).

The function 4 being decreasing, the r.h.s. is non-
positive. O

Corollary 4.2. Let A be a continuous increasing
F -adapted random process, b be an T -progressive
random process with values in RU{—OO} satisfying, for
all t, condition (28), H be an T -semimartingale and
U be a random process satisfying, for all t, equality
(27), where q is a measurable random process such
that q <-bU . Then for all t

U()<e™H(0)+e ™[ dH (s),  (30)

where R=boA.

Proof. Denote V =¢ " . Noting that (bT)oA=ToR
and taking to account continuity of A, we write down
the solution of (29):

T(t)=H(1)+e" [ " H(s)dR(s). (1)

By construction R is a continuous process of locally
bounded variation, so e “dR=-dV . By Proposition
1.4.49d [6] the covariation of any such process and a
semimartingale equals zero, so the integration-by-parts
formula yields HoV =HV—-H(0)V(0)-V-H . Thus
(e"H)oR=H(0)~HV +V-H , which turns (31) into

T(1)= efR(’)H(O) + efR(’)J.(:eR(S)dH(s).

Now, (30) follows from Lemma 4.1. o
The main result of this article concerns equations of
the kind

X(1)=[0(s, X (s))de(s)+¥ (1), (32)
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and relies on the assumption

S. For every R?-valued random process Y € K equ-
ation (32) has a unique strong solution.

As usually, S° signifies the continuous martingale
constituent (see [1,5,6]) of a semimartingale S .

Theorem 4.3. Let 1€V, M be an R’ -valued
process of class K and O be an R -valued random
function on R, xR?, continuous in xeR’ and T -
progressive in (a),t)eQxR+. Suppose also that con-
dition S is fulfilled and there exists an ]-"( )®B -
measurable in (a) t) nonnegatzve random process
such that x Q(t x) l,z/ |x| and

_[Ol// s dz s <o, telR,. (33)
Then the strong solution of the equation
t
:jOQ(s,X(s))dz(s)+M(t) (34)
satisfies, for all ¢, the inequality

E'[x (0)f <e " |M(0) +e "¢

)L;eq‘(s)dEOtr (M)(s),

where ¥ =2por.

Proof. Denote
T, :inf{s:|X(s)| > n},Mﬂ (t)=M(tAz,), so that t,
is a stopping time, M, € (M, and

|X |<k as s<rt.

n

(3%5)
Let further X, denote the solution of the equation
= [10(5, X, ())de(s)+ M, (1) (36)

(this definition of X, is correct due to condition S).
Then X, (s—)=X(s-) as s<rz, (because M,=M
for these s ). Consequently,

(x7) M, = ((XT ) I[O‘TH])~M. (37)

By the choice of M and by Corollary 3.11 and
Theorem 3.9 E°tr<M >(t)<oo for all ¢+ and the pro-
cess Eotr<M > is continuous. Then because of (35)

E’ (|X'|2 I[O,T”])otr<M> (t)<oo for all . Obviously,

the process E° (|X‘|2 I, ])o tr(M) is continuous, too.

Thus Lemma 3.12 asserts that ((XT )7 I, ])-M ek,
whence in view of (37)

E (X)) M, =0. (38)

Denote

2,(7)=X,(5) (s, X, (5)),

D,(1)=2[p,(s)du(s), (39)
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:|Mn (0)|2 +Etr[M,]. From (36) we have by the
assumptions about ; and M
X;=M;, AX,=AM,, X, (0)=0. (40)
By Theorem 2.4.6 in [1] (or, the same, Theorem 1.4.47
in [6])
[24,)(0)= (M )(1)+ 2 AM,(s)
Writing It6’s formula for f ( (t ) and putting
f(x):|x|2, so that f'(x)=2x",(1/2)f"=1 (a twice
)_

covariant tensor), f(x+y) f(x f |y|2
get with account of (36), (40) and (41), contlnulty of l
and the identity |x| = tyxx’

(12,1000 = () + 3 a1, (5) v, )

By Theorem 3.9 and Corollary 3.11 E°tr[M](¢) <
for all ¢+ since M €. Hence and from the evident in-
equality tr[M,|<tr[M] we have H,(r)<oo, which
together with (38) yields, by Lemma 2.11,

E°(2(Xj)7 M, +tr[Mn]):H .

AM,(s)". (41)

n

By construction and the assumptions about Q and
1D, <0, whence by Formula (2) for nonnegative ran-

dom variables E’ (|Xn|2 -D, ) =E°’|X,["~E°D,. The
last three equalities together with Lemmas 2.11 and 2.13
imply that

EO

=M, (0) +E"D, +H,. (42)

By construction and the assumption on Q the process
@, 1s cadlag and non-positive. Then from (39) we have
by the choice of ¢ and by Theorem 2.19

E’'D, =gq, oA, 43)

where g, (t)=E’ (Xn (1) o(s. X, (t))), A=2:. Then

equality (42), whose Lh.s. is, evidently, an 11_%+ -valued
process, together with established above finiteness of
H, shows that g,oA(r)>-o for all ¢ (though g,

may take the value —oo with positive probability).
By the construction of ¢, , the assumption on @ and

by Lemma 2.3 ¢, <-E’ (1//|X"|2). The process ¢ was
assumed increasing and therefore A increases, too; the
process y was assumed nonnegative, so ¢, <0 by
Lemma 2.3. Thus ¢,°A <0, which together with (42),

(43) and finiteness of H, ylelds E°|X,|" <o . Then
from F (0)-measurability of w(z),;€R,, we have by

Lemma 2.15 E° (p]x,[ )=y B’

q, <—wE’|X,|*. From this inequality and (33), (42), (43)
we get by Corollary 4.2
v L (s
(I)J'Oe ( )dHn ()

. ? and therefore

E'|x, ()] <e™|m, (0)f +e
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and all the more

E°|X () <e™V|m, (0)f

n

je VdE tr[M](s)
Obviously, X, (1)— X (1), M, (0)—>M(0) a
n — oo . Then Corollary 2.8 asserts that
E’ |X(z)|2 < limE° |Xn (t)|2 . It remains to note that

E’tr[M]=E’tr(M) by Corollary 3.11. 0
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