

An Upper Bound for Conditional Second Moment of the Solution of a SDE

Andriy Yurachkivsky

Cybernetics Department, Taras Shevchenko National University, Kyiv, Ukraine Email: andriy.yurachkivsky@gmail.com

Received November 9, 2012; revised December 9, 2012; accepted December 16, 2012

ABSTRACT

Let $\mathbb{F} = (\mathcal{F}(t), t \in \mathbb{R}_+)$ be a filtration on some probability space and let \mathcal{K} denote the class of all \mathbb{F} -adapted \mathbb{R}^d -valued stochastic processes M such that $\mathbb{E}(|M(t)|^2 | \mathcal{F}(0)) < \infty, \mathbb{E}(M(t) | \mathcal{F}(s)) = M(s)$ for all $t > s \ge 0$ and the process $\mathbb{E}(|M(\cdot)|^2 | \mathcal{F}(0))$ is continuous (the conditional expectations are extended, so we do not demand that $\mathbb{E}|M(t)|^2 < \infty$). It is shown that each $M \in \mathcal{K}$ is a locally square integrable martingale w. r. t. \mathbb{F} . Let X be the strong solution of the equation $X(t) = \int_0^t Q(s, X(s)) dt(s) + M(t)$, where $M \in \mathcal{K}$, t is a continuous increasing process with $\mathcal{F}(0)$ -measurable values at all times, and Q is an \mathbb{R}^d -valued random function on $\mathbb{R}_+ \times \mathbb{R}^d$, continuous in $x \in \mathbb{R}^d$ and \mathbb{F} -progressive at fixed x. Suppose also that there exists an $\mathcal{F}(0) \otimes \mathcal{B}_+$ -measurable in (ω, t) non-negative random process ψ such that, for all t, x, $x^T Q(t, x) \le -\psi(t) |x|^2$ and $\int_0^t \psi(s) dt(s) < \infty$. Then $\mathbb{E}^0 |X(t)|^2 \le e^{-\Psi(t)} |M(0)|^2 + e^{-\Psi(t)} \int_0^t e^{\Psi(s)} d\mathbb{E}^0 \operatorname{tr} \langle M \rangle(s)$, where $\Psi(t) = 2 \int_0^t \psi(\tau) dt(\tau)$.

Keywords: Conditional Expectation; Martingale; Stochastic Equation

1. Introduction

The random processes under consideration are assumed, firstly, given on a common probability space (Ω, \mathcal{F}, P) (without any exception) and, secondly, càdlàg (the exceptions will be stipulated). Let \mathcal{F}^0 be a sub- σ -algebra of \mathcal{F} . We introduce the notation:

algebra of \mathcal{F} . We introduce the notation: $E^0 = E(\dots | \mathcal{F}^0)$, $P^0 = P\{\dots | \mathcal{F}^0\}$; \mathcal{V}_0^+ —the class of all increasing from zero numeral random processes whose values at all times are \mathcal{F}^0 -measurable random variables. If, besides, a filtration $\mathbb{F} = (\mathcal{F}(t), t \in \mathbb{R}_+)$ is given, then we identify \mathcal{F}^0 with $\mathcal{F}(0)$. By $\overline{\mathcal{M}}_2$ we denote, following [1], the class of all \mathbb{R}^d -valued (*d* will be determined by the context, if matters) \mathbb{F} -martingales *M* such that for every $t = [M(t)]^2 < \infty$; $\ell \mathcal{M}_2$ signifies (see ibid.) the class of all locally square integrable martingales w. r. t. \mathbb{F} .

The definition of conditional expectation, in particular E^0 , adopted in this article is due to Meyer (see [2]). It admits existence of the conditional expectation of a random variable with infinite first absolute moment.

Thus generalized conditional expectation inherits most of the familiar properties (listed, for example, in [2]) of the classical one, but in this case new proofs are required. They are gathered in Section 2.

Let X be the solution of a stochastic differential equation of the kind

$$X(t) = \int_0^t \mathcal{Q}(s, X(s)) \mathrm{d}\iota(s) + M(t),$$

where t is a continuous process from \mathcal{V}_0^+ and M is chosen from some subclass of $\ell \mathcal{M}_2$ which is constructed and studied in Section 3. The goal of this article is to find an upper bound, much more exact than that provided by the Gronwall—Bellman lemma, for $\mathrm{E}^0 |X(t)|^2$. This is done in Section 4 containing the only final result of the article. The reader inclined to accept that result in less generality, when M is a quasicontinuous process from $\overline{\mathcal{M}}_2$ and $\mathcal{F}^0 = \{\emptyset, \Omega\}$ (so that $\mathrm{E}^0 = \mathrm{E}$), may skip all the preceding material. But for the approach underlying the derivations in Section 4 such a confinement is unnatural. That is a reason why 3/4 of the

article's volume are allocated to ancillary results. Another reason is that those results may prove useful bevond the context of this article.

Upper bounds for $E|X(t)|^{p}$ are usually obtained with the aid of Lyapunov's functions (see, e.g., [3,4]). Our alternative approach is based on a "comparison theorem" (Corollary 4.2) allowing both to weaken the assumptions and to refine the conclusion (cf. our Theorem 4.3 with Theorem I.4.2 in [3]).

All vectors are thought of, unless otherwise stated, as columns; \int_{a}^{b} means $\int_{[a,b]}$. The space of all *d*-dimen-

sional row vectors with real components is denoted \mathbb{R}^{d^*} . The words "almost surely" are tacitly implied in relations between random variables, including the convergence relation, unless it is explicitly written as the convergence in probability. Indicators are denoted by I with two possible modes of writing the set: I_B or $I\{\cdots\}$.

The reference books for the notions and results of stochastic analysis used in this paper are [1,5,6].

2. Extended Conditional Expectations

Denote $\overline{\mathbb{R}}_{+} = \mathbb{R}_{+} \bigcup \{\infty\}$ and, for

 $a \in \mathbb{R}, a_{+} = a \lor 0, a_{-} = -(a \land 0), \text{ so that } a = a_{+} - a_{-}.$ In what follows, "nonnegative" means " \mathbb{R}_{+} -valued" (the value ∞ is not admitted). The Borel σ -algebra in \mathbb{R}_+ will be denoted \mathcal{B}_{\perp} .

Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . The conditional given \mathcal{G} expectation of an \mathbb{R}_{+} -valued random variable γ is defined, according to [2], as the \mathcal{G} -measurable $\overline{\mathbb{R}}_{+}$ -valued random variable $E(\gamma|\mathcal{G})$ such that $E \gamma I_{\mathcal{G}} = E(E(\gamma | \mathcal{G}) I_{\mathcal{G}})$ for every $G \in \mathcal{G}$. For an \mathbb{R} -

$$L/I_G = L(L(\gamma|g)I_G)$$
 for every $0 \in g$. For a

valued random variable γ such that

 $P\{E(\gamma_{+}|\mathcal{G}) = \infty = E(\gamma_{-}|\mathcal{G})\} = 0$ we set by definition

 $E(\gamma|\mathcal{G}) = E(\gamma_+|\mathcal{G}) - E(\gamma_-|\mathcal{G})$. Further the conditional expectation of a \mathbb{C}^d -valued random variable is defined in the obvious way. Thus defined conditional expectation will be called extended. Unlike the classical conditional expectation (defined only for $\gamma \in L_1(\Omega, \mathcal{F}, P)$) it does not possess, generally speaking, the property

$$\mathcal{G}_{1} \subset \mathcal{G}_{2} \Rightarrow \mathrm{E}(\mathrm{E}(\gamma | \mathcal{G}_{2}) | \mathcal{G}_{1}) = \mathrm{E}(\gamma | \mathcal{G}_{1}).$$
 (1)

But for an $\overline{\mathbb{R}}_+$ -valued γ this property remains valid—with the same proof as for $\gamma \in L_1$.

Obviously, the extended conditional expectation of $\beta \in L_1(\Omega, \mathcal{F}, P)$ coincides with the classical one and therefore

$$\mathbf{E}(\boldsymbol{\beta} + \boldsymbol{\gamma}|\boldsymbol{\mathcal{G}}) = \mathbf{E}(\boldsymbol{\beta}|\boldsymbol{\mathcal{G}}) + \mathbf{E}(\boldsymbol{\gamma}|\boldsymbol{\mathcal{G}}), \qquad (2)$$

$$E(c\gamma|\mathcal{G}) = cE(\gamma|\mathcal{G})$$
(3)

for every $\beta, \gamma \in L_1(\Omega, \mathcal{F}, P)$ and $c \in \mathbb{C}$. Equality (2)

holds for $\overline{\mathbb{R}}_+$ -valued β and γ , as well, which is immediate from the definition of extended conditional expectation. In particular.

$$\mathbf{E}(|\boldsymbol{\gamma}||\boldsymbol{\mathcal{G}}) = \mathbf{E}(\boldsymbol{\gamma}_{+}|\boldsymbol{\mathcal{G}}) + \mathbf{E}(\boldsymbol{\gamma}_{-}|\boldsymbol{\mathcal{G}})$$
(4)

for every \mathbb{R} -valued random variable γ .

The next two statements are immediate from the definition of extended conditional expectation.

Lemma 2.1. Let γ be an \mathbb{R} -valued random variable such that $E(\gamma | \mathcal{G})$ exists. Then Equality (3) holds for every $c \in \mathbb{R}$.

Lemma 2.2. Let Ξ be an \mathbb{R}_+ -valued random variable. Then for any $S \in \mathcal{G} \to \mathbb{E}(\Xi I_s | \mathcal{G}) = \mathbb{E}(\Xi | \mathcal{G}) I_s$.

Lemma 2.3. Let β and γ be nonnegative random variables such that $\beta \leq \gamma$. Then $E(\beta|\mathcal{G}) \leq E(\gamma|\mathcal{G})$. Proof. Denote

 $\chi = I \{ E(\gamma | \mathcal{G}) < \infty \}, \Gamma = (E(\gamma | \mathcal{G}) - E(\beta | \mathcal{G})) \chi$. The assumption $\beta \leq \gamma'$ and the definition of extended conditional expectation yield $E\Gamma I_G \ge 0$ for every $G \in \mathcal{G}$. Consequently $\Gamma I \{ \Gamma < 0 \} = 0$. \Box

Lemma 2.4. Let Ξ be an \mathbb{R}_+ -valued random vari*able. Then for any* $\varepsilon > 0$ *and* a > 0

$$\mathbf{P}\left\{\Xi > \varepsilon\right\} \le a/\varepsilon + \mathbf{P}\left\{\mathbf{E}^{0}\Xi > a\right\}.$$

Proof. By Formula (1) $P\{\Xi > \varepsilon, E^0\Xi \le a\} = EE^0I\{\Xi > \varepsilon, E^0\Xi \le a\}.$ By Lemma 2.2 $\mathrm{E}^{0} I \left\{ \Xi > \varepsilon, \mathrm{E}^{0} \Xi \le a \right\} = I \left\{ \mathrm{E}^{0} \Xi \le a \right\} \mathrm{P}^{0} \left\{ \Xi > \varepsilon \right\}.$ By Lemmas 2.3 and 2.1 $E^0 \Xi \ge \varepsilon P^0 \{\Xi \ge \varepsilon\}$ and therefore

 $I \{ E^0 \Xi \le a \} P^0 \{ \Xi > \varepsilon \} \le a / \varepsilon$. It remains to write the evident inclusion

$$\{\Xi > \varepsilon\} \subset \{\Xi > \varepsilon, E^0 \Xi \le a\} \cup \{E^0 \Xi > a\}. \square$$

Corollary 2.5. Let $\mathcal{F}^0 \subset \mathcal{G} \subset \mathcal{F}$ and let γ be a nonnegative random variable such that $E^0 \gamma < \infty$. Then $\mathrm{E}(\gamma|\mathcal{G}) < \infty$.

Proof. Lemma 2.4 and Formula (1) yield for arbitrary N > 0 and a > 0

$$\mathbf{P}\left\{\mathbf{E}(\boldsymbol{\gamma}|\boldsymbol{\mathcal{G}}) > N\right\} \leq a/N + \mathbf{P}\left\{\mathbf{E}^{0}\boldsymbol{\gamma} > a\right\}.$$

Passing in this inequality to the limit at first as $N \to \infty$ and hereafter as $a \to \infty$, we get

$$\lim_{N \to \infty} \mathbf{P} \left\{ \mathbf{E} \left(\gamma \big| \mathcal{G} \right) > N \right\} = \mathbf{0} . \Box$$

Lemma 2.6. Let (β_n) be an increasing sequence of \mathbb{R}_{\perp} -valued random variables. Then $\mathrm{E} \lim \beta_n = \lim \mathrm{E} \beta_n$.

Proof. In case the r.h.s is finite this is the Beppo Levi theorem. Having written $E \lim \beta_m \ge E \beta_n$, we obtain the same equality when $E\beta_n \to \infty$. **Lemma 2.7.** Let (Γ_n) be an increasing sequence of

 \mathbb{R}_{\perp} -valued random variables. Then

$$\mathrm{E}(\lim \Gamma_n | \mathcal{G}) = \lim \mathrm{E}(\Gamma_n | \mathcal{G}).$$

Copyright © 2013 SciRes.

Proof. Denote $\Gamma = \lim \Gamma_n, \phi_n = E(\Gamma_n | \mathcal{G}), \phi = \lim \phi_n$. By construction ϕ is \mathcal{G} -measurable. Lemma 2.6 and the definition of conditional expectation yield, for arbitrary $G \in \mathcal{G}$.

 $\mathbf{E}\phi I_G = \lim \mathbf{E}\phi_n I_G, \ \mathbf{E}\phi_n I_G = \mathbf{E}\Gamma_n I_G, \ \lim \mathbf{E}\Gamma_n I_G = \mathbf{E}\Gamma I_G.$ So $E\phi I_G = E\Gamma I_G$, which in view of \mathcal{G} -measurability of ϕ proves the lemma. \Box

Corollary 2.8. For every sequence (γ_n) of nonnegative random variables the inequality

 $E(\lim \gamma_n | \mathcal{G}) \leq \lim E(\gamma_n | \mathcal{G})$ is valid.

Proof. Denote $\Gamma_n = \inf \gamma_k$, $\Gamma = \underline{\lim} \gamma_n$. By Lemma 2.3

 $\mathrm{E}(\Gamma_{n}|\mathcal{G}) \leq \inf_{k \geq n} \mathrm{E}(\gamma_{k}|\mathcal{G}).$ Herein $\Gamma_{n} \nearrow \Gamma$, whence by Lemma 2.7 $E(\Gamma_n | \mathcal{G}) \rightarrow E(\Gamma | \mathcal{G}). \Box$

Lemma 2.9. Let (Γ_n) be a decreasing sequence of nonnegative random variables such that $E(\Gamma_1|\mathcal{G}) < \infty$. Then $E(\lim \Gamma_n | \mathcal{G}) = \lim E(\Gamma_n | \mathcal{G}).$

Proof. Retaining the notation of the proof of Lemma 2.7, we denote additionally

 $\Lambda = \mathrm{E}(\Gamma_1 | \mathcal{G}), A^N = \{\Lambda \leq N\} (\in \mathcal{G}).$ Then from the definition of conditional expectation we have

$$\mathbf{E}\phi_n I_{A^N} I_G = \mathbf{E}\Gamma_n I_{A^N} I_G \tag{5}$$

for arbitrary N > 0 and $G \in \mathcal{G}$. By condition $\phi_n \leq \Lambda$, so $0 \le E\phi_n I_{A^N} I_G \le N, 0 \le E\Gamma_n I_{A^N} I_G \le N$, whence, taking to account monotonicity of (Γ_n) (and therefore of (ϕ_n)) we conclude by the Beppo Levi theorem that $\mathrm{E}\Gamma I_{A^{N}}I_{G} = \mathrm{lim}\,\mathrm{E}\Gamma_{n}I_{A^{N}}I_{G}, \ \mathrm{E}\phi I_{A^{N}}I_{G} = \mathrm{lim}\,\mathrm{E}\phi_{n}I_{A^{N}}I_{G}.$ Juxtaposing these two equalities with (5), we see that

$$\mathbf{E}\boldsymbol{\phi}\boldsymbol{I}_{\boldsymbol{G}}\boldsymbol{I}_{\boldsymbol{A}^{N}} = \mathbf{E}\boldsymbol{\Gamma}\boldsymbol{I}_{\boldsymbol{G}}\boldsymbol{I}_{\boldsymbol{A}^{N}} \tag{6}$$

for any N > 0. Herein $I_{A^N} \to 1$ as $N \to \infty$, since by assumption $P\{\Lambda < \infty\} = 1$. Then from (6) we get by Lemma 2.6 $E\phi I_G = E\Gamma I_G \Box$

Theorem 2.10. Let (ρ_n) be a sequence of \mathbb{R}^d valued random variables almost surely converging to a random variable ρ and such that

$$\mathrm{E}\left(\sup_{n}\left|\rho_{n}\right|\left|\mathcal{G}\right)<\infty.$$
(7)

Then $E(|\rho||\mathcal{G}) < \infty$ and $E(\rho_n|\mathcal{G}) \to E(\rho|\mathcal{G})$.

Proof. Let first the ρ_n 's be nonnegative. Denote $\gamma_n = \inf_{k \ge n} \rho_k, \Gamma_n = \sup_{k \ge n} \rho_k$. Then

$$\gamma_n \le \rho_n \le \Gamma_n, \tag{8}$$

 $\gamma_n \nearrow \rho$, $\Gamma_n \searrow \rho$. From the second relation we have by Corollary 2.8 $E(\rho|\mathcal{G}) \leq \underline{\lim}E(\gamma_n|\mathcal{G})$; the third relation together with (7) yields by Lemma 2.9

 $E(\rho|\mathcal{G}) = \lim E(\Gamma_n|\mathcal{G})$. Comparing these two conclusions with (8), we get $E(\rho|\mathcal{G}) = \lim E(\rho_n|\mathcal{G})$. Thus we have proved the theorem for nonnegative random variables. The transition to the general case is trivial. \Box

Lemma 2.11. Let β and γ be \mathbb{R}^d -valued random

variables such that the conditional expectations $E(\beta|\mathcal{G})$ and $E(\gamma|\mathcal{G})$ exist and are component-wise finite. Then $E(\beta + \gamma | \mathcal{G})$ exists and Equality (2) holds.

Proof. The assumptions of the lemma together with Equality (4) imply that

$$\mathrm{E}(|\boldsymbol{\beta}||\boldsymbol{\mathcal{G}}) < \infty, \quad \mathrm{E}(|\boldsymbol{\gamma}||\boldsymbol{\mathcal{G}}) < \infty.$$
 (9)

For nonnegative random variables Equality (2) ensues, as was pointed out above, directly from the definition of extended conditional expectation, so Inequalities (9) vield

$$\mathbf{E}\left(\left|\boldsymbol{\beta}\right| + \left|\boldsymbol{\gamma}\right| \left|\boldsymbol{\mathcal{G}}\right) < \infty.$$
(10)

Denote, for each $n \in \mathbb{N}$,

$$\beta_n = \frac{n\beta}{n \vee |\beta|}, \quad \gamma_n = \frac{n\gamma}{n \vee |\gamma|},$$

 $\rho_n = \beta_n + \gamma_n$. By construction $|\beta_n| \le n, |\gamma_n| \le n$ and therefore $\beta_n, \gamma_n \in L_1(\Omega, \mathcal{F}, P)$. Consequently, $\mathrm{E}(\rho_n | \mathcal{G}) = \mathrm{E}(\beta_n | \mathcal{G}) + \mathrm{E}(\gamma_n | \mathcal{G}).$

Obviously, $\beta_n \to \beta, \gamma_n \to \gamma, \rho_n \to \beta + \gamma$. Herein by construction $|\beta_n| \le |\beta|, |\gamma_n| \le |\gamma|, |\rho_n| \le |\beta| + |\gamma|$, which together with (10) and (9) implies (7) and the same for (β_n) and (γ_n) . Hence and from the above asymptotic relations we get by Theorem 2.10

$$E(\beta_n | \mathcal{G}) \to E(\beta | \mathcal{G}), E(\gamma_n | \mathcal{G}) \to E(\gamma | \mathcal{G}), \\ E(\rho_n | \mathcal{G}) \to E(\beta + \gamma | \mathcal{G}).$$

Lemma 2.12. Let $\mathcal{F}^0 \subset \mathcal{G} \subset \mathcal{F}$ and γ be a \mathbb{R}^d valued random variable such that $E^0 |\gamma| < \infty$. Then $E^{0}\gamma = E^{0}E(\gamma|\mathcal{G}).$

Proof. It suffices to consider the case d = 1. Then the last assumption of the lemma amounts to $E^0 \gamma_+ < \infty$. Denote $\Gamma_1 = E(\gamma_+ | \mathcal{G}), \Gamma_2 = E(\gamma_- | \mathcal{G})$. By Formula (1) $E^{0}\Gamma_{1,2} = E^{0}\gamma_{\pm}$ and therefore $E^{0}\Gamma_{1,2} < \infty$. Then by Lemma 2.11 $E^{0}(\Gamma_{1} - \Gamma_{2}) = E^{0}\Gamma_{1} - E^{0}\Gamma_{2}$, which together with the previous inequality and the definition of extended conditional expectation yields

 $E^{0}(\Gamma_{1}-\Gamma_{2}) = E^{0}\gamma$. The inequalities $E^{0}\Gamma_{1,2} < \infty$ imply, by Corollary 2.5, that $\Gamma_{1,2} < \infty$, whence by the definitions of Γ_i and extended conditional expectation we have $\Gamma_1 - \Gamma_2 = E(\gamma | \mathcal{G}) . \Box$

Lemma 2.13. Let Υ and Ξ be nonnegative random variables, Υ be G-measurable. Then $E(\Upsilon \Xi | \mathcal{G}) = \Upsilon E(\Xi | \mathcal{G})$

$$E(1\Xi|9) = 1E(\Xi|9).$$
Proof Denote S = \$\frac{1}{k}2^{-n}\$

Proof. Denote $S_{nk} = \{k2^{-n} < \Upsilon \le (k+1)2^{-n}\} \quad (\in \mathcal{G})$ due to \mathcal{G} -measurability of Υ), $J_{nk} = I_{S_{nk}}$,

$$\Upsilon_{nm} = 2^{-n} \sum_{k=1}^{m} k J_{nk}, \Upsilon_n = 2^{-n} \sum_{k=1}^{\infty} k J_{nk}$$

Formula (2) (for nonnegative random variables), Lemma 2.1 and the definition of Υ_{nm} yield

 $\mathbb{E}(\Upsilon_{nm}\Xi|\mathcal{G}) = 2^{-n} \sum_{k=1}^{m} k \mathbb{E}(J_{nk}\Xi|\mathcal{G})$. Noting that

 $E(J_{nk}\Xi|\mathcal{G}) = E(\Xi|\mathcal{G})J_{nk} \text{ by Lemma 2.2, we convert}$ this equality to $E(\Upsilon_{nm}\Xi|\mathcal{G}) = \Upsilon_{nm}E(\Xi|\mathcal{G})$. Obviously, $\Upsilon_{nm} \nearrow \Upsilon_n \text{ as } m \to \infty$. Then by Lemma 2.7 $E(\Upsilon_{nm}|\mathcal{G}) \nearrow E(\Upsilon_n|\mathcal{G}) \text{ as } m \to \infty$, which together with

 $E(\Upsilon_{nm}|\mathcal{G}) \nearrow E(\Upsilon_n|\mathcal{G})$ as $m \to \infty$, which together with the last equality yields $E(\Upsilon_n \Xi|\mathcal{G}) = \Upsilon_n E(\Xi|\mathcal{G})$. It remains to let $n \to \infty$ and again make use of Lemma 2.7. \Box

Lemma 2.14. Let Υ and Ξ be random variables with values in \mathbb{R}^d and \mathbb{R}^p , respectively. Suppose that Υ is \mathcal{G} -measurable and $\mathbb{E}(|\Xi||\mathcal{G}) < \infty$. Then $\mathbb{E}(\Upsilon\Xi^T|\mathcal{G}) = \Upsilon\mathbb{E}(\Xi^T|\mathcal{G}).$

Proof. It suffices to consider the case d = 1, p = 1. Writing, for arbitrary $a, b \in \mathbb{R}$, the evident equalities $(ab)_+ = a_+b_+ + a_-b_-, (ab)_- = a_+b_- + a_-b_+$, we get from Lemma 2.13

$$E((\Upsilon \Xi)_{+}|\mathcal{G}) = \Upsilon_{+}E(\Xi_{+}|\mathcal{G}) + \Upsilon_{-}E(\Xi_{-}|\mathcal{G}),$$

$$E((\Upsilon \Xi)_{-}|\mathcal{G}) = \Upsilon_{+}E(\Xi_{-}|\mathcal{G}) + \Upsilon_{-}E(\Xi_{+}|\mathcal{G}).$$

The assumption $E(|\Xi||G) < \infty$ implies finiteness of the right-hand sides of both equalities. Consequently, the left-hand sides are finite, too. Then by the definition of extended conditional expectation

 $E(\Upsilon \Xi | \mathcal{G}) = E((\Upsilon \Xi)_+ | \mathcal{G}) - E((\Upsilon \Xi)_- | \mathcal{G})$, which together with the two preceding equalities completes the proof. \Box

Lemma 2.15. Let $\mathcal{F}^0 \subset \mathcal{G} \subset \mathcal{F}$, and let Υ and Ξ be random variables with values in \mathbb{R}^d and \mathbb{R}^p , respectively, such that:

 $E^{0} |\Upsilon||\Xi| < \infty, E(|\Xi||\mathcal{G}) < \infty, E(\Xi|\mathcal{G}) = 0 \quad and \quad \Upsilon \quad is \quad \mathcal{G} - measurable. Then \quad E^{0} \Upsilon \Xi^{T} = O \quad (the null matrix).$

Proof. From the last three assumptions we get by Lemma 2.14 $E(\Upsilon \Xi | \mathcal{G}) = O$; the first assumption implies, according to Lemma 2.12, the equality $E^{0}\Upsilon \Xi^{T} = E^{0}E(\Upsilon \Xi^{T} | \mathcal{G})$.

Lemma 2.16. Let (Ξ_n) be a converging in probability to zero sequence of nonnegative random variables such that for some increasing unbounded function $F: \mathbb{R}_+ \to \mathbb{R}_+$ the sequence $(\mathbb{E}(\Xi_n F(\Xi_n)|\mathcal{G}))$ is sto-

chastically bounded. Then $E(\Xi_n | \mathcal{G}) \xrightarrow{P} 0$. Proof. From the first assumption we have

 $E\left(\Xi_n I\left\{\Xi_n \le N\right\} | \mathcal{G}\right) \xrightarrow{P} 0$ for every N > 0, so it suffices to show that for any $\varepsilon > 0$

$$\lim_{N \to \infty} \overline{\lim_{n \to \infty}} \mathbb{P} \left\{ \mathbb{E} \left(\Xi_n I \left\{ \Xi_n > N \right\} \middle| \mathcal{G} \right) > \varepsilon \right\} = 0.$$
(11)

Since F increases to infinity, we shall have $\Xi_n I \{\Xi_n > N\} \le F(N)^{-1} \Xi_n F(\Xi_n)$ for sufficiently large N (such that F(N) > 0). Then by Lemma 2.3

$$\overline{\lim_{n \to \infty}} \mathbb{P} \left\{ \mathbb{E} \left(\Xi_n I \left\{ \Xi_n > N \right\} | \mathcal{G} \right) > \varepsilon \right\}$$

$$\leq \overline{\lim_{n \to \infty}} \mathbb{P} \left\{ \mathbb{E} \left(\Xi_n F \left(\Xi_n \right) | \mathcal{G} \right) > \varepsilon F \left(N \right) \right\}$$

for those N. Letting here $N \rightarrow \infty$, we deduce (11) from

the last assumption of the lemma and unbounded growth of $F \Box$

Lemma 2.17. Let φ be an \mathbb{R}_+ -valued measurable random process. Then for any \mathcal{F}^0 -measurable random variable τ we have

$$\mathbf{E}^{0}\varphi(\tau) = \mathbf{E}^{0}\varphi(s)\big|_{s=\tau}.$$
 (12)

Proof. Denote

$$\mathcal{C} = \left\{ C \in \mathcal{F} \otimes \mathcal{B}_{+} : \mathrm{E}^{0} I_{C} \left(\cdot, \tau \left(\cdot \right) \right) = \mathrm{E}^{0} I_{C} \left(\cdot, s \right) \Big|_{s = \tau(\cdot)} \right\} \text{. Let}$$

$$Q \in \mathcal{F}, B \in \mathcal{B}_{+} \text{. Then } I_{\mathcal{Q} \times B} \left(\omega, \tau \left(\omega \right) \right) = I_{\mathcal{Q}} \left(\omega \right) I_{\tau^{-1}(B)} \left(\omega \right),$$

whence by the assumption about τ and by Lemma 2.2 we have

$$\mathbf{E}^{0}I_{\mathcal{Q}\times B}\left(\tau\right) = I_{\tau^{-1}(B)}\mathbf{E}^{0}I_{\mathcal{Q}} \equiv \mathbf{E}^{0}\left(I_{\mathcal{Q}}I_{B}\left(s\right)\right)\Big|_{s=\tau}$$

Thus C contains all sets of the kind $Q \times B$, where $Q \in \mathcal{F}, B \in \mathcal{B}_+$ ("measurable rectangles"). Then it follows from (2) (for nonnegative random variables) that C contains also all possible finite unions of pairwise disjoint measurable rectangles. According to Lemma 2.6 C contains the union of every increasing sequence of its members. Consequently, it contains the σ -algebra generated by measurable rectangles, *i.e.* Equality (12) holds for $\varphi = I_C, C \in \mathcal{F} \otimes \mathcal{B}_+$.

Passing to the general case, we denote

 $C_{nk} = \left\{ k2^{-n} < \varphi \le (k+1)2^{-n} \right\} \quad (\in \mathcal{F} \otimes \mathcal{B}_{+} \text{ due to measurability of } \varphi), \quad \chi_{nk} = I_{C_{nk}}, \quad \varphi_n = 2^{-n} \sum_{k=1}^{\infty} k\chi_{nk}. \text{ By construction } \varphi_n(s) \nearrow \varphi(s) \text{ for all } \omega \text{ and } s \text{ and therefore } \varphi_n(\tau) \nearrow \varphi(\tau). \text{ From these relations we get by Lemma 2.7}$

$$\mathrm{E}^{0}\varphi_{n}(s)\nearrow\mathrm{E}^{0}\varphi(s), \quad \mathrm{E}^{0}\varphi_{n}(\tau)\nearrow\mathrm{E}^{0}\varphi(\tau)$$
(13)

As was shown (in another notation) in the proof of Lemma 2.13, $E^{0}\varphi_{n}(\tau) = 2^{-n}\sum_{k} kE^{0}\chi_{nk}(\tau)$. By what was proved $E^{0}\chi_{nk}(\tau) = E^{0}\chi_{nk}(s)|_{s=\tau}$, which together with the previous equality yields

 $E^{0}\varphi_{n}(\tau) = E^{0}\varphi_{n}(s)|_{s=\tau}$. Juxtaposing this with (13), we arrive at (12). \Box

In the next two statements, the process φ need not be càdlàg.

Lemma 2.18. Let $H \in \mathcal{V}_0^+$ and φ be a bounded measurable random process on $[a,b] \subset \mathbb{R}_+$. Then

$$\mathbf{E}^{0} \int_{a}^{b} \varphi(s) \mathrm{d}H(s) = \int_{a}^{b} \mathbf{E}^{0} \varphi(s) \mathrm{d}H(s).$$
(14)

Proof. 1) Lemma 2.11 allows to consider, without loss of generality, that ϕ is \mathbb{R}_+ -valued. Then the bound-edness assumption together with Lemma 2.1 allows to consider that $0 \le \phi \le 1$.

Let at first $\varphi(s) = \gamma f(s)$, where γ and f are a random variable and a Borel function, respectively. Then

Equality (14) follows from Lemma 2.13.

2) Let for all $s \in [a,b]$ $\varphi_n(s) \nearrow \varphi(s)$, where (φ_n) is an increasing sequence of [0,1]-valued random processes such that for each n

$$\mathrm{E}^{0}\int_{a}^{b}\varphi_{n}\left(s\right)\mathrm{d}H\left(s\right)=\int_{a}^{b}\mathrm{E}^{0}\varphi_{n}\left(s\right)\mathrm{d}H\left(s\right).$$
 (15)

Then: for any *s* the sequence $(E^0\varphi_n(s))$ increases by Lemma 2.3 and $E^0\varphi_n(s) \to E^0\varphi(s)$ by Lemma 2.13; $\int_a^b\varphi_n(s) dH(s) \nearrow \int_a^b\varphi(s) dH(s)$ by the Beppo Levi theorem. By the same theorem we get from the first relation $\int_a^b E^0\varphi_n(s) dH(s) \to \int_a^b E^0\varphi(s) dH(s)$. The second relation jointly with Lemma 2.13 yields

 $E^0 \int_a^b \varphi_n(s) dH(s) \to E^0 \int_a^b \varphi(s) dH(s)$. Comparing these two conclusions with (15), we obtain (14).

3) Let C denote the class of all

 $C \in \mathcal{F} \otimes (\mathcal{B}_+ \cap 2^{[a,b]})$ such that Equality (14) holds for $\varphi = I_C$. According to item 1) C contains the algebra generated by measurable triangles. Then it follows from item 2) that $C \supset \mathcal{F} \otimes (\mathcal{B}_+ \cap 2^{[a,b]})$.

4) Let us define the sequence (φ_n) by

 $\varphi_n = 2^{-n} \sum_{k=0}^{2^n-1} k \chi_{nk}$, where the χ_{nk} 's are the same as in the

proof of Lemma 2.17. Item 3), Lemma 2.11 and Lemma 2.1 imply together (15) for each *n*. Herein by construction $\varphi_n \nearrow \varphi$. It remains to refer to item 2). \Box

Theorem 2.19. Let $H \in \mathcal{V}_0^+$ and φ be a nonnegative measurable random process on $[a,b] \subset \mathbb{R}_+$. Then Equality (14) holds with possible value ∞ of both sides. *Proof.* By Lemma 2.18 for any $n \in \mathbb{N}$

$$\mathbf{E}^{0}\int_{a}^{b} \left(\varphi(s) \wedge n\right) \mathrm{d}H(s) = \int_{a}^{b} \mathbf{E}^{0} \left(\varphi(s) \wedge n\right) \mathrm{d}H(s).$$
(16)

By Lemma 2.6 for any *s*

$$\mathrm{E}^{0}\left(\varphi(s)\wedge n\right)\to\mathrm{E}^{0}\varphi(s). \tag{17}$$

By the same argument as in the proof of that lemma,

$$\int_{a}^{b} (\varphi(s) \wedge n) dH(s) \to \int_{a}^{b} \varphi(s) dH(s) \quad (18)$$

and, in view of (17),

$$\int_{a}^{b} \mathbb{E}^{0} \left(\varphi(s) \wedge n \right) \mathrm{d}H(s) \to \int_{a}^{b} \mathbb{E}^{0} \varphi(s) \mathrm{d}H(s) \quad (19)$$

From (18) we have by Lemma 2.6

 $E^{0}\int_{a}^{b} (\varphi(s) \wedge n) dH(s) \rightarrow \int_{a}^{b} E^{0} \varphi(s) dH(s)$ which together with (16) and (19) proves (14). □

3. A Subclass of the Class of Locally Square Integrable Martingales

The stochastic integral $\int_0^t \zeta(s) dX(s)$ w.r.t. a local mar-

Copyright © 2013 SciRes.

tingale X will be written, following [5,6], as $\zeta \cdot X(t)$. The designation of this section is to find the least restrictive extra assumptions providing the properties

$$E^{0} |\zeta \cdot X(t)|^{2} < \infty ,$$

$$E(\zeta \cdot X(t \lor s) |\mathcal{F}(t \land s)) = \zeta \cdot X(t \land s)$$

of $\zeta \cdot X$ underlying the derivations in Section 4. Herein we do not demand that $E|\zeta \cdot X(t)| < \infty$, so the conditional expectations in these properties are not classical but extended.

The following statement differs from Doob's optional theorem for nonnegative discrete-time submartingales only with the absence of the demand $E\gamma_k < \infty$ falling out of the proof if one uses the extended expectation instead of the ordinary one.

Lemma 3.1. Let $(\gamma_k, k \in \mathbb{Z}_+)$ be a sequence of nonnegative random variables adapted to a flow

 $(\mathcal{G}_k, k \in \mathbb{Z}_+)$ and such that $\mathrm{E}(\gamma_k | \mathcal{G}_{k-1}) \geq \gamma_{k-1}, k \in \mathbb{N}$. Then the inequality $\mathrm{E}(\gamma_\tau | \mathcal{G}_\sigma) \geq \gamma_\sigma$ holds for any bounded stopping times (w.r.t. the same flow) τ and $\sigma \leq \tau$.

This result leads in the standard way to Doob's inequality asserted by the following lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1,

$$\mathbb{E}\left(\max_{k\leq n}\gamma_{k}^{2}\left|\mathcal{G}_{0}\right.\right)\leq4\mathbb{E}\left(\gamma_{n}^{2}\left|\mathcal{G}_{0}\right.\right),\ n\in\mathbb{N}.$$

Let $\underline{\mathcal{K}}$ denote the class of all \mathbb{F} -adapted \mathbb{R}^d -valued (d will be determined by the context, if matters) random processes M satisfying the conditions:

M1. For all $t = \mathrm{E}^0 \left| M(t) \right|^2 < \infty$.

M2. For all $t \ge s \ge 0$ $\operatorname{E}(M(t)|\mathcal{F}(s)) = M(s)$.

Lemma 3.3. Let $M \in \underline{\mathcal{K}}$. Then

 $E^{0}(M(t)-M(s))\Upsilon^{T} = O \quad for \quad every \quad t > s \ge 0, p \in \mathbb{N}$ and $\mathcal{F}(s)$ -measurable \mathbb{R}^{p} -valued random variable Υ such that $E^{0}|M(t)-M(s)||\Upsilon| < \infty$.

Proof. Denote $\Xi = M(t) - M(s)$. Then:

 $\mathbb{E}(\Xi|\mathcal{F}(s)) = 0$ by condition M2 and the assumption that *M* is \mathbb{F} -adapted; $\mathbb{E}^0(|\Xi||\mathcal{F}(s)) < \infty$ by condition M1. It remains to refer to Lemma 2.15. \Box

Corollary 3.4. (from Lemmas 3.3 and 2.3) *Let* $M \in \underline{\mathcal{K}}$. *Then for all* $t > s \ge 0$

$$\mathrm{E}^{0}\left(M\left(t\right)-M\left(s\right)\right)M\left(s\right)^{\mathrm{T}}=O.$$

Hence and from the identity $|x|^2 = \operatorname{tr} xx^T$ $(x \in \mathbb{R}^d)$ we get

Corollary 3.5. Let $M \in \underline{\mathcal{K}}$. Then for all $t > s \ge 0$ $\operatorname{E}^{0} |M(t) - M(s)|^{2} = \operatorname{E}^{0} |M(t)|^{2} - \operatorname{E}^{0} |M(s)|^{2}$. **Lemma 3.6.** Let $M \in \underline{\mathcal{K}}$. Then for any $t_{1} > t_{0} \ge 0$ $\operatorname{E}\left(\sup_{t_{0} \le t \le t_{1}} |M(t)|^{2} |\mathcal{F}(t_{0})\right) \le 4\operatorname{E}\left(|M(t)|^{2} |\mathcal{F}(t_{0})\right)$. Proof. Denote

$$t_{nk} = t_0 + k2^{-n} (t_1 - t_0), \gamma_{nk} = |M(t_{nk})|, \Gamma_n = \max_{0 \le k \le 2^n} \gamma_{nk}^2$$
. By

construction and condition M1

 $\mathbb{E}\left(\gamma_{nk} \left| \mathcal{F}\left(t_{nk-1}\right)\right) \geq \left| \mathbb{E}\left(M\left(t_{nk}\right) \right| \mathcal{F}\left(t_{nk-1}\right)\right) \right| = \gamma_{nk-1}, \text{ whence by Lemma 3.2}$

$$\mathbf{E}\left(\Gamma_{n}\left|\mathcal{F}\left(t_{0}\right)\right)\leq4\mathbf{E}\left(\gamma_{n2^{n}}\left|\mathcal{F}\left(t_{0}\right)\right)=4\mathbf{E}\left(\left|M\left(t_{1}\right)\right|^{2}\left|\mathcal{F}\left(t_{0}\right)\right).$$

Herein M is càdlàg (see the first sentence of the article), so $\Gamma_n \nearrow \sup_{t_0 \le t \le t_1} |M(t)|^2$. It remains to make use

of Lemma 2.7. □

Henceforth "stopping time" means "stopping time w.r.t. the flow \mathbb{F} ".

Lemma 3.7. Let $M \in \underline{\mathcal{K}}$. Then the equality $\mathbb{E}(M(\sigma)|\mathcal{F}(s)) = M(\sigma \wedge s)$ holds for every $s \in \mathbb{R}_+$ and bounded stopping time σ .

Proof. We consider, without loss of generality, \mathbb{R} -valued processes. Writing

 $M(\sigma) I\{\sigma \le s\} = M(\sigma \land s) I\{\sigma \le s\} \text{ and noting that}$ the r.h.s. of the equality is $\mathcal{F}(s)$ -measurable, we get $E(M(\sigma) I\{\sigma \le s\} | \mathcal{F}(s)) = M(\sigma \land s) I\{\sigma \le s\}$. So it

suffices, in view of Lemma 2.11, to show that

$$E(M(\sigma)I\{\sigma > s\}|\mathcal{F}(s))$$

= M(s)I{\sigma > s}(\equiv M(\sigma \wedge s)I\{\sigma > s\}). (20)

By assumption there exists a number C such that $\sigma \leq C$. We will prove Equality (20) for s < C (otherwise it is trivial). Denote

 $N = 2^{n}, \ s_{n0} = s, \ s_{nk} = s + k2^{-n} (C - s),$ $I_{nk} = I \{s_{nk-1} < \sigma \le s_{nk}\}, \quad \sigma_{n} = \sum_{k=1}^{N} s_{nk} I_{nk},$

 $\Xi_n = (M(\sigma_n) - M(\sigma))I\{\sigma > s\}.$ By construction σ_n is a stopping time and $\sigma_n \searrow \sigma$ for all $\omega \in \Omega$. From the last relation and right-continuity of M we have $\Xi_n \rightarrow 0$. Herein $\Xi_n^2 \le 4 \sup_{t \le C} M(t)^2$, whence by Lemma 3.6 $E^0 \Xi_n^2 \le 16E^0 M(t)^2$, which in view of **M1** proves stochastic boundedness of the sequence (Ξ_n^2) . Then by Lemma 2.16

$$\mathbf{E}\left(\Xi_{n}\left|\mathcal{F}(s)\right)\xrightarrow{\mathbf{P}}\mathbf{0}.$$
(21)

Denote $\mu_{nk} = M(s_{nk}), t_{nk} = I\{\sigma \le s_{nk}\}, k = 0, \dots, N$. From **M1** we have by Corollary 2.5 $E(|\mu_{nk}||\mathcal{F}(s)) < \infty$.

On the strength of M2

 $E(\mu_{nk+1} - \mu_{nk} | \mathcal{F}(s)) = M(s) - M(s) = 0$, which together with the previous relation results, by Lemma 2.14, in

$$\mathbb{E}\left(\left(\mu_{nk+1}-\mu_{nk}\right)\iota_{nk}I\left\{\sigma>s\right\}\middle|\mathcal{F}\left(s\right)\right)=0.$$
 (22)

By the same lemma and property M2 of M

$$\mathbb{E}\left(\mu_{nN}I\left\{\sigma>s\right\}\middle|\mathcal{F}\left(s\right)\right) = M\left(s\right)I\left\{\sigma>s\right\}.$$
 (23)

By the construction of σ_n

Copyright © 2013 SciRes.

$$M(\sigma_{n}) = \sum_{k=1}^{N} \mu_{nk} I_{nk}$$

$$\equiv \mu_{nN} \iota_{nN} - \mu_{n0} \iota_{n0} - \sum_{k=1}^{N-1} (\mu_{nk+1} - \mu_{nk}) \iota_{nk}.$$
(24)

Herein $t_{n0}I\{\sigma > s\} = I\{s < \sigma \le s\} = 0$ and

 $l_{nN} = I \{ \sigma \le b \} = 1$, which together with (24)-(22) and Lemma 2.11 yields

 $\mathbb{E}(M(\sigma_n)I\{\sigma > s\} | \mathcal{F}(s)) = M(s)I\{\sigma > s\}.$ This equality jointly with (21) proves (20). \Box

The class of all random processes $M \in \underline{\mathcal{K}}$ such that the process $E^0 |M|^2$ is continuous will be denoted \mathcal{K} . **Lemma 3.8.** \mathcal{K} contains the sum of every two its

Lemma 3.8. \mathcal{K} contains the sum of every two its elements.

Proof. Let Z = X + Y, where $X, Y \in \mathcal{K}$. Property **M1** of Z ensues from Lemma 2.11. It follows from Lemma 2.3 that $E^0 |Z(t)|^2 \le E^0 |X(t)|^2 + E^0 |Y(t)|^2$,

$$E^{0} |Z(t) - Z(s)|^{2} \le E^{0} |X(t) - X(s)|^{2} + E^{0} |Y(t) - Y(s)|^{2}$$

for all t and s. Hence property **M2** and, with account of Corollary 3.5, continuity of $E^0 |Z|^2$ emerge. \Box

Theorem 3.9. $\mathcal{K} \subset \ell \mathcal{M}_2$.

Proof. Let $M \in \mathcal{K}$. Denote $U = E^0 |M|^2$,

 $\tau_n = \inf \{s: U(s) \ge n\}, \quad M_n(t) = M(t \land \tau_n)$. By construction all τ_n 's are $\mathcal{F}(0)$ -measurable random variables (and therefore stopping times) and $\tau_n \nearrow \infty$. The process $|M|^2$ is \mathbb{F} -adapted and right-continuous and therefore, by Theorem 2.1.1 [1], \mathbb{F} -progressive and all the more measurable. Then Lemma 2.17 applied to $\varphi = |M|^2$ and $\sigma = t \land \tau_n$ yields

 $\mathbb{E}^{0} |\dot{M}_{n}(t)|^{2} = U(t \wedge \tau_{n})$. By Corollary 3.5 *U* is an increasing process and therefore $U(t \wedge \tau_{n}) \leq U(\tau_{n})$. By the choice of *M* the process *U* is continuous, so $U(\tau_{n})I\{\tau_{n} < \infty\} = n, U(\tau_{n}) \leq n$. Consequently,

 $\mathbb{E}^{0} |M_{n}(t)|^{2} \le n$ and therefore $\mathbb{E} |M_{n}(t)|^{2} \le n$. Herein by Lemma 3.7 $\mathbb{E} (M_{n}(t) | \mathcal{F}(s)) = M(t \land \tau_{n} \land s)$

$$= M_n(s)$$
 as $t > s$). Thus $\sup_{t \in \mathbb{R}} E |M_n(t)|^2 < \infty$ and

 M_n is a martingale. This means, since (τ_n) is an increasing to infinity sequence of stopping times, that $M \in \ell \mathcal{M}_2$. \Box

The quadratic variation of a semimartingale S and the quadratic characteristic of a locally square integrable martingale M will be denoted [S] and $\langle M \rangle$, respectively.

The following statement is immediate from Theorem 1.8.1 in [5] and the definition of quadratic characteristic.

Lemma 3.10. Let M be an \mathbb{R} -valued locally square integrable martingale. Then for any stopping time $\tau = E^0 (M(\tau) - M(0))^2 = E^0 [M](\tau) = E^0 \langle M \rangle(\tau)$.

Corollary 3.11. Let M be an \mathbb{R}^d -valued locally square integrable martingale. Then for any stopping time $\tau = \mathrm{E}^0 (M(\tau) - M(0))^2 = \mathrm{E}^0 \mathrm{tr}[M](\tau) = \mathrm{E}^0 \mathrm{tr}\langle M \rangle(\tau)$.

Note that all the random variables $E^0 \cdots$ in the above two statements are, generally speaking, $\overline{\mathbb{R}}_+$ -valued.

The Lebesgue - Stieltjes integral $\int_0^t f(s) dA(s)$, where *A* is a random process of locally bounded variation, will be written shortly as $f \circ A(t)$.

In the next statement, the process 3 need not be right-continuous and even may have second-kind discontinuities.

Lemma 3.12. Let W be an \mathbb{R}^d -valued process of class \mathcal{K} and \mathfrak{z} be an \mathbb{R}^{d^*} -valued \mathbb{F} -predictable random process such that

$$\mathrm{E}^{0}\left(\left|\boldsymbol{\mathfrak{z}}\right|^{2}\circ\mathrm{tr}\left\langle W\right\rangle(t)\right)<\infty,\quad t\in\mathbb{R}_{+},\qquad(25)$$

and the process $E^0(|\mathfrak{z}|^2 \circ tr \langle W \rangle)$ is continuous. Then $\mathfrak{z} \cdot W \in \mathcal{K}$.

Proof. Lemma 3.8 allows us to confine ourselves to the case d = 1.

The assumptions of the lemma imply by Theorem I.4.40 [6] existence of the process $M \equiv \mathfrak{z} \cdot W$. The same theorem asserts that $M \in \ell \mathcal{M}_2$ and $\langle M \rangle = \mathfrak{z}^2 \circ \langle W \rangle$, From the last equality we also have by Corollary 3.11 $\mathrm{E}^0 M^2 = \mathrm{E}^0 (\mathfrak{z}^2 \circ \langle W \rangle)$, which together with (25) proves property **M1** of M and continuity of $\mathrm{E}^0 M^2$.

The relation $M \in \ell \mathcal{M}_2$ implies existence of an increasing to infinity sequence (σ_n) of stopping times such that for all $n \in \mathbb{N}, t > s \ge 0$

$$\mathbb{E}\left(M\left(t\wedge\sigma_{n}\right)\middle|\mathcal{F}\left(s\right)\right)=M\left(s\wedge\sigma_{n}\right).$$
 (26)

Setting in Lemma 3.10 at first $\tau = t \wedge \sigma_n$ and then $\tau = t$ and taking to account that $\langle M \rangle$ is an increasing process, we get with account of Lemma 2.3

 $\mathrm{E}^{0}M(t \wedge \sigma_{n})^{2} \leq \mathrm{E}^{0}M(t)^{2}$, which together with **M1** entails stochastic boundedness of the sequences

 $\left(\mathrm{E}^{0}\left(M\left(t\wedge\sigma_{n}\right)^{2}\right),n\in\mathbb{N}\right)$ and (in view of Lemma 2.4)

 $\left(\mathbb{E}\left(M\left(t \wedge \sigma_n\right)^2 \middle| \mathcal{F}(s) \right), n \in \mathbb{N} \right)$. So Lemma 2.16 asserts that $\mathbb{E}\left(M\left(t \wedge \sigma_n\right) \middle| \mathcal{F}(s) \right) \xrightarrow{P} \mathbb{E}\left(M\left(t\right) \middle| \mathcal{F}(s) \right)$. Thus, letting $n \to \infty$ in (26), we obtain **M2**. \Box

4. The Main Result

Lemma 4.1. Let Λ be a continuous increasing function, b and H be bounded in each interval Borel functions and U be a function satisfying, for all $t \in \mathbb{R}_+$, the equality

$$U(t) = \int_0^t q(s) \mathrm{d}\Lambda(s) + H(t), \qquad (27)$$

where q is a Borel function with values in $\mathbb{R} \cup \{-\infty\}$ such that $q \leq -bU$. Suppose also that

$$\int_{0}^{t} \left| b(s) \right| \mathrm{d}\Lambda(s) < \infty \tag{28}$$

for all t. Then $U \le T$, where T is the solution of the equation

$$T = -(bT) \circ \Lambda + H. \tag{29}$$

Proof. By condition (28) and the assumptions about Λ the integral $b \circ \Lambda$ exists on \mathbb{R}_+ and is a function of locally bounded variation. Equality (27) and the assumptions about Λ and H show that U is a Borel function. So $(bU) \circ \Lambda = U \circ (b \circ \Lambda)$. The assumptions of the lemma imply existence of the integral

 $q \circ \Lambda (= U - H$ because of (27)), as well (so that $q > -\infty$ almost everywhere w.r.t. the measure with distribution function Λ). This entitles us to define the function h by $h = (q + bU) \circ \Lambda$. It decreases, since, by assumption, $q + bU \le 0$ and Λ increases. Also, it is continuous, since so is Λ .

Denoting y = U - T and subtracting (27) from (29), we get the equation $y = -y \circ (b \circ \Lambda) + h$. Hence, taking to account that h is continuous and starts from zero, we find

$$y(t) = \mathrm{e}^{-b \circ \Lambda(t)} \int_0^t \mathrm{e}^{b \circ \Lambda(s)} \mathrm{d}h(s).$$

The function h being decreasing, the r.h.s. is non-positive. \Box

Corollary 4.2. Let Λ be a continuous increasing \mathbb{F} -adapted random process, b be an \mathbb{F} -progressive random process with values in $\mathbb{R} \cup \{-\infty\}$ satisfying, for all t, condition (28), H be an \mathbb{F} -semimartingale and U be a random process satisfying, for all t, equality (27), where q is a measurable random process such that $q \leq -bU$. Then for all t

$$U(t) \le e^{-R(t)} H(0) + e^{-R(t)} \int_0^t e^{R(s)} dH(s), \qquad (30)$$

where $R = b \circ \Lambda$.

Proof. Denote $V = e^{-R}$. Noting that $(bT) \circ \Lambda = T \circ R$ and taking to account continuity of Λ , we write down the solution of (29):

$$T(t) = H(t) + e^{R(t)} \int_0^t e^{-R(s)} H(s) dR(s).$$
(31)

By construction *R* is a continuous process of locally bounded variation, so $e^{-R}dR = -dV$. By Proposition I.4.49d [6] the covariation of any such process and a semimartingale equals zero, so the integration-by-parts formula yields $H \circ V = HV - H(0)V(0) - V \cdot H$. Thus $(e^{-R}H) \circ R = H(0) - HV + V \cdot H$, which turns (31) into

$$T(t) = \mathrm{e}^{-R(t)}H(0) + \mathrm{e}^{-R(t)}\int_0^t \mathrm{e}^{R(s)}\mathrm{d}H(s).$$

Now, (30) follows from Lemma 4.1. \Box

The main result of this article concerns equations of the kind

$$X(t) = \int_0^t \mathcal{Q}(s, X(s)) \mathrm{d}t(s) + Y(t), \qquad (32)$$

and relies on the assumption

S. For every \mathbb{R}^d -valued random process $Y \in \mathcal{K}$ equation (32) has a unique strong solution.

As usually, S^c signifies the continuous martingale constituent (see [1,5,6]) of a semimartingale S.

Theorem 4.3. Let $t \in V_0^{+,c}$, M be an \mathbb{R}^d -valued process of class \mathcal{K} and Q be an \mathbb{R}^d -valued random function on $\mathbb{R}_+ \times \mathbb{R}^d$, continuous in $x \in \mathbb{R}^d$ and \mathbb{F} progressive in $(\omega, t) \in \Omega \times \mathbb{R}_+$. Suppose also that condition **S** is fulfilled and there exists an $\mathcal{F}(0) \otimes \mathcal{B}_+$ measurable in (ω, t) nonnegative random process ψ such that $x^T Q(t, x) \leq -\psi(t) |x|^2$ and

$$\int_{0}^{t} \psi(s) \mathrm{d}t(s) < \infty, \quad t \in \mathbb{R}_{+}.$$
(33)

Then the strong solution of the equation

$$X(t) = \int_0^t Q(s, X(s)) dt(s) + M(t)$$
(34)

satisfies, for all t, the inequality

$$\mathbf{E}^{0}\left|X(t)\right|^{2} \leq \mathbf{e}^{-\Psi(t)}\left|M(0)\right|^{2} + \mathbf{e}^{-\Psi(t)}\int_{0}^{t}\mathbf{e}^{\Psi(s)}\mathrm{d}\mathbf{E}^{0}\mathrm{tr}\left\langle M\right\rangle(s),$$

where $\Psi = 2\psi \circ \iota$.

Proof. Denote

 $\tau_n = \inf \{ s : |X(s)| \ge n \}, M_n(t) = M(t \land \tau_n), \text{ so that } \tau_n \text{ is a stopping time, } M_n \in \ell \mathcal{M}_2 \text{ and}$

$$|X(s-)| \le k \quad \text{as} \quad s \le \tau_n. \tag{35}$$

Let further X_n denote the solution of the equation

$$X_{n}(t) = \int_{0}^{t} \mathcal{Q}(s, X_{n}(s)) \mathrm{d}\iota(s) + M_{n}(t)$$
 (36)

(this definition of X_n is correct due to condition **S**). Then $X_n(s-) = X(s-)$ as $s \le \tau_n$ (because $M_n = M$ for these s). Consequently,

$$\left(X_{n}^{\mathrm{T}}\right)^{-} \cdot M_{n} = \left(\left(X^{\mathrm{T}}\right)^{-} I_{\left[0,\tau_{n}\right]}\right) \cdot M.$$
(37)

By the choice of M and by Corollary 3.11 and Theorem 3.9 $E^0 \operatorname{tr} \langle M \rangle(t) < \infty$ for all t and the process $E^0 \operatorname{tr} \langle M \rangle$ is continuous. Then because of (35)

 $\mathbf{E}^{0}\left(\left|X^{-}\right|^{2} I_{[0,\tau_{n}]}\right) \circ \operatorname{tr}\left\langle M\right\rangle(t) < \infty \quad \text{for all } t \text{ . Obviously,}$

the process $\mathrm{E}^{0}\left(\left|X^{-}\right|^{2}I_{\left[0,\tau_{n}\right]}\right)\circ\mathrm{tr}\left\langle M\right\rangle$ is continuous, too.

Thus Lemma 3.12 asserts that $\left(\left(X^{\mathsf{T}} \right)^{-} I_{[0,\tau_n]} \right) \cdot M \in \mathcal{K}$, whence in view of (37)

$$\mathbf{E}^{0}\left(X_{n}^{\mathrm{T}}\right)^{-}\cdot M_{n}=0.$$
(38)

Denote

$$\varphi_n(\tau) = X_n(s)^{\mathrm{T}} Q(s, X_n(s)),$$
$$D_n(t) = 2 \int_0^t \varphi_n(s) \mathrm{d}t(s), \qquad (39)$$

 $H_n = |M_n(0)|^2 + E^0 \operatorname{tr}[M_n]$. From (36) we have by the assumptions about ι and M

$$X_n^c = M_n^c, \quad \Delta X_n = \Delta M_n, \quad X_n(0) = 0.$$
(40)

By Theorem 2.4.6 in [1] (or, the same, Theorem I.4.47 in [6])

$$[M_n](t) = \left\langle M_n^c \right\rangle(t) + \sum_{0 \le s \le t} \Delta M_n(s) \Delta M_n(s)^{\mathrm{T}}.$$
 (41)

Writing Itô's formula for $f(X_n(t))$ and putting

 $f(x) = |x|^2$, so that $f'(x) = 2x^T$, (1/2) f'' = 1 (a twice covariant tensor), $f(x+y) - f(x) - f'(x)y = |y|^2$, we get with account of (36), (40) and (41), continuity of t and the identity $|x|^2 = trxx^T$

$$[M_n](t) = \langle M_n^c \rangle(t) + \sum_{0 \le s \le t} \Delta M_n(s) \Delta M_n(s)^{\mathrm{T}}$$

By Theorem 3.9 and Corollary 3.11 $E^0 tr[M](t) < \infty$ for all t since $M \in \mathcal{K}$. Hence and from the evident inequality $tr[M_n] \le tr[M]$ we have $H_n(t) < \infty$, which together with (38) yields, by Lemma 2.11,

$$\mathbf{E}^{0}\left(2\left(X_{n}^{\mathrm{T}}\right)^{-}\cdot M_{n}+\mathrm{tr}\left[M_{n}\right]\right)=H_{n}$$

By construction and the assumptions about Q and $tD_n \le 0$, whence by Formula (2) for nonnegative random variables $E^0(|X_n|^2 - D_n) = E^0|X_n|^2 - E^0D_n$. The last three equalities together with Lemmas 2.11 and 2.13 imply that

$$\mathbf{E}^{0} |X_{n}|^{2} = |M_{n}(0)|^{2} + \mathbf{E}^{0} D_{n} + H_{n}.$$
(42)

By construction and the assumption on Q the process φ_n is càdlàg and non-positive. Then from (39) we have by the choice of t and by Theorem 2.19

$$\mathbf{E}^0 D_n = q_n \circ \Lambda, \tag{43}$$

where $q_n(t) = E^0(X_n(t)^T Q(t, X_n(t)))$, $\Lambda = 2t$. Then equality (42), whose l.h.s. is, evidently, an $\overline{\mathbb{R}}_+$ -valued

process, together with established above finiteness of H_n shows that $q_n \circ \Lambda(t) > -\infty$ for all t (though q_n may take the value $-\infty$ with positive probability).

By the construction of q_n , the assumption on Q and by Lemma 2.3 $q_n \leq -E^0 \left(\psi |X_n|^2 \right)$. The process ι was assumed increasing and therefore Λ increases, too; the process ψ was assumed nonnegative, so $q_n \leq 0$ by Lemma 2.3. Thus $q_n \circ \Lambda \leq 0$, which together with (42), (43) and finiteness of H_n yields $E^0 |X_n|^2 < \infty$. Then from $\mathcal{F}(0)$ -measurability of $\psi(t), t \in \mathbb{R}_+$, we have by Lemma 2.15 $E^0 \left(\psi |X_n|^2 \right) = \psi E^0 |X_n|^2$ and therefore $q_n \leq -\psi E^0 |X_n|^2$. From this inequality and (33), (42), (43) we get by Corollary 4.2

$$\mathbb{E}^{0} |X_{n}(t)|^{2} \leq e^{-\Psi(t)} |M_{n}(0)|^{2} + e^{-\Psi(t)} \int_{0}^{t} e^{\Psi(s)} dH_{n}(s)$$

and all the more

$$\mathbb{E}^{0} \left| X_{n}(t) \right|^{2} \leq \mathrm{e}^{-\Psi(t)} \left| M_{n}(0) \right|^{2}$$

+
$$\mathrm{e}^{-\Psi(t)} \int_{0}^{t} \mathrm{e}^{\Psi(s)} \mathrm{d} \mathbb{E}^{0} \mathrm{tr} [M](s).$$

Obviously, $X_n(t) \to X(t), M_n(0) \to M(0)$ as $n \to \infty$. Then Corollary 2.8 asserts that $E^0 |X(t)|^2 \le \underline{\lim} E^0 |X_n(t)|^2$. It remains to note that $E^0 \operatorname{tr}[M] = E^0 \operatorname{tr} \langle M \rangle$ by Corollary 3.11. \Box

REFERENCES

[1] I. I. Gikhman and A. V. Skorokhod, "Stochastic Differential Equations and Their Applications," Naukova Dumka, Kiev, 1982.

- [2] A. N. Shiryaev, "Probability," Springer, Berlin, 1996.
- [3] R. Z. Khasminsky, "Stochastic Stability of Differential Equations," 2nd Edition, Springer, Berlin, 2012. doi:10.1007/978-3-642-23280-0
- [4] L. J. Shen and J. T. Sun, "p-th Moment Exponential Stability of Stochastic Differential Equations with Impulse Effect," *Science China Information Sciences*, Vol. 54, No. 8, 2011, pp. 1702-1711. doi:10.1007/s11432-011-4250-7
- [5] R. Sh. Liptser and A. N. Shiryaev, "Theory of Martingales," Kluwer, Dordrecht, 1989. doi:10.1007/978-94-009-2438-3
- [6] J. Jacod and A. N. Shiryayev, "Limit Theorems for Stochastic Processes," Springer, Berlin, 1987.