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ABSTRACT 

Let  be a filtration on some probability space and let  denote the class of all -adapted 

-valued stochastic processes 

  ,t t      
d M  such that           2

E 0 ,EM t M t s M s     for all  and 

the process 

0t s 

    2
E 0M    is continuous (the conditional expectations are extended, so we do not demand that 

  2
E M t   ). It is shown that each  is a locally square integrable martingale w. r. t. . Let M   X  be the 

strong solution of the equation         , d
0

t
,X t Q s X s s M t   where M  ,   is a continuous increasing 

process with -measurable values at all times, and Q is an -valued random function on , continuous 

in  and  -progressive at fixed x. Suppose also that there exists an 

 0 d d 
dx  0   -measurable in  t,  non-

negative random process   such that, for all , ,t x     2
,x Q t x t   x  and  Then     ds s  

0

t

 . 

           2 20 0

0
E e 0 e e dE tr

tt t s ,X t M M     s  where      
0

2 d
t

t       . 
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1. Introduction 

The random processes under consideration are assumed, 
firstly, given on a common probability space  , , P   
(without any exception) and, secondly, càdlàg (the 
exceptions will be stipulated). Let  be a sub-σ- 
algebra of . We introduce the notation: 

0


   0 0 0 0
0E E , P P ;      —the class of all in-  

creasing from zero numeral random processes whose 
values at all times are -measurable random variables. 
If, besides, a filtration 

0
  ,t t     is given, 

then we identify  with 0  0 . By 2  we denote, 
following [1], the class of all -valued (  will be 
determined by the context, if matters) -martingales M 
such that for every 

d

 

d


2
Et M  t ; 2  signifies 

(see ibid.) the class of all locally square integrable 
martingales w. r. t. . 




The definition of conditional expectation, in particular 
, adopted in this article is due to Meyer (see [2]). It 

admits existence of the conditional expectation of a 
random variable with infinite first absolute moment. 

Thus generalized conditional expectation inherits most of 
the familiar properties (listed, for example, in [2]) of the 
classical one, but in this case new proofs are required. 
They are gathered in Section 2. 

0E

Let X  be the solution of a stochastic differential 
equation of the kind 

        
0

, d
t

,X t Q s X s s M t   

where   is a continuous process from 0  and  M  is 
chosen from some subclass of 2  which is con- 
structed and studied in Section 3. The goal of this article 
is to find an upper bound, much more exact than that 
provided by the Gronwall—Bellman lemma, for 



  20E X t . This is done in Section 4 containing the only 
final result of the article. The reader inclined to accept 
that result in less generality, when M  is a quasicon- 
tinuous process from 2  and  (so that  ,  0 

0E E ), may skip all the preceding material. But for the 
approach underlying the derivations in Section 4 such a 
confinement is unnatural. That is a reason why 3/4 of the 
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article’s volume are allocated to ancillary results. An- 
other reason is that those results may prove useful be- 
yond the context of this article. 

Upper bounds for  E
p

X t  are usually obtained 
with the aid of Lyapunov’s functions (see, e.g., [3,4]). 
Our alternative approach is based on a “comparison 
theorem” (Corollary 4.2) allowing both to weaken the 
assumptions and to refine the conclusion (cf. our 
Theorem 4.3 with Theorem I.4.2 in [3]). 

All vectors are thought of, unless otherwise stated, as  

columns;  means . The space of all d-dimen-  
b

a  ,a b
sional row vectors with real components is denoted d . 
The words “almost surely” are tacitly implied in relations 
between random variables, including the convergence 
relation, unless it is explicitly written as the convergence 
in probability. Indicators are denoted by I  with two 
possible modes of writing the set: BI  or . I

The reference books for the notions and results of 
stochastic analysis used in this paper are [1,5,6]. 

2. Extended Conditional Expectations 

Denote      
0

 and, for  
, so that , 0,a a a a a       a a a   . 

In what follows, “nonnegative” means “  -valued” (the 
value  is not admitted). The Borel   -algebra in   
will be denoted . 

Let  be a sub-


  -algebra of . The conditional 
given  expectation of an 


  -valued random variable 

  is defined, according to [2], as the  -measurable 

 -valued random variable  E   such that 

  EG GE EI I    for every G . For an -   

valued random variable   such that  

   P E E 0         we set by definition  

    E E E      



. Further the conditional 
expectation of a -valued random variable is defined 
in the obvious way. Thus defined conditional expectation 
will be called extended. Unlike the classical conditional 
expectation (defined only for ) it does 
not possess, generally speaking, the property  

d

1L , , P   

    1 2 2 1 1E E E .           (1) 

But for an  -valued   this property remains 
valid—with the same proof as for 1L  . 

Obviously, the extended conditional expectation of 
 coincides with the classical one and 

therefore  
1L , , P    

     E E E       ,      (2) 

   E Ec c                 (3) 

for every  and . Equality (2) 

holds for 

 1, L , ,P     c

 -valued   and  , as well, which is 
immediate from the definition of extended conditional 
expectation. In particular, 

     E      E E       (4) 

for every -valued random variable   . 
The next two statements are immediate from the de- 

finition of extended conditional expectation. 
Lemma 2.1. Let   be an -valued random variable 

such that 


 E    exists. Then Equality (3) holds for 
every c . 

Lemma 2.2. Let   be an  -valued random vari-  

able. Then for any    E ES SS I    .I   

Lemma 2.3. Let   and   be nonnegative random 
variables such that   . Then    E E   .  

Proof. Denote  
       E , E EI           . The  

assumption    and the definition of extended con- 
ditional expectation yield  for every GE GI  0  . 
Consequently  0 0I    . □ 

Lemma 2.4. Let   be an  -valued random vari- 
able. Then for any 0   and  0a 

   0P P Ea a   .    

Proof. By Formula (1)  

   0P , E , E         0 0EEa I .a  By Lemma  

2.2     0 0 0 0E , E E PI a .I a         
0 0

 By  

Lemmas 2.3 and 2.1 E P >      and therefore 
   0 0E PI a a     . It remains to write the 

evident inclusion 

     0 0, E E .a a          □ 

Corollary 2.5. Let  and let 0       be a 
nonnegative random variable such that 0E    . Then 
 E    . 
Proof. Lemma 2.4 and Formula (1) yield for arbitrary 

 and  0N  0a 

    0P E P E .N a N a      

Passing in this inequality to the limit at first as 
 and hereafter as , we get  N  a 

  lim P E 0
N

N


  .□ 

Lemma 2.6. Let  n  be an increasing sequence of 

 -valued random variables. Then E lim lim En n  .  
Proof. In case the r.h.s is finite this is the Beppo Levi 

theorem. Having written E lim Em n  , we obtain the 
same equality when E n  .□ 

Lemma 2.7. Let  n  be an increasing sequence of 

 -valued random variables. Then  

   E lim lim En n    . 
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Proof. Denote  lim , E , limn n n n        . 
By construction   is  -measurable. Lemma 2.6 and 
the definition of conditional expectation yield, for arbi- 
trary ,  

G

G
lim EE E , lim E E .G n G n G n G n G, EI I I I I I     

E
   

So GE GI I   , which in view of -measurability of 
  proves the lemma. □ 

Corollary 2.8. For every sequence  n  of non- 
negative random variables the inequality  
  E lim limEn   n  is valid. 
Proof. Denote , liminfn k

k n
n 


    . By Lemma 2.3  

  E inf En
k n




  .k   Herein , whence by  n 

Lemma 2.7   E En     . □ 
Lemma 2.9. Let  be a decreasing sequence of 

nonnegative random variables such that 
 n

 1E    . 
Then    E lim lim En n

Proof. Retaining the notation of the proof of Lemma 
2.7, we denote additionally  

    .  

    1E , NA N       

N GA

. Then from the defi- 
nition of conditional expectation we have 

E ENn G nA
I I I   I          (5) 

for arbitrary  and G . By condition n0N      , 
so n GA A

0 E ,0 ,N NEn GI I N I I N   
 n

n

  whence, tak- 
ing to account monotonicity of  (and therefore of 
 ) we conclude by the Beppo Levi theorem that 

N N N NG n G G n GA A A A
E l limim E , E E .I I I I I I I I     
Juxtaposing these two equalities with (5), we see that  

E ENG GA NA
I I I I           (6) 

for any . Herein 
A

 as , since by 
assumption . Then from (6) we get by 
Lemma 2.6 

0N  1NI 
 1

EG G

N 
P < 

E I I   .□ 
Theorem 2.10. Let n   be a sequence of - 

valued random variables almost surely converging to a 
random variable 

d

  and such that  

E .sup n
n

    
 

          (7) 

Then  E     and   E En    .  
Proof. Let first the n ’s be nonnegative. Denote  

, supinfn k n
k n k n

k  
 

   . Then 

,n n n                (8) 

,n n .     From the second relation we have 
by Corollary 2.8   E limE n   ; the third re- 
lation together with (7) yields by Lemma 2.9  
  E lim E n    . Comparing these two conclu- 

sions with (8), we get   E lim E n    . Thus we 
have proved the theorem for nonnegative random vari- 
ables. The transition to the general case is trivial. □ 

Lemma 2.11. Let   and   be -valued random 

variables such that the conditional expectations  

d

 E    and  E    exist and are component-wise 
finite. Then  E     exists and Equality (2) holds. 

Proof. The assumptions of the lemma together with 
Equality (4) imply that  

   E , E  .           (9) 

For nonnegative random variables Equality (2) ensues, 
as was pointed out above, directly from the definition of 
extended conditional expectation, so Inequalities (9) 
yield  

 E   .             (10) 

Denote, for each n , 

, ,n n

n n

n n

  
 

 
 

 

n n n    . By construction ,n nn   n  and 
therefore  1, L , , Pn n     . Consequently,  

     E E En n n     

.

. 

Obviously, , ,n n n           Herein by 
construction , ,n n n          , which 
together with (10) and (9) implies (7) and the same for 
 n  and  n . Hence and from the above asymptotic 
relations we get by Theorem 2.10  

       
   

E E , E E

E E .

n n

n

   

  

 

 

  

 

,
 □ 

Lemma 2.12. Let  and 0       be a - 
valued random variable such that 

d
0E    . Then 

 0 0E E E   . 
Proof. It suffices to consider the case . Then the 

last assumption of the lemma amounts to 
1d 

0 E   . 
Denote   1 2E , E     

0
  . By Formula (1) 

0
1,2E E     and therefore . Then by 

Lemma 2.11 

0
1,2E   

 0E 0E 0E1 2 1 2      , which toge- 
ther with the previous inequality and the definition of 
extended conditional expectation yields  

 0E 0E1 2    . The inequalities  imply, 
by Corollary 2.5, that 1,2

0
1,2 E 

   , whence by the de- 
finitions of i  and extended conditional expectation we 
have  1 2

Lemma 2.13. Let 
E    .□ 

  and  be nonnegative random 
variables, 


  be -measurable. Then  

   E E  .    
Proof. Denote   2 1n nS k k    2nk    (   

due to -measurability of ),  
nknk SJ I

m 

,  

1 1

2 , 2n n
nm nk n nk

k k

kJ kJ 

 

     .  

Formula (2) (for nonnegative random variables), 
Lemma 2.1 and the definition of  yield  nm
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  1
E 2 E

mn
nm nkk

k J


      . Noting that  

   E Enk nkJ J     by Lemma 2.2, we convert 
this equality to    E Enm nm     .


 Obviously, 

 as . Then by Lemma 2.7  nm n  m 
   E Enm n    as m , which together with 

the last equality yields 


   E En n      .  It re- 
mains to let  and again make use of Lemma 2.7. □ n 

Lemma 2.14. Let  and  be random variables 
with values in  and 

 
d p , respectively. Suppose that 

 is  -measurable and   E    . Then  
   E E  .     
Proof. It suffices to consider the case 1, 1d p  . 

Writing, for arbitrary , the evident equalities 

 
, we get from 

Lemma 2.13 

,a b
b a b   ,ab a b a b a a b       

      
      

E E E

E E E

   

   

      

      

 

 

,

.




 

The assumption  E     implies finiteness of 
the right-hand sides of both equalities. Consequently, the 
left-hand sides are finite, too. Then by the definition of 
extended conditional expectation 
      E E E

       


, which together 
with the two preceding equalities completes the proof. □ 

Lemma 2.15. Let , and let  and 0        
be random variables with values in  and d p , re- 
spectively, such that:  

   , E  0E , E 0       and   is - 
measurable. Then  (the null matrix).  


0E O 

Proof. From the last three assumptions we get by 
Lemma 2.14  E O  ; the first assumption implies, 
according to Lemma 2.12, the equality  

 0 0E E E     .□ 
Lemma 2.16. Let  be a converging in pro- 

bability to zero sequence of nonnegative random vari- 
ables such that for some increasing unbounded function  

 n

:F     the sequence    E n nF    is sto-  

chastically bounded. Then   PE 0n  .  
Proof. From the first assumption we have  

   PE n nI N    0  for every , so it 
suffices to show that for any 

0N 
0   

  lim limP E 0.n n
N n

I N 
 

         (11) 

Since F  increases to infinity, we shall have 
 for sufficiently large 

 (such that ). Then by Lemma 2.3  
 I N    1

n n n nF N F
    

N   0F N 

   
    

limP E

limP E

n n
n

n n
n

I N

F F N








   

   




 

for those N. Letting here , we deduce (11) from 

the last assumption of the lemma and unbounded growth 
of 

N 

F .□ 
Lemma 2.17. Let   be an -valued measurable 

random process. Then for any -measurable random 
variable 


0

  we have 

   0 0E E .ss            (12) 

Proof. Denote  

       0 0: E , E ,C C sC I I s            . Let  

, BQ    . Then         1,Q B Q B
I I I


      ,  

whence by the assumption about   and by Lemma 2.2 
we have  

      1
0 0 0E E EQ B Q Q B sB
I I I I I s .

     

Thus  contains all sets of the kind , where 
Q B

Q B
,   





 (“measurable rectangles”). Then it 
follows from (2) (for nonnegative random variables) that 

 contains also all possible finite unions of pairwise 
disjoint measurable rectangles. According to Lemma 2.6 

 contains the union of every increasing sequence of its 
members. Consequently, it contains the  -algebra ge- 
nerated by measurable rectangles, i.e. Equality (12) holds 
for ,CI C     . 

Passing to the general case, we denote 
  2 1nC k k    2 n

  nk  (  due to mea-  

surability of  ), 
1

, 2
nknk C n nk

k

nI k 


  


  . By con-  

struction    n s s   for all   and  and 
therefore 

s
   n    . From these relations we get 

by Lemma 2.7  

     0 0 0 0E E , E En ns s             (13) 

As was shown (in another notation) in the proof of  

Lemma 2.13,  0E 2 En
n k

k  0
nk      . By what  

was proved    0 0E E ssnk nk     , which together 
with the previous equality yields  

   0 0E En n s   s  . Juxtaposing this with (13), we 
arrive at (12). □ 

In the next two statements, the process   need not be 
càdlàg. 

Lemma 2.18. Let 0  and H    be a bounded 
measurable random process on  ,a b 

b b

 . Then 

       0 0E d E d
a a

.s H s s H s       (14) 

Proof. 1) Lemma 2.11 allows to consider, without loss 
of generality, that   is . Then the bound- 
edness assumption together with Lemma 2.1 allows to 
consider that 

-valued

0 1  . 
Let at first    s f s  , where   and f  are a 

random variable and a Borel function, respectively. Then 
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Equality (14) follows from Lemma 2.13. 
2) Let for all     , n s a b s s   , where  n  

is an increasing sequence of [0,1]-valued random pro- 
cesses such that for each  n

       0 0E d E d
b b

n na a
.s H s s H s      (15) 

Then: for any s the sequence   0E n s
 0E

 increases by 
Lemma 2.3 and E  0

n s s


 

  b

 by Lemma 2.13;  

   d
b

na a
ds H s s H s    by the Beppo Levi  

theorem. By the same theorem we get from the first  

relation        0 0E d E d
b b

na a
s H s s H s   . The se-  

cond relation jointly with Lemma 2.13 yields  

       0 0E d E d
b b

na a
s H s s H s   . Comparing these  

two conclusions with (15), we obtain (14). 
3) Let  denote the class of all  

  ,2 a bC       such that Equality (14) holds for  

CI  . According to item 1)   contains the algebra 
generated by measurable triangles. Then it follows from  

item 2) that .   ,2 a b
    

4) Let us define the sequence  n  by  
2 1

0

2
n

n
n

k

k nk 






  , where the nk ’s are the same as in the  

proof of Lemma 2.17. Item 3), Lemma 2.11 and Lemma 
2.1 imply together (15) for each n. Herein by con- 
struction n  . It remains to refer to item 2). □ 

Theorem 2.19. Let 0H   and   be a nonnegative 
measurable random process on  ,a b  


. Then 

Equality (14) holds with possible value  of both sides.  
Proof. By Lemma 2.18 for any   n

         0 0E d E d
b b

a a
.s n H s s n H s      (16) 

By Lemma 2.6 for any s  

    0E E0 .s n   s       (17) 

By the same argument as in the proof of that lemma, 

        d d
b b

a a
s n H s s H s      (18) 

and, in view of (17), 

        0 0E d E d
b b

a a
s n H s s H s      (19) 

From (18) we have by Lemma 2.6  

        0E d E d
b b

a a

0s n H s s H s     which toge-  

ther with (16) and (19) proves (14). □ 

3. A Subclass of the Class of Locally Square 
Integrable Martingales 

The stochastic integral    
0

d
t

s X s  w.r.t. a local mar- 

tingale X  will be written, following [5,6], as  X t  . 
The designation of this section is to find the least re- 
strictive extra assumptions providing the properties  

  20E X t ,    

      E X t s t s X t s        

of X   underlying the derivations in Section 4. Herein 
we do not demand that  E X t    , so the con- 
ditional expectations in these properties are not classical 
but extended. 

The following statement differs from Doob’s optional 
theorem for nonnegative discrete-time submartingales 
only with the absence of the demand E k    falling 
out of the proof if one uses the extended expectation in- 
stead of the ordinary one.  

Lemma 3.1. Let  ,k k   be a sequence of non- 
negative random variables adapted to a flow 

 ,k k   and such that  1 1E ,k k   .  k k 

Then the inequality  E      holds for any 
bounded stopping times (w.r.t. the same flow)   and 
  . 

This result leads in the standard way to Doob’s 
inequality asserted by the following lemma. 

Lemma 3.2. Under the assumptions of Lemma 3.1,  

 2 2
0 0E 4E ,max k n

k n
n 



     
 

  .  

Let   denote the class of all -adapted - 
valued (  will be determined by the context, if matters) 
random processes 

 d
d

M  satisfying the conditions: 

M1. For all   20Et M t   . 

M2. For all  0t s        E .M t s  M s  

Lemma 3.3. Let M  . Then  
    0E M t M s O    for every  

and 
0, p  t s

 s -measurable p -valued random variable 
  such that    0E M t M s    .  

Proof. Denote    M t M s  . Then:  
  E 0s   by condition M2 and the assumption 

that M is -adapted;    0E s    by condition 
M1. It remains to refer to Lemma 2.15. □ 

Corollary 3.4. (from Lemmas 3.3 and 2.3) Let 
M  . Then for all   0t s 

      0E M t M s M s O
  . 

Hence and from the identity  dx x 2
tr x x   

we get 
Corollary 3.5. Let M  . Then for all  

       2 2 20 00 E E Et s M t M s M t     0 M s .  

Lemma 3.6. Let M  . Then for any   1 0 0t t 

        
0 1

2 2

0 0E 4Esup
t t t

.M t t M t t
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Proof. Denote  

    2
0 1 0

0 2
2 , , max

n

n
nk nk nk n nk

k
t t k t t M t 

 
      . By  

construction and condition M1  
       1 1E Enk nk nk nk nkt M t t     1,  whence 

by Lemma 3.2  

          2

0 0 12
E 4E 4E 0nn n

t t M t t     .   

Herein M  is càdlàg (see the first sentence of the  

article), so  
0 1

2
supn

t t t

M t
 

  . It remains to make use  

of Lemma 2.7. □ 
Henceforth “stopping time” means “stopping time 

w.r.t. the flow ”. 
Lemma 3.7. Let M  . Then the equality 

     E M s M s     holds for every s   
and bounded stopping time  . 

Proof. We consider, without loss of generality, 
-valued processes. Writing 
       M I s M s I      

 
s  and noting that 

the r.h.s. of the equality is s

     
-measurable, we get  

     E M I s s M s I s       . So it  

suffices, in view of Lemma 2.11, to show that  

      
       

E >

>

M I s s

> .M s I s M s I s

 

    


   (20) 

By assumption there exists a number C  such that 
C  . We will prove Equality (20) for s C  

(otherwise it is trivial). Denote  
2 ,nN  0 ,ns s  2 ,n

nks s k C s  

 ,s N

 

1nk nk nkI I s    
1

,n nkk nks I   
  

     n n M M I s      . By construction n  
is a stopping time and n   for all  . From 
the last relation and right-continuity of M  we have  

0n  . Herein  22 4supn t CM t 
20

, whence by Lem-  

ma 3.6  0 2E 16En M t  , which in view of M1 proves 
stochastic boundedness of the sequence . Then by 
Lemma 2.16 

 2
n

   PE n s  0.

0, ,

           (21) 

Denote    , ,nk nk nk nkM s I s k       N .  

From M1 we have by Corollary 2.5   E .nk s     

On the strength of M2  
      1E nk nk s M s M s     0 , which toge- 

ther with the previous relation results, by Lemma 2.14, in 

      1E  0nk nk nk I s s       .   (22) 

By the same lemma and property M2 of M  

        E nN .I s s M s I s      (23) 

By the construction of n  

 

 

1

1

0 0 1
1

.

N

n nk nk
k

N

nN nN n n nk nk nk
k

M I 

      










   




   (24) 

Herein    0 0n I s I s s        and  
  1bnN I   

     

, which together with (24)-(22) and 
Lemma 2.11 yields  
     E .nM I s  s M s I s    This equa- 

lity jointly with (21) proves (20). □ 
The class of all random processes M   such that 

the process 
20E M  is continuous will be denoted . 

Lemma 3.8.  contains the sum of every two its 
elements. 



Proof. Let Z X Y  , where . Property 
M1 of 

,X Y 
Z  ensues from Lemma 2.11. It follows from  

Lemma 2.3 that      2 20 0 0E E E
2

,Z t X t Y t   

           2 20 0 0E E E
2

Z t Z s X t X s Y t Y s       

for all  and t s . Hence property M2 and, with account 
of Corollary 3.5, continuity of 

20E Z  emerge. □ 
Theorem 3.9. . 2

Proof. Let 
  

M  . Denote 
20E ,U M   

  inf : ,n s U s n   n  nM t M t   . By con- 
struction all n ’s are  0


-measurable random vari- 

ables (and therefore stopping times) and n  . The 
process 

2
M  is -adapted and right-continuous and 

therefore, by Theorem 2.1.1 [1], -progressive and all 
the more measurable. Then Lemma 2.17 applied to 




2
M   and nt    yields  
  U t 20E M tn n  . By Corollary 3.5  is an in- 

creasing process and therefore 
U

   U t n U n   . By 
the choice of M  the process  is continuous, so U
     ,n n nU I n U   n    . Consequently,  

  20E nM t n  and therefore   2
 E nM t n . Herein  

by Lemma 3.7       E n nM t s M t s    

(  nM s  as t ). Thus s   2
Esup nt M t    and  

nM  is a martingale. This means, since  n  is an in- 
creasing to infinity sequence of stopping times, that 

2M   . □ 
The quadratic variation of a semimartingale  and 

the quadratic characteristic of a locally square integrable 
martingale M will be denoted 

S

S  and M , respec- 
tively. 

The following statement is immediate from Theorem 
1.8.1 in [5] and the definition of quadratic characteristic. 

Lemma 3.10. Let M  be an -valued locally 
square integrable martingale. Then for any stopping time  



         20 0 0E 0 E EM M M M    .  
Corollary 3.11. Let M  be an -valued locally 

square integrable martingale. Then for any stopping time 

d

         20 0 0E 0 E t E trM M M Mr    . 
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Note that all the random variables  in the above 
two statements are, generally speaking, 

0E 
 -valued. 

The Lebesgue - Stieltjes integral    
0

d
t
f s A s , where  

A  is a random process of locally bounded variation, 
will be written shortly as  f A t . 

In the next statement, the process  need not be 
right-continuous and even may have second-kind dis- 
continuities. 

z

Lemma 3.12. Let  be an -valued process of 
class  and  be an 

W d
 z d -valued -predictable 

random process such that  


  20E tr ,W t t    z ,     (25) 

and the process  20E tr Wz   is continuous. Then 
.  W z

Proof. Lemma 3.8 allows us to confine ourselves to 
the case . 1d 

The assumptions of the lemma imply by Theorem 
I.4.40 [6] existence of the process M W z . The same 
theorem asserts that 2M  and   2M W z , 
From the last equality we also have by Corollary 3.11 

 0 2 0 2E EM W z , which together with (25) proves 
property M1 of M  and continuity of 0 2E M . 

The relation 2  implies existence of an in- 
creasing to infinity sequence 

M  
n  of stopping times 

such that for all   , 0n t  s

     E n nM t s M s .        (26) 

Setting in Lemma 3.10 at first nt    and then 
t   and taking to account that M  is an increasing 

process, we get with account of Lemma 2.3  
   2 20 0E EnM t M  t , which together with M1 

entails stochastic boundedness of the sequences  

   20E ,nM t n 

   

 and (in view of Lemma 2.4) 

  2
E nM t s n  ,  . So Lemma 2.16 asserts  

that          PE EnM t s M t s   . Thus, 
letting  in (26), we obtain M2. □ n 

4. The Main Result 

Lemma 4.1. Let  be a continuous increasing function, 
 and 


b H  be bounded in each interval Borel functions 
and  be a function satisfying, for all U t  , the 
equality 

       
0

d
t

U t q s s H t   ,      (27) 

where  is a Borel function with values in q    
such that . Suppose also that  q bU 

   
0

d
t
b s s              (28) 

for all . Then t U T , where  is the solution of the 
equation 

T

  .T bT H             (29) 

Proof. By condition (28) and the assumptions about 
  the integral b   exists on   and is a function 
of locally bounded variation. Equality (27) and the 
assumptions about   and H  show that U is a Borel 
function. So   U  bU b    . The assumptions of 
the lemma imply existence of the integral  

 7)becauseH  of (2q U   , as well (so that  
almost everywhere w.r.t. the measure with distribution 
function 

q  

 ). This entitles us to define the function h by  
 h q bU 

0q bU
 . It decreases, since, by assumption, 

   and   increases. Also, it is continuous, 
since so is  . 

Denoting y U T   and subtracting (27) from (29), 
we get the equation  y y b h     . Hence, taking to 
account that  is continuous and starts from zero, we 
find  

h

       
0

e e d
tb t b sy t h s     .  

The function h being decreasing, the r.h.s. is non- 
positive. □ 

Corollary 4.2. Let   be a continuous increasing 
-adapted random process,  be an -progressive 

random process with values in  satisfying, for 
all , condition (28), 

 b 


t H  be an -semimartingale and 
 be a random process satisfying, for all , equality 

(27), where  is a measurable random process such 
that 


U t

q
bUq   . Then for all  t

           
0

e 0 e e d
tR t R t R sU t H H s    ,     (30) 

where R b  . 
Proof. Denote e RV  . Noting that  

and taking to account continuity of , we write down 
the solution of (29): 

 bT T R  


           
0

e e d
tR t R sT t H t H s R s   .

V

   (31) 

By construction  is a continuous process of locally 
bounded variation, so . By Proposition 
I.4.49d [6] the covariation of any such process and a 
semimartingale equals zero, so the integration-by-parts 
formula yields 

R
e d dR R  

   0 0H V HV H V V H    . Thus 
   e 0R H R H HV V H   

  tR t R s 

 , which turns (31) into  

     
0

e 0 e e dT t H H s   R t  .

,

 

Now, (30) follows from Lemma 4.1. □ 
The main result of this article concerns equations of 

the kind 

        
0

, d
t

X t Q s X s s Y t      (32) 
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and relies on the assumption 
S. For every -valued random process d Y   equ- 

ation (32) has a unique strong solution. 
As usually,  signifies the continuous martingale 

constituent (see [1,5,6]) of a semimartingale . 

cS
S

Theorem 4.3. Let ,
0 ,c M   be an -valued 

process of class  and Q  be an -valued random 
function on , continuous in  and - 
progressive in 

d

d


 , t

d
xd

   
 . Suppose also that con- 

dition S is fulfilled and there exists an  0   - 
measurable in  , t  nonnegative random process   
such that     2

,x Q t  
t

x t x  and  

   
0

d ,s s t      .     (33) 

Then the strong solution of the equation 

        
0

, d
t

X t Q s X s s M t      (34) 

satisfies, for all , the inequality  t

           2 20 0

0
E e 0 e e dE tr

tt t s ,X t M M     s  

where 2    . 
Proof. Denote  

     inf : ,n n s X s n M t M t n     , so that n  
is a stopping time,  and  2nM  

  as .nX s k s         (35) 

Let further nX  denote the solution of the equation  

        
0

, d
t

n n nX t Q s X s s M t      (36) 

(this definition of nX  is correct due to condition S). 
Then n    X s X s    as ns   (because =nM M  
for these s ). Consequently, 

      0, .
nn nX M X I M

         (37) 

By the choice of M  and by Corollary 3.11 and 
Theorem 3.9  M t0E tr    for all  and the pro- 
cess 

t
0E tr M  is continuous. Then because of (35)  

    
20

0,E tr
n

X I M t
    for all t . Obviously, 

the process   20
0,E

n
trX I 

  M  is continuous, too. 

Thus Lemma 3.12 asserts that     n
M


0,X I   ,  

whence in view of (37)  

 0E n nX M
 0.            (38) 

Denote 

      , ,n n nX s Q s X s    

     
0

2 d
t

n nD t s s    

   2 00 E trn n nH M M   . From (3
assumptions about 

6) we have by the 
  and M  

 , , 0 0.n n n n nX M X M Xc c         (40) 

By Theorem 2.4.6 in [1] (or, the same, Theor
in [6])  

em I.4.47 

         .c
n n n n

0<s t

M t M t M s M s




Writing Itô’s formula for 

      (41) 

  nf X t  and putting 

  2
f x x , so that    2 , 1 2x =f x f  1  (a tw

nt t  
 ice  

covaria ensor),     2
f x y y  f x f x

get with ac 6), (40) and (41), contin
y , we 

count of (3 uity of   
and the identity 

2
t

=x xxr   

        
0<

.c
n n

s
n n

t

M t M t M s M s




     

  0E tr M t    By Theorem 3.9 and Corollary 3.11 
for all  sincet  M  . Hence and from
eq

 the evident in- 
uality    tr trnM M  we have nH   <t  , which 

togethe ith (38 , by Lemma 2.11,  

   
r w ) yields

 0E 2 trn n n n .X M M H  
  

By construction and the assumptions about  and Q
0Dn  , whence by Formula (2) for nonneg e ran-  

do

ativ

m variables  2 20 0 0E E E .n n n nX D X D    The  

last three equalitie  2.13 
imply that 

s together with Lemmas 2.11 and

  220 0E 0 E .n n n nX M D H        (42) 

By construction and the assumption on Q the process 

n  
by

is càdlàg and non-positive. Then from (39) we have 
 the choice of   and by Theorem 2.19  

0E ,n nD q              (43) 

       , 20E ,n n nq t X t Q t X t

,            (39) 

where    . Then  

equality (42), whose l.h.s. is, evidently, an 
 finitene

-valued 
process ss of , together with established above

nH  shows that  nq t    for all t  (t gh nq  
may take the value 

hou
  with positive probability). 

y the construc n e assumption on Q  a  

by

B tion of  th nd  q ,

 Lemma 2.3  20   E .n nq X   The process   was  

assumed increasing and t   increases, too; the 
process 

herefore 
  was assum , so qed nonnegative 0n   by 

Lemma 2.3. Thus 0nq   , which together with (42), 
(43) and niteness of n fi H  yields 

20E nX   . Then 
from  0 -measurability of   , ,t t   we have by  

Lemma 2 15 .  2 20 0E En nX X  and   therefore  
20Enq X   and (33), (42), (43

we get by Co
n . From this inequality ) 

rollary 4.2 

           2 20E e
tt t s

n 0
0 e e dn nX t M   H s   
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and all the more Kiev, 1982. 

[2] A. N. Shiryaev, “Probability,” Springer, Berlin, 1996. 
     

      

2 20E

0

0

e 0

e e dE tr .

t
n n

tt s

X t M

M s



 



 
 

Obviously,  as  
. Then

       , 0 0n nX t X t M M 
 Corollary 2.8 asserts that  n 

   20 limE n

20E X t X t . It remains to hat  note t

 0 0E tr E trM M  by C
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