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ABSTRACT 

Taking a four-dimensional energy resources demand-supply system between the East and West of China, this paper 
discusses its chaotic behavior, and via the unilateral coupling method we lead the system to synchronization success- 
fully. But not all the values of coupling coefficient can lead to synchronization. The values of coupling coefficient have 
a range. By calculating the maximal relative Lyapunov exponents’ spectrum, we gained the value range of coupling 
coefficients. Within the value range, the two coupling systems can achieve synchronization, otherwise can’t. Further 
more, the values of coupling coefficient are in connection with the chaos synchronizing time. At last, we get the rela- 
tionship of coupling coefficients and chaos synchronizing time. 
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1. Introduction 

Generally, designing a controller to force a system to 
imitate the behavior of another chaotic system is called 
synchronization [1]. Chaos synchronization and chaos 
control have been applied broadly in many fields such as 
in biological systems, chemical reactions, information 
processing, especially in secure communication area [2]. 
There are plenty of methods have been proposed to achi- 
eve chaos synchronization, for example, sliding mode 
control [3], linear control [4], adaptive control [5], digital 
redesign control [6] and so on. 

Nowadays, many countries attach importance to the 
exploitation and utilization of clear energies, and develop 
low carbon economy. Considering renewable energy re- 
sources, based on a three dimensional system, gained a 
four-dimensional energy resources demand-supply sys- 
tem between east and west in China by adding a new 
variable [7]. This paper discusses the chaotic behavior of 
it, and uses the unilateral coupling method achieving 
chaos synchronization successfully. By means of calcu- 
lating the maximal relative Lyapunov exponents, we get 
the value range of the coupling coefficient. Also, we get 
the relationship of coupling coefficient and chaos syn- 
chronizing time. 

2. The Unilateral Coupling Method 

In 1993, K. Pyragas proposed a way to control a non- 
linear system, which is called the error variable negative 
feedback control also the unilateral coupling method [8].  

Supposing there are two chaotic systems:  
 1d dX t f X ,  2d dY t f Y , which are defined by 

following dynamic functions: 
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where K(X−Y) is a coupling item,  1 2, , , nK k k k   is 
coupling coefficient, which are equal upon each variable 
and take positive values commonly, i.e.  

1 2 0nk k k k     . When the parameters of the 
two systems are matched, as long as take an appropriate 
coupling coefficient K, the two systems can achieve 
synchronization. This method won’t change the system’s 
initial dynamic characteristic, because the coupling item 
K(X – Y) = 0 after synchronization. The characteristic of 
the method is we needn’t analyze the system in advance. 
Further more, we can confirm the domain of the coupling 
coefficient by calculating. 

3. Discussion of the Energy Resource 
Demand-Supply System between East and 
West in China 

Adding a new variable to a three dimensional energy 
resource system, gained a four dimensional energy re- 
sources demand-supply system between east and west in 
China, which is defined by the functions below [7]: 
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where x(t) is the energy resource shortage in A region, y(t) 
expresses the energy resources supply increment in B 
region, z(t) the energy resources import in A region, w(t) 
is the amount of renewable energy resources in A region; 
ai, bi, ci, di and M, N are positive real constants [7]. When 
M = 1.8, N = 1, a1 = 0.1, a2 = 0.15, b1 = 0.06, b2 = 0.082, 
b3 = 0.07, c1 = 0.2, c2 = 0.5, d1 = 0.1, d2 = 0.06, d3 = 0.07, 
and the initial condition  

         0 0 0 0 0.82 0.29 0.48 0.1x y z w    , 
the system can generate complex chaotic attractor, the 
numerical simulation is shown in Figure 1, from which 
we can see the system has an abundant chaotic behavior. 

4. Chaos Synchronization 

4.1. Realization of Chaos Synchronization 

According to the unilateral coupling method, we define 
the energy resource system (3), which is described as 
follows: 
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whose initial condition x1(0), x2(0), x3(0), x4(0) takes a 
random real constant from (0, 1) respectively. 

Copying a system and adding coupling items, we ob-
tain the system (4) defined below: 
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(4) 

where c is the coupling coefficient, and the initial condi-  

 

Figure 1. When M = 1.8, N = 1, a1 = 0.1, a2 = 0.15, b1 = 0.06, 
b2 = 0.082, b3 = 0.07, c1 = 0.2, c2 = 0.5, d1 = 0.1, d2 = 0.06, d3 = 
0.07, and the initial condition [x(0) y(0) z(0) w(0)] = [0.82 
0.29 0.48 0.1], the chaotic attractor of energy resource sys-
tem (2). 
 
tion y1(0), y2(0), y3(0), y4(0) also takes a random real 
constant from (0, 1) respectively. 

The errors of corresponding variables between system 
(3) and system (4) are denoted as 

      , 1, 2,3, 4i i iE t x t y t i    ,    (5) 

and 

  2

1

, 1, 2,3, 4
i

iE E t i           (6) 

which express the situation of chaos synchronization. 
When Ei(t) and E equals to zero and then stable over time, 
we can say systems (3) and (4) have achieved synchro- 
nization, otherwise not. Randomly, chose c = 2, the er-
rors Ei(t) is shown as Figure 2, and the errors E is shown 
in Figure 3. 

Figure 2 (or Figure 3) indicates clearly that when c = 
2, Ei(t) (or E) tends to zero immediately and then stable, 
in other words, systems (3) and (4) achieved synchroni-
zation quickly. Thus, via the unilateral coupling method, 
we have made two systems achieve synchronization suc-
cessfully. 

But not all the values of coupling coefficient can lead 
to synchronization according to the following discussion. 

4.2. Confirmation of Coupling Coefficients 

Then let c = 0.01, the numerical simulation of the errors 
Ei(t) is shown as Figure 4, the errors E is shown as Fig- 
ure 5. The Bifurcation diagram under various coupling 
coefficient from 0 - 0.1 is shown as Figure 6. 

From Figure 4 (or Figure 5), we can clearly see that 
when c = 0.01, Ei(t) (or E) vibrates desultorily all the 
time, namely this value of coupling coefficient c won’t 
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Figure 2. When the coupling coefficient c = 2, the errors of corresponding variables between systems (3) and (4), Ei(t), varies 
over time. 
 

 

Figure 3. When the coupling coefficient c = 2, the errors of corresponding variables between systems (3) and (4), E, varies 
over time. 
 

 

Figure 4. When the coupling coefficient c = 0.01, the errors of corresponding variables between systems (3) and (4), Ei(t), var-
ies over time. 
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Figure 5. When the coupling coefficient c = 0.01, the errors 
of corresponding variables between system (3) and system 
(4), E, varies over time. 
 

 

Figure 6. The relation between coupling coefficients and x2 
of the system (3). 
 
lead the two systems to synchronization. 

So, we conclude not all the values of coupling coeffi- 
cient can lead the two systems to synchronization; Val- 
ues of c have a domain, values in which can make the 
two systems achieve synchronization, values outside it 
are not appropriate. By calculating the maximal relative 
Lyapunov exponents’ spectrum, we can get the value 
range of c. 

In a chaotic system, the maximal Lyapunov exponent 
is a quantity characterizes the rate of separation of in- 
finitesimally close trajectories, also the quantity indicates 
the strength of butterfly effect. In coupled systems, when 
maximal relative Lyapunov exponent is less than zero, 
the two systems will achieve synchronization, otherwise 
won’t [9]. The definition of maximal relative Lyapunov 
exponent [9] is 
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where Dt is the distance of the two system’s trajectories 
at the time of t, D0 is the distance of the two system’s 
trajectories at the initial time, Ei(t) the error of corre- 
sponding variables between systems at t moment, Ei(0) 
the error of corresponding variables between systems 
initially, N is dimension. The numerical relation between 
coupling coefficients and the maximal relative Lyapunov 
exponents is shown in Figure 7. 

As shown in Figure 6, when c > 0.043, the maximal 
relative Lyapunov exponent is less than zero, thus sys-
tems (3) and (4) can achieve synchronization success- 
fully, while c < 0.043, the maximal relative Lyapunov 
exponent is more than zero, the two systems can’t achi- 
eve synchronization. So when c = 0.01, the maximal re- 
lative Lyapunov exponent is more than zero, the two sy- 
stems haven’t achieved synchronization, as shown in Fi- 
gure 4 (or Figure 5). 

4.3. The Relation between Coupling Coefficients 
and Synchronizing Time 

When c = 0.2, the errors Ei(t) is shown as Figure 8, the 
errors E is shown as Figure 9. 

Comparing Figure 7 (or Figure 8) and Figure 4 (or 
Figure 5), we see that when c = 2, the time achieving 
synchronization is shorter than the instance of c = 0.2. 

In fact, sometime we need achieve synchronization 
immediately, while sometime we need transit a certain 
time and then achieve synchronization. So, the choice of 
a coupling coefficient’s value is crucial, and it’s neces-  
 

 

Figure 7. The relation between coupling coefficients and the 
maximal relative Lyapunov exponents of systems (3) and 
(4). 
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Figure 8. When the coupling coefficient c = 0.2, the errors of corresponding variables between systems (3) and (4), Ei(t), varies 
over time. 
 

 

Figure 9. When the coupling coefficient c = 0.2, the errors of 
corresponding variables between systems (3) and (4), E, 
varies over time. 
 
sary to discuss the relation between coupling coefficients 
and the time achieving synchronization. 

Figure 10 presents the relation between coupling co- 
efficients and the synchronizing time. Though there 
comes some gurgitation, but generally, the bigger cou- 
pling coefficient is, the shorter two systems achieve syn- 
chronization. It is an important conclusion, in practice, 
we can choose an appropriate coupling coefficient ac- 
cording to demand. 

5. Conclusion 

Based on a four-dimensional energy resource demand- 
supply system between the East and West of China, via 
numerical simulation, this paper discusses its chaotic be- 
havior, and uses the unilateral coupling method achiev-  

 

Figure 10. The relation between coupling coefficients and 
synchronizing time of systems (3) and (4). 
 
ing the chaos synchronization. By computing the maxi- 
mal relative Lyapunov exponents’ spectrum of systems (3) 
and (4), we gained the value range of coupling coeffi-
cients. When coupling coefficient c > 0.043, the maximal 
relative Lyapunov exponent is less than zero, thus the 
two systems can achieve synchronization sucessfully, 
while c < 0.043, the maximal relative Lyapunov expo-
nent is more than zero, the two systems can’t achieve 
synchronization. At last, we get the relationship between 
coupling coefficients and synchronizing time, i.e. the 
greater coupling coefficient is, the shorter systems ach- 
ieve synchronization. 
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