
A Journal of Software Engineering and Applications, 2012, 5, 107-112
doi:10.4236/jsea.2012.512b021 Published Online December 2012 (http://www.scirp.org/journal/jsea)

Copyright © 2012 SciRes. JSEA

Chinese Keyword Search by Indexing in Relational
Databases

Liang Zhu1, Lijuan Pan1, Qin Ma2

1Key Laboratory of Machine Learning and Computational Intelligence, School of Mathematics and Computer Science, Hebei
University, Baoding, Hebei 071002, China; 2Department of Foreign Language Teaching and Research, Hebei University, Baoding,
Hebei 071002, China.
Email: zhu@hbu.edu.cn (L. Zhu), katharine162@126.com(L. Pan), maqin@hbu.edu.cn(Q. Ma)

Received October 15, 2012.

ABSTRACT
In this paper, we propose a new method based on index to realize IR-style Chinese keyword search with ranking strate-
gies in relational databases. This method creates an index by using the related information of tuple words and presents a
ranking strategy in terms of the nature of Chinese words. For a Chinese keyword query, the index is used to match
query search words and the tuple words in index quickly, and to compute similarities between the query and tuples by
the ranking strategy, and then the set of identifiers of candidate tuples is generated. Thus, we retrieve top-N results of
the query using SQL selection statements and output the ranked answers according to the similarities. The experimental
results show that our method is efficient and effective.

Keywords: Relational Database; Chinese Keyword Search; Index; Ranking Strategy

1. Introduction
For a database system, keyword search with the gener-
al-purpose query engine uses user-supplied data to query
the contents of string properties that store keywords, and
then requires users to have the knowledge of database
schema and a query language (say, SQL). Inspired by the
success of free-form keyword search on information re-
trieval (IR) and Web search engines, i.e., it is popular to
users who need not know query languages and the struc-
ture of underlying data. Researches of English keyword
search with IR-style free-form in relational databases
have been extensively studied since 2002[1-7]. [1] and [2]
join tuples from multiple relations in the database to
identify tuple trees with all the query keywords, for each
enumerated join tree, both of them simply rank join se-
quences according to the number of joins. ObjectRank
system [3] applies authority-based ranking to keyword
search in database modeled as labeled graph. [4] pro-
posed a method (G-KS) for selecting the top-N candi-
dates based on their potential to contain results for a
given query. [5] succeeded in putting the model of com-
puting similarities in IR into computing similarities be-
tween a candidate answers and tuples in relational data-
bases, the methods pay more attention on effectiveness
of keyword search. [6] proposed a middleware free ap-

proach to compute such m-keyword queries on RDBMSs
using SQL only. In this paper, we will discuss Chinese
keyword search in a relational database based on an in-
dex.

Chinese is totally different from English. For instance,
(1) Chinese words are tighter in writing, unlike English;
there is no space between words. (2) Chinese words are
coded by using GB2312-80 and each Chinese word is
stored in two consecutive bytes in memory, while an
English word is composed of letter(s) and each letter
takes one byte, say, the Chinese word “人” (means “per-
son”) is 0xC8CB with two bytes in memory; however,
English word “person” takes 6 bytes. (3) Abbreviations
in English are acronyms, such as “WWW” is short for
“World Wide Web”; however, abbreviations in Chinese
are extracted words from a phrase, say, “高代” means
“高等代数” (Advanced Algebra).

Example 1. As shown in Figure 1, database BOOKS
has three relations/tables: Titles(tid, title, Faid, Fpid, ...),
Authors(aid, name,...), and Publishers(pid, pname,...).
Without loss of generality, we suppose the relationship
between Authors and Titles is “one to many”, not “many
to many”. We regard all authors of a book together as
one author, since the keyword search will be processed
by each Chinese word and the index will be created by
using the text attributes of Entities (say, title, name,

Chinese Keyword Search by Indexing in Relational Databases

Copyright © 2012 SciRes. JSEA

108

pname), not using the id’s in relationships. Moreover, the
1-to-n type relationship may be more feasible in practice
in our scenarios (say, a string of Chinese words will be
concatenation of names of two or more authors if there is
an error of typing). For query Q = {高代; 高教社}, a
user want to get the answers of “title = 高等代数, au-
thor =高代 (if any), publisher = 高等教育出版社
(Higher Education Press)”. Traditional DBMS cannot
obtain such results, and it is difficult for us to use direct-
ly the existing methods of English keyword search mod-
els in Chinese keyword query.

Titles
tid title Faid Fpid

t1 高等代数 a1 p1

t2 环境化学 a2 p1

t3 民法教程 a3 p3

Authors Publishers

aid aname pid pname
a1 北京大学数学系 p1 高等教育出版社

a2 戴树桂 p2 新华出版社

a3 江平 p3 中国政法大学出版社

 Figure 1. Part of BOOKS database

Inspired by the technique of creating index of tuple
words in [8], we present a new method to perform Chi-
nese keyword search by indexing. This work is a contin-
uation of [9], which studied Chinese keyword search
with only one relation; however, this paper discusses a
relational database with multiple relations, and it is more
challenging than the work in [9].

We will build an index based on the information of
tuple words and improve the classic ranking strategy in
IR. For a Chinese keyword query, its top-N answers will
be obtained by the index and the improved ranking
strategy.

2. Data Model and Query Model
Consider a database with n relations R1, …, Rn. Each
relation Ri has mi text attributes Ai

1, Ai
2, ..., Ai

mi, a primary
key and possibly foreign key(s) referencing other rela-
tion(s).

Definition 1 (Schema Graph) [2, 4]: A directed graph
captures the primary key-foreign key relationships in the
schema of the database. It has a node for each relation Ri
of the database and an edge Ri→Rj for each foreign key to
primary key relationship from a set of attributes (Ai

b1, … ,
Ai

bt) of Ri to a set of attributes (Aj
b1, …, Aj

bt) of Rj, where

Ai
bk ≡ Aj

bk for k =1,. . ., t.
Definition 2 (Tuple Tree) [2, 5] A tuple tree T is a

joining tree of tuples. Each node ti in T is a tuple in the
base relation Ri. For each pair of adjacent tuples ti, tj ∈ T,
where ti∈Ri, tj∈Rj, there is an edge Ri→Rj and ti tj ∈ Ri

 Rj.
Definition 3 (Tuple Word): For each tuple t belongs to

Ri and A∈{Ai
1, Ai

2 ,..., Ai
mi}, t[A] is the attribute value on

attribute A of relation Ri, it contains single or multiple
Chinese words. We define every single Chinese word as a
Chinese tuple word.

Definition 4 (Index Table): An Index Table is com-
posed of tuple words and their related information ex-
tracted from the database, its schema is TupleWordTable
(wordid, word, size, DBValue), where wordid is the pri-
mary key, word is the tuple word, size is the number of
text attributes that contain the corresponding tuple word,
DBValue is a text attribute with form “cid, df, tid, tf, dl;
cid, df, tid, tf, dl;…;”. In DBValue, cid is the identifier of
the attribute (or column) containing the tuple word, df is
the number of cells containing the tuple word in certain
attribute (or column), tid is the identifier of the tuple
containing the tuple word, tf is the number of tuple word
appears in the cell determined by tid and cid, and dl is the
total number of words (counting duplicate words) in the
cell determined by tuple identifier tid and
attribute/column identifier cid.

Definition 5 (Keyword Query): A query Q = (k1, k2, ...,
kp) is a set of Chinese tuple words. The results of the
keyword query are the tuple trees joined by relations. The
results are ranked by a ranking strategy, and then the
top-N ones will be the desired answers of a user.

3. Construction of Index Table
In this section, we will describe how to create an index
table with information of tuple words, including the de-
sign and implementation of the index.

3.1. Design of Index Table
An index table which is designed as relation with schema
TupleWordTable (wordid, word, size, DBValue) is con-
structed to store the information of each single tuple
word. Tuple words in tuples of relation Ri (1≤ i ≤ n) are
extracted from Ri and are stored into the index table. For
a query, we invoke an index to implement the search and
display the top-N answers ranked by a ranking strategy.
Therefore, it is important to decide information granular-
ity of tuple words stored in index table. In this paper, we
consider column level of granularity as well as cell level.
The answers for a query are tuple trees joined by differ-
ent attributes, and the nature of different attributes will
affect the effectiveness of the keyword query, thus,

Chinese Keyword Search by Indexing in Relational Databases

Copyright © 2012 SciRes. JSEA

109

attributes information in database need to be recorded
individually. Cell granularity is more detailed which will
create more accurate similarities between query and re-
sults. In relation TupleTableWord, DBValue is used to
store column level and cell level information.

3.2. Implementation of Index
The process of creating index table includes three steps:
(1) Normalize tuples in Ri (i=1, 2, ..., n), remove useless
characters and Chinese punctuation which will obstruct
the processing of extracting Chinese words. (2) For each
tuple word belongs to t[A], extract related information of
tuple word. (3) Use the information to create index table.

D 1 1

W2W1 Wd。。。。。。

Hash-Table

^
Word-List

Col-list Col-list

…
…

…
…

…
…

…… ……

…
…

…
…

…
…

T1

T1

Tr

Tq D 1 nm

D d 1
D d nm

...

...

...

...

^

^

^

^

^ ^

ThT1

T1 Tu
’

tl-list

tl-list

tl-list

tl-list

Figure 2. Structure of the index

The structure of the index is shown in Figure 2. It has
a Hash-Table and three layers of linked lists. The first
layer is the Word-list which stores tuple words. Node Wi
(i=1, 2,…, d) in Word-list corresponds to a single tuple
word and wordid in the index table, it also has a pointer
pointing to a Col-list which is the second layer linked list.
Each node in a Col-list saves the information that corre-
lates to the tuple word appeared in a certain attribute (or
column). Different node in the Col-list of Wi indicates
that Wi turns up in different attribute. Likewise, one node
in the third layer tl-list stores the related information of
Wi of a specific tuple. The algorithm of creating the in-
dex table is described below:
__
IndexTableCreationAlgorithm (R1, R2, … ,Rn) {
0. For each relation Ri in {R1, R2, … , Rn}
1. For each attribute Ai

j in { Ai
1, Ai

2, ..., Ai
mi} of Ri

2. For the value of each tuple t on attribute Ai
j // t[Ai

j]
3. For each tuple word z∈t[Ai

j]={z1 z2 …zs}
4. { If z has not been saved in word-list

 {add a new node Wi in word-list to save z, and

sort the nodes in word-list by the code of
GB212-80;

 create a new Col-list pointed by Wi, and add a
new node Di into the Col-list, to save column
identifier (cid) and document frequency (df);

 create a new tl-list pointed by Di, add a new
node Ti into tl-list to save tuple identifier(tid),
tuple frequency(tf) and data length(dl);

}
5. Else

{Return node Wi containing z, search the Col-list
pointed by Wi;

6. If Col-list has the node Di corresponding to z.cid
{update df, search the tl-list pointed by Di;

7. If the tl-list has node Ti with z.tid, update tf;
Else add a new node of tl-list to save cid, tf, dl;
}

8. Else
{add a new node of Col-list to save cid and df;
add a new node of tl-list to save tid, tf, dl;

}// end else (8)
} // end else (5)

} // end if (4)
} // end algorithm

__

As an example, a part of index table is shown in Fig-
ure 3 for database BOOKS in our experiment. The index
table contains 4506 tuple words including most level 1
and level 2 Chinese words.

Figure 3. A part of the index table for BOOKS database

In order to implement the keyword search, we need to
load the index table into memory, and match the key-
words with tuple words. For a huge index table, however,
it is hard to load the whole index table into the memory.
Therefore, we need to compress and to improve the in-
dex. Firstly, we remove the stop words which are mea-
ningless words such as “的” and “吗”, and the words
appeared in specific attribute of most tuples, say, “出”,
“版”, and ‘社’ in pname attribute of relation Publishers,
more than 95% of tuples contain these words. Secondly,
it is necessary for the index table to shrink its structure.
We only load the Hash-Table and Word-list into memo-

Chinese Keyword Search by Indexing in Relational Databases

Copyright © 2012 SciRes. JSEA

110

ry.

4. Chinese Keyword Search
4.1. Generation of identifiers of candidate tuples
For the query Q = (k1, k2, ..., kp), we match query words
ki (i = 1, 2, …, p) with tuple words by using the index in
memory, and obtain the set of DBValue of tuple words.
We divide DBValue into pieces (cid, df, tid, tf, dl).

A tuple is solely identified by its tid, so we collect tid
from every piece and obtain the set of all identifiers of
basic tuples matched with query words ki, denote by
Rj

ki = {t | t = tid}, where tid means the identifier of tuple t.
Combining all sets Rj

ki (i = 1, 2, …, p), we get Rj
Q = Rj

k1
∪ Rj

k2
 ∪ ... ∪ Rj

ki (j=1, 2, ..., n), which are the sets of all
identifiers of candidate tuples containing query words in
relation Rj. In the process of collecting tid, we record the
number of distinct query words of each tuple. For a tuple,
the more distinct query words contained in a tuple, the
closer of it gets to Q. For example, a given query Q ={k1,
k2, k3}, tuple t1 contains one k1 and one k2 , t2 contains
two k2’s, t3 contains one k1, one k2 and one k3. Thus, t3 is
the best match for Q, and t1 is much closer to Q than t2
according to the similarities between Q and t1, t2, and t3,
which can be obtained as follows.

4.2. Ranking Strategy
For each candidate tuple that contains query words, we
extract the information from piece and calculate the si-
milarity between the query Q and the tuple. In this paper,
based on vector space model widely used in IR ranking
strategy, we improve a classic method [10, 11] to com-
pute the similarities between the query Q and tuple trees.
Query words and tuple trees are represented as a vector
of terms, and each term may be an individual word or a
multi-word phrase. The vocabulary of terms makes up a
term space, and each term occupies a dimension in the
space. Each element of vector is non-negative weight
that measures the importance of the term in the text. The
similarity is:

,
(,) * (,)* (,)

k Q T
Sim Q T n c Sim k T weight k Q

∈

= + ∑ (1)

(,) (,)*i i
D T

Sim k T weight k A w
∈

= ∑ (2)

1 ln(1 ln()) 1(,) *ln
(1) *

i
tf Nweight k A dl dfs s

avdl

+ + +=
− +

 (3)

Equation (1) and (3) are derived from [9, 10], In Equa-
tion (1), weight (k, Q) is the appearance frequency of
word k in query Q, tuple tree T is composed of attributes
{A1, A2, …, Am}, n∗c is a new item for our Chinese key-

word query, c is constant (c = 10 by training in our expe-
riments), and n is the number of different tuple words
contained in T. In Equation (3), s is a constant (usually
set to 0.2), N is the number of tuples corresponding to the
attribute, and avdl is the average number of words in
tuples corresponding to the attribute. For a query, we
define Equation (2) due to the weights (or important fac-
tors) of different attributes. For example, when buying a
book, the title of a book is usually more important than
its publisher; therefore, the weight of attribute Titles.title
should be higher than that of attribute Publishers.pname.
Sorting the weights of different attributes, we get the set
W = {w1, w2, …, wn} and wi≥wj (i>j). According to Eq-
uation (1) and (3), if the values of tf, df and dl are equiv-
alent, larger weights will lead to higher similarities, and
the tuple trees with larger weights will rank higher.
 Suppose M is the maximum value of the number of
distinct query words in a candidate tuple. After obtaining
Rj

Q, we compute firstly the tuples that owns M distinct
query words, then M-1, M-2, down to one query words.
According to the number of the distinct query words (i.e.,
n), we achieve the subsets Si’s of results for the query,
and then the set S of all results is S = S1∪S2∪ …∪SM, Si
∩ Sj = ∅(i≠j), where Si is the collection of tuple trees
whose numbers of distinct query words are i. In general,
tuple trees in Sj have higher similarities than those in Si if
i < j.

4.3. Answers for queries
We utilize the schema graph and Rj

Q (j = 1, 2, …, n) to
construct SQL selection statements, and then retrieve
tuple tree from the database. Query conditions of SQL
statements have the relationship of foreign key-primary
key and the location of query words. For example, if the
schema graph of database is R1←R2→R3, for a query Q =
{k1, k2}, SQL statements are as below:

Select * from R1, R2, R3 where R1.Pid = R2.Fid and
R3.Pid = R2.Fid and R2.Pid in R2

Q (S1)
Select * from R1, R2, R3 where R1.Pid = R2.Fid and

R3.Pid = R2.Fid and R1.Pid in R1
Q (S2)

Select * from R1, R2, R3 where R1.Pid = R2.Fid and
R3.Pid = R2.Fid and R3.Pid in R3

Q (S3)
Where Pid and Fid denote Primary key and Foreign key
respectively. If multiple relations (or multiple attributes)
contain the query words that are in the same returned
tuple trees, the above SQL statements may lead to re-
dundant search results. In order to avoid redundancy, it is
necessary to reduce the repeat selection: Let R1

Q = R1
Q -

R1
2 after (S1) is executed, and R3

Q = R3
Q - R3

2 - R3
1 after

(S1) and (S2) are executed, where R1
2 is the identifier set

Chinese Keyword Search by Indexing in Relational Databases

Copyright © 2012 SciRes. JSEA

111

of tuples both appear in R1
Q and R2

Q, and so as to R3
2 and

R3
1.
Example 1 (cont.) For query Q = {高代; 高教社}

submitted by the user, a part of answers with “title = 高
等代数, publisher = 高等教育出版社” are shown in
Figure 4 and are ranked by their similarities, where the
three results with id’s 58734, 58709 and 58735 have the
same similarities.

Figure 4. Part results of query “高代; 高教社”.

5. Experiments
Our experiments are carried out using Microsoft’s SQL
Server 2000 and VC++ 6.0 on a PC with Windows XP,
Intel(R) Core2 Duo 2.0 GHz CPU, and 2.0GB memory.

The real dataset comes from the library of Hebei Uni-
versity, which is a fragment of the data of Chinese books.
As shown in Figure 1, our database BOOKS has three
relations: Titles(tid, title, Faid, Fpid), Authors(aid,
aname), Publishers(pid, pname), tid, aid, pid are the
primary keys for three relations respectively, and Faid,
Fpid are foreign keys of Titles referencing Authors.aid
and Publishers.pid respectively. The relation Titles con-
tains 87762 tuples, Authors contains 62120 tuples and
Publishers contains 2995 tuples.

The parameters that we vary in the experiments are the
number of query words and the number of results N re-
quested in top-N queries. We consider 10 groups queries,
where keywords are randomly chosen from the attribute
word of TupleWordTable. We denote 10 groups by
Gi(i=1, 2, ..., 10), each Gi contains 10 queries and the
number of keywords of each query in Gi was i. The 100
queries are used to measure the time and accuracy of our
method.

(1) Time. For the 10 groups of keyword queries, we
record the running time of matching the index table (de-
noted by Index-Time) and the time of returning results
(denoted by Result-Time) respectively. As shown in Fig-
ure 5, Result-time is between 50 and 400 milliseconds,
Index-time are between 0 and 100 milliseconds. Gener-
ally, Result-time costs more than Index-time, for it re-
quires more time to rank similarities and I/O costs fre-
quently.

When the number of query words comes to 4 and 9 in
Figure 3, Result-time turns up to peak values, it is ob-
vious that Result-time is larger than Index-time, the rea-

son is as follows: some query words are contained in a
large amount of tuples, like query words “中 逅 猎 竖”
in group G4, the number of tuples which contain any sin-
gle word is 17637, while the general number of tuples is
about several thousands. We have to calculate the simi-
larity of every single tuple and then rank these tuples by
our ranking strategy.

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

the number of query words

el
ap

se
d

tim
e(

m
s)

Index-time Result-time

Figure 5. Elapsed time for keyword queries

 (2) Recall and precision. For N=3, 10, 20, 50, 80 and
100, Figure 6 and Figure 7 show recalls and precisions of
Top-N results of keyword search respectively.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

the number of query words

re
ca

ll

Top-3 Top-10 Top-20 50 Top-80 Top-100

Figure 6. Recalls of Top-N results

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

the number of query words

pr
ec

is
io

n

Top-3 Top-10 Top-20 Top-50 Top-80 Top-100

Figure 7. Precisions of Top-N results

In Figure 6, for each Gi, with the increase of N, recall
will become larger. The reason is that the total number of
desired results in the database is constant, while the

Chinese Keyword Search by Indexing in Relational Databases

Copyright © 2012 SciRes. JSEA

112

number of matching tuple tree in the Top-N results will
increase as N becomes larger. For a fixed N, the overall
rate of recall will decrease as the number of query words
increases. In Figure 7, for each Gi, with the increase N,
precision will decrease. When N≥80, the average rates of
recalls and precisions are higher than 50% and 60% re-
spectively. In addition, according to requirements, all
ranked results may be displayed for a query.

6. Conclusions
In this paper, we proposed a new method to realize
IR-style free-form Chinese keyword search over rela-
tional databases. The basic idea of this method is to
create an index by extracting information from relations
in a database. For a given query, we use the index to ob-
tain the candidate tuples and calculate the similarity of
between the query and each candidate tuple through im-
proved ranking strategy. The Top-N results are retrieved
by SQL selection statements for the natural join of rela-
tions in the database. Extensive experiments were carried
out to measure the performance of our method based on
a real dataset. Experimental results show that the average
elapsed time including Index-time and Result-time is less
than 500 milliseconds for queries with 1 to 10 query
words. When N≥80, the average recalls and precisions
are higher than 50% and 60% respectively.

7. Acknowledgements
This work is supported in part by NSFC (61170039) and
the NSF of Hebei Province (F2012201006).

REFERENCES
[1] S. Agrawal, S. Chaudhuri and G. Das, “DBXplorer: A

System for Keyword-Based Search over Relational Da-
tabase,” Proceedings of the 18th International Confe-
rence on Data Engineering, San Jose, 26 February -1
March 2002, pp. 5-16.

[2] V. Hristidis, L. Gracano and Y. Papakonstantinou, “Effi-
cient IR-style Keyword Search over Relational Databas-
es,” Proceedings of 29th International Conference on

Very Large Data Bases, Berlin, 9-12 September 2003, pp.
850-861.

[3] A. Balmin, V. Hristidis and Y. Papakonstantinou: “Ob-
jectRank: Authority-Based Keyword Search in Databas-
es”, Proceedings of the 30th International Conference on
Very large Data Bases, Toronto, 31August-3September
2004, pp. 564 – 575.

[4] Q. Vu, B. Ooi, D. Papadias and A. Tung, “A Graph Me-
thod for Keyword-Based Selection of the Top-K Data-
bases,” Proceedings of the ACM SIGMOD International
Conference on Management of Data, Vancouver, 10-12
June 2008, pp. 915-926.

[5] F. Liu, C. Yu and W. Meng, A. Chowdhury, “Effective
Keyword Search in Relational Databases,” 26th ACM
SIGMOD/PODS International Conference on Manage-
ment of Data/Principles of Database Systems, Chicago,
27-29 June 2006, pp. 563-574.

[6] L. Qin, J. Yu and L. Chang, “Keyword Search in Data-
bases: The Power of RDBMS,” Proceedings of the 2009
ACM SIGMOD International Conference on Manage-
ment of data, Rhode Island, 29 June-2 July 2009, pp:
681-694.

[7] J. Yu, L. Qin and L. Chang, “Keyword Search in Rela-
tional Databases: A Survey,” IEEE Data Eng. Bull. Spe-
cial Issue on Keyword Search, Vol. 33 No.1, 2010, pp.
67–78.

[8] L. Zhu, Q. Ma and C. Liu, “Semantic-Distance Based
Evaluation of Ranking Queries over Relational Databas-
es,” J. Intell. Inf. Syst, Vol. 35 No. 3, 2010, pp.
415-445. doi: 10.1007/s10844-009-0116-5.

[9] L. Zhu, Y. Zhu and Q. Ma, “Chinese Keyword Search
over Relational Databases,” 2010 Second World Con-
gress on Software Engineering, Wuhan, 19-20 December
2010, pp. 217-220.

[10] A. Singhal, “Modern Information Retrieval: A Brief
Overview,” IEEE Data Eng, Vol. 24, No. 4, 2001, pp. 35-
43.

[11] A. Singhal, C. Buckley and M. Mitra, “Pivoted Document
Length Normalization,” Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Zurich, 18-22
August 1996, pp. 21-29.

http://dx.doi.org/%2010.1007/s10844-009-0116-5�

	S. Agrawal, S. Chaudhuri and G. Das, “DBXplorer: A System for Keyword-Based Search over Relational Database,” Proceedings of the 18th International Conference on Data Engineering, San Jose, 26 February -1 March 2002, pp. 5-16.
	V. Hristidis, L. Gracano and Y. Papakonstantinou, “Efficient IR-style Keyword Search over Relational Databases,” Proceedings of 29th International Conference on Very Large Data Bases, Berlin, 9-12 September 2003, pp. 850-861.
	A. Balmin, V. Hristidis and Y. Papakonstantinou: “ObjectRank: Authority-Based Keyword Search in Databases”, Proceedings of the 30th International Conference on Very large Data Bases, Toronto, 31August-3September 2004, pp. 564 – 575.
	Q. Vu, B. Ooi, D. Papadias and A. Tung, “A Graph Method for Keyword-Based Selection of the Top-K Databases,” Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, 10-12 June 2008, pp. 915-926.
	F. Liu, C. Yu and W. Meng, A. Chowdhury, “Effective Keyword Search in Relational Databases,” 26th ACM SIGMOD/PODS International Conference on Management of Data/Principles of Database Systems, Chicago, 27-29 June 2006, pp. 563-574.
	L. Qin, J. Yu and L. Chang, “Keyword Search in Databases: The Power of RDBMS,” Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, Rhode Island, 29 June-2 July 2009, pp: 681-694.
	J. Yu, L. Qin and L. Chang, “Keyword Search in Relational Databases: A Survey,” IEEE Data Eng. Bull. Special Issue on Keyword Search, Vol. 33 No.1, 2010, pp. 67–78.
	L. Zhu, Q. Ma and C. Liu, “Semantic-Distance Based Evaluation of Ranking Queries over Relational Databases,” J. Intell. Inf. Syst, Vol. 35 No. 3, 2010, pp. 415-445. Udoi: 10.1007/s10844-009-0116-5U.
	L. Zhu, Y. Zhu and Q. Ma, “Chinese Keyword Search over Relational Databases,” 2010 Second World Congress on Software Engineering, Wuhan, 19-20 December 2010, pp. 217-220.
	A. Singhal, “Modern Information Retrieval: A Brief Overview,” IEEE Data Eng, Vol. 24, No. 4, 2001, pp. 35- 43.
	A. Singhal, C. Buckley and M. Mitra, “Pivoted Document Length Normalization,” Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, 18-22 August 1996, pp. 21-29.

