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ABSTRACT 

Nanoparticles are considered as powerful tools in nanotechnological applications. Due to their unique physicochemical 
properties, their interactions with different biological systems have been shown. Nanomaterials have been successfully 
used as coating materials or treatment and diagnosis tools. Nevertheless, toxic effects of nanoparticles in vitro and in 
vivo have also been reported. Here, we summarize the current state of knowledge on exposure routes, cellular uptake 
and toxicological activities of the commonly used nanoparticles. In this context, we discuss the mechanisms of toxicity 
of nanoparticles involving perturbation of redox milieu homeostasis and cellular signaling pathways. 
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1. Introduction 

It is widely accepted that nanoparticles (NPs) and nano- 
materials could be successfully used in food technology, 
cosmetics, modern chemistry and biomedicine. The at- 
tributes of organic and inorganic nanoparticles, such as 
small size, composition, surface structure, solubility, 
shape and aggregation allow for unlimited modifications 
of their basic properties such as diffusivity, targeting, 
stability, solubility, half-life in circulatory system and 
controlled drug release. Due to such unique features, 
nanoparticles have the advantage over traditional thera- 
peutic and diagnostic agents [1-4]. Nanoresearch is fo- 
cused on many life-sciences including applications in 
environmental, health and safety sciences. 

Nevertheless, very little is known how NPs affect hu- 
mans and the environment. Here, we resume current in- 
formation on negative effects of NPs especially including 
their toxicity (Figure 1) [5-13]. 

2. Exposure Routes, Cellular Uptake and 
Toxicological Effects 

The organism has several semi-open interfaces for ex- 
change some substances with the environment. The same 
interfaces are the primary routes of exposure of nanopar- 
ticles such as inhalation, dermal absorption and inges- 
tion. 

Routes of NPs exposure is highly affected by a pleth- 
ora of factors e.g. NPs stability in vivo and their toxi- 
cokinetics, absorption, distribution, conversion to more 
toxic metabolites, interaction with macromolecules [14]. 

The different compartments of the human respiratory 
track act as a nanoparticle filter. If a nanoparticle is very 
small (<2.5 µm), it is very likely that it would reach the 
alveolar region. After absorption, nanoparticles can enter 
bone marrow, spleen or heart cells (through blood or 
lymph). Nanoparticles could associate, coagulate and in 
turn cause a disturbance of cardiac rhythm or nerve end- 
ings in the airway epithelia and the central nervous sys- 
tem [15]. Skin is the largest organ of the integumentary 
system consists of multiple layers of ectodermal tissue. 
Damaged skin is an ineffective particle barrier and even 
very small wound may accelerate nanoparticle uptake 
[16]. Chemical penetration into skin can occur through 
pilosebaceous or swat gland pores. Nanoparticle pa- 
rameters important for overcoming the cell membrane 
barrier are: size, charge, shape, nanoparticle coating, hy- 
drodynamic diameter, isoelectric point, pH gradient. For 
example, TiO2, ZnO (30 - 200 nm) and nail-shaped NPs 
(39 - 45 nm) can penetrate only the outer layer of the 
epidermis, while spherical Quantum dots (QDs) (15 - 45 
nm) are able to reach epidermis and even dermis [17]. In 
clinical studies, silver nanoparticles are used in coated 
dressings which are exerted in burnings treatment. Be-  
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Figure 1. Potential toxic effects of nanoparticles on living 
cells. 
 
sides good control of wound infection, they trigger ab- 
normal elevations of blood silver levels and argyria as 
well. Nanoparticles can be also ingested directly in food, 
water and drugs. Nanocopper substances are several 
folds more toxic than copper. Nanocopper can also cause 
liver and kidney damage. After ingestion nanocopper 
particles react with hydrogen ions (gastric juice) and lead 
to a massive formation of bicarbonate ion. Alkalosis 
caused by overload of bicarbonate ions triggers hypopnea 
symptom and electrolyte disturbance [18]. Nanoparticles 
can enter the cell via diverse mechanisms such as simple 
diffusion across the cellular membrane, endocytosis, and 
phagocytosis or through ion canals or pores [19]. The 
key mechanisms of nanoparticle uptake include clathrin- 
mediated endocytosis, caveolin-mediated endocytosis, 
macropinocytosis or phagocytosis. Clathrin-mediated en- 
docytosis is involved in non-macrophage cell nanopar- 
ticle (50 - 200 nm) uptake and it leads to accumulation of 
extracellular macromolecules into clathrin-coated vesi- 
cles fused to early endosomal vesicles [20]. With endo- 
cytosis, particles are taken up via small pits in the mem- 
brane which is mediated by special receptors [21]. Ma- 
cropinocytosis occurs from ruffled regions of the mem- 
brane within vacuoles (~0.5 - 5.0 µm) [22]. During pha- 
gocytosis, cell binds and internalizes particles bigger 
than 0.75 µm, and microglia are specialized in such up- 
take [23]. The same nanoparticle can be captured via 
various mechanisms. For example, diamond powder par- 
ticle uptake is based on macropinocytosis or on clathrin- 
mediated endocytosis pathways and uptake type affects 
intracellular metabolism [5]. Additionally, physicoche- 
mical parameters (coating, charge) of QDs may discri- 
minate NPs uptake type [24]. After entering the cell, the 
same nanoparticle can cause different toxic effect which 
depends on cell type affected (Table 1). Several factors 
have been found to modulate NPs toxicity such as indi- 
vidual NPs physicochemical properties: size, charge, 
concentration, outer coating bioactivity (capping material, 
functional groups), and oxidative, photolytic, and me- 
chanical stability [25,26]. 

NPs can affect cytophysiology of the cell at different 

levels such as cellular, organelle level as well as at the 
level of genetic information which in turn may contribute 
to cytotoxicity, cancer development and aging [15,27]. 
NPs are so small that they can penetrate the small capil- 
laries throughout the body and pass through biological 
membranes [28]. NPs (<100 nm) can enter the cell, NPs 
(<40 nm) can enter nucleus, and NPs (<35 nm) can pass 
the blood brain barrier. Moreover, it has been reported 
that metallic, metal oxide, semiconductor nanoparticles, 
polymeric nanoparticles and carbon based nanoparticles 
may cause cytotoxic effects, which is dose-, cell type- 
and treatment time-dependent [15,29]. NPs such as silver 
NPs (15 nm), molybdenum NPs (30 nm) and aluminum 
NPs (30 nm) were found to cause diverse effects on 
mouse type A spermatogonia. Molybdenum NPs at range 
of concentrations studied did not affect the cells, whilst 
silver NPs at concentration under 10 µg/mL induced 
dramatic changes such as cell clumping, precipitation, 
shrinkage and apoptosis. Aluminum nanoparticles did not 
cause any damage at concentrations below 10 µg/mL 
(formed aggregates, their effect on mitochondrial func- 
tion could not be checked). Mitochondrial function and 
cell viability were reduced by silver NPs at the lowest 
concentration used and by molybdenum NPs at concen- 
tration of 50 µg/mL. Silver NPs increased membrane 
leakage, whilst molybdenum NPs affected the membrane 
integrity at lower concentrations [30]. Additionally, cy- 
totoxicity of gold NPs was reported to be associated with 
their size and not with ligand construction. Particles in 
the 1 - 2 nm size range are highly toxic, whereas smaller 
and bigger than that are not toxic and different cell death 
pathways (necrosis or apoptosis) are involved with dif- 
ferent uptake kinetics or different targeting [31]. 24-h 
exposure to ZnO and TiO2 had a tremendous toxic im-
pact on human skin fibroblast cells, while 4-h exposure 
caused only a mild adverse effect [29]. Besides cytoxic- 
ity, genotoxicity is another important factor in nanoparti- 
cle toxicity studies, especially for metal NPs, quantum 
dots and fullerenes (Table 1). Chromosomal fragmenta- 
tion, point mutations, alterations in gene expression pro- 
files, DNA strand breakages were also observed [15]. 
One of the assays used to assess the genotoxic potential 
of nanoparticles is the Ames Test. It was shown that TiO2 
NPs and C-60 are able to induce deletion mutations in 
gptΔ transgenic mutation assay system. TiO2 (5 nm) 
caused a 2.2-fold increase in mutation yield in mouse 
embryonic fibroblast cells (MEF). At higher concentra- 
tions, TiO2 did not induce further increase in mutation 
yield. However, C-60 treatment stimulated dose-de- 
pendent induction of mutation in MEF cells [32]. Also, 
NPs can induce large chromosomal rearrangements such 
as aneuploidy [33]. 

As it has been already noticed, nanoparticle localiza- 
tion within the cell and interaction type with cellular  
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Table 1. Selective toxicity of NPs. 

Selected nanoparticles Cells Physiological effect Ref. 

Hepatocytes 
Oxidative DNA damage and ROS-triggered mitochondria 
mediated apoptosis 

[73] 

Renal cells Nephrotoxicity and kidney metabolism alterations [8] 

Neurons 
Damage of the ionic homeostasis and the physiological functions 
of neurons 

[74] 

Fetal lung fibroblasts 
Cellular mitochondrial dysfunction, morphological modifications 
and apoptosis 

[75] 

Lymphocytes Cytotoxicity and Cytokine Induction [76] 

Zinc oxide nanoparticles 
(ZnO) 

Nasal mucosa cells Cytotoxic, genotoxic and pro-inflammatory effects [77] 

Hepatocytes Inflammatory and genotoxic effects [56] 

Renal cells Cytotoxicity [78] 

Neurons 
Neurotoxic effect by disturbing the electrical activity of neuronal 
networks 

[7] 

Lung epithelial cells Cytotoxicity [79] 

Carbon black nanoparticles 
(CB-NPs) 

Lymphocytes Induction of chromosomal aberrations [80] 

Hepatocytes Hepatotoxicity [81] 

Neurons Dopaminergic neurons damage pathways [82] 

Lung epithelial cells Toxicity and inflammatory response. [83] 

Lymphocytes Cytotoxicity and genotoxicity [84] 

Silica nanoparticles (SiO2) 

Fibroblast Cytotoxicity [25] 

Hepatocytes Genotoxicity, carcinogenicity, hepatotoxicity and inflammation [48,85] 

Renal cells Induction of oxidative stress and cytotoxicity [86] 

Neurons Neurotoxicity [7] 

Lung epithelial cells Genotoxicity, mutagenicity and carcinogenicity [87,88] 

Lymphocytes 
Induction of oxidative stress and reduction of immune capacity, 
Genotoxicity 

[27,80] 

Titanium dioxide 
nanoparticles (TiO2) 

Bone-marrow cells Genotoxicity, induction of oxidative stress, cytotoxicity [89] 

Hepatocytes Atrophy and necrosis [90] 

Myocardium cells Cytotoxicity [91] 

Renal cells Cytotoxicity [92] 

Lung fibroblast Genotoxicity, autophagy [12,93] 

Gold nanoparticles (AuNPs) 

Bone-marrow cells Cytotoxicity [94] 

Quantum dots (QDs) Lymphocytes 
Induction of DNA damage, formation of micronuclei (MNs), and 
generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 
8-OHdG) 

[95] 

Fibroblast Lipid peroxidation and cytotoxicity [40] 
Fullerene C-60 

Lymphocytes Genotoxicity [96] 

Lung fibroblasts  
Cytotoxicity, increased production of ROS, DNA damage,  
cell cycle arrest 

[100] 

Hepatocytes 
Cytotoxicity, induction of oxidative stress, decreased the activities 
of superoxide dismutase and glutathione peroxides, DNA damage 

[106] 

Osteoblast 
Cytotoxicity, ROS generation, release of lactate  
dehydrogenase, apoptosis 

[107] 

Silver nanoparticles 
(AgNPs) 

Bone-marrow cells Cytotoxicity, genotoxicity, mutagenicity, carcinogenicity [108] 

Renal cells Genotoxicity, cytotoxicity, changed ROS properties [109] 
Super-paragnetic iron  
oxide nanoparticle (SPION) Fibroblasts 

Cytotoxicity, loss of adhesion skills, affected signaling 
transduction pathway 

[49,110] 
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components leading to cytotoxicity or genotoxicity de- 
pends on its size. Large particles can induce permanent 
damage to cell membrane via binding with cellular mem- 
brane proteins, whilst small particles can pass through 
membrane and harm organelles [34] and then, bigger 
ones can occur in the cytoplasm (mainly in vacuoles) and 
smaller ones in mitochondria. The interaction between 
QDs and human peripheral blood mononuclear cells are 
based on adsorption between amine groups within cell 
membrane and carboxyl group of QDs, and in some 
permeabilized cells, QDs distribution was observed only 
in the cytoplasm and in some other QDs were found even 
inside the nucleus and in the nucleolus. QDs which could 
not enter nuclear membrane is localized only inside cy- 
tosol membrane [35]. The same nanoparticles such as 
silica nanoparticles (SiO2) with diverse type of energy 
transfer cassettes can localize in different organelles [36]. 
The interactions between specific nanoparticles and or- 
ganelles and the effect triggered by such interactions are 

presented in Table 2. 
A relation between pH of cell being affected and 

nanoparticle type entering the cell has also been exam- 
ined. Nanoparticles were not able to enter the cell in the 
media at pH 7.4, whilst at pH between 6.3 and 5.4 were 
found be enabled in different cellular pH compartments, 
such as lysosomes or early endosomes [37] which could 
be used in drug delivery applications. 

3. Interactions between Nanoparticles and 
Organic Macromolecules 

Toxicological effects of nanoparticles on the cell struc- 
ture are caused by their indirect or direct interactions 
with cellular organic molecules [5,38]. The major mecha- 
nism underlining NPs-mediated macromolecule toxicity 
is the disruption of intracellular redox homeostasis which 
in turn leads to oxidative damage of macromolecules 
such as lipids, proteins and nucleic acids [38-40]. It is 

 
Table 2. The interactions between specific nanoparticles and organelles and the effect triggered by those interactions. 

Organelle Selected nanoparticle Physiological effect Ref 

Cellular membrane 
AuNPs 
Polylactide (PLA) coated particles 
TiO2 

-Disappearance of membrane ruffling  
-Increased permeability 
 

[97,98] 
[99] 
 

Mitochondria 

PLA coated particles  
SiO2 
AgNPs 
 
 
 
CoCr  

-Swollen mitochondria 
-Mitoptosis  
-Disruption of the mitochondrial respiratory 
chain leading to interruption of ATP synthesis 
-Partial fragmentation with limited damage to 
actin 

[97] 
[36] 
[100] 
 
 
 
[101] 

Nucleus 

Targeted charge-reversal nanoparticles 
(TCRNs) 
AuNPs 
 
 
AgNPs 

-Selective migration into the nucleus 
-Binding with specific proteins or DNA in a  
nucleus  
-Reorganization of nuclear content 
-DNA damage and chromosomal aberrations  

[102] 
 
[98] 
 
[103] 
[100] 

Nucleolus 
Cadmium telluride (CdTe) nanoparticles 
QDs 

-Interactions with chromatin [66] 

Lysosomes SiO2 -Cytotoxicity  [36] 

Peroxisomes Fullerene C60 -Changes in acyl-CoA pathways [104] 

Endoplasmic reticulum 

PLA coated particles  
poly(lactic-co-glycolic acid) PLGA 
nanoparticles 
 
 
 
 
SiO2 

-Widened ER 
-Prolonged cross-presentation of the antigen by 
the antigen-presenting cells leading to enhanced 
activation of cytotoxic T lymphocytes directed 
against the tumor cells 
-Cytotoxicity  

[97] 
[105] 
 
 
 
 
[36] 

Cytoskeleton 
AuNPs 
AgNPs 

-Depolymerisation of α-tubulin (major 
component of microtubules) 

[101] 
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widely accepted that reactive oxygen species (ROS) play 
a crucial role in cell metabolism, signaling and homeo- 
stasis [41]. Exposure to NPs disturbs the balance between 
cellular ROS production and detoxification [42]. More- 
over, nanoparticle-mediated oxidative stress strictly de- 
pends on nanoparticle size, e.g. Mn (40 nm) and Ag (15 
nm) treatment caused a 10- and 3-fold increase in intra- 
cellular ROS production compared to control conditions, 
respectively [43]. Similar results were obtained after 
ZnO [44] and TiO2 [39] exposure to human myeloblastic 
leukemia cells and bronchial epithelial cells. It was also 
shown that C-60-induced lipid peroxidation could be 
prevented by an addition of antioxidant L-ascorbic acid 
[40]. Peroxidation of lipids can alter the physicochemical 
properties of membrane lipid bilayers, especially phos- 
pholipids, resulting in loss of membrane flexibility, in- 
creased ions permeability and cell death [45]. Interac- 
tions of NPs with cellular proteins can also lead to ab- 
normal cytophysiology of the cell [46]. 

Except nanoparticle-mediated changes in protein fold- 
ing, NPs can trigger different effects on physiological 
proteins involved in signal transduction and posttransla- 
tional modifications [27,47,48]. It was observed that su- 
per-paramagnetic iron oxide nanoparticles could affect 
signaling transduction pathways, through an increase in 
expression of genes responsible for production of tyro- 
sine kinases and several members of the kinase C family 
[49]. NPs could also modulate glycation process, e.g. 
gold-associated inhibition of collagen glycation [46,50] 
and silver NPs-mediated inhibition of advanced glycation 
end-products-induced retinal vascular permeability by 
targeting the Src kinase pathway was reported [51]. Ad- 
ditionally, the effects of NPs on key genes expression 
were recorded. After silica nanoparticles (20 nm) treat- 
ment, an increase in p53 level and a decrease in Bcl-2 
level in hepatoma cells was reported while in hepatic 
cells cytotoxic effect of SiO2 was slightly observed [52]. 
Magnetic nanoparticles of FeO were found to increase 
the level of Bcl-2 and at the same time decrease the ex- 
pression of survivin protein which suggested that FeO 
can enhance the activity of some drugs such as artesunate 
used for malaria treatment [53]. Nanoparticle genotoxic- 
ity can be also mediated through their interactions with 
nucleic acids. Nanoparticles can cause DNA damage 
directly or induce a cascade of evens resulting in DNA 
damage by acting on the membrane [19]. ZnO nanoparti- 
cles were found to induce oxidative stress by glutathione 
depletion with a concomitant increase in hydroperoxide 
ions, malondialdehyde levels, reactive oxygen species, 
and lactate dehydrogenase activity and in turn leading to 
genotoxicity such as DNA fragmentation [54]. Genotoxic 
properties of SiO2 and carbon black nanoparticles were 
also observed after their treatment with human intestinal 
cell line [55,56]. Oxidative stress-mediated depletion in 

ATP levels may contribute to limited efficiency of repair 
processes in the nucleus [57]. Treatment with TiO2 re-
sulted in an increase in mouse eyespots number (27%), 
suggesting that TiO2 increased DNA deletions [10]. 
Moreover, TiO2 nanoparticles can induce DNA single- 
strand breaks, double-strand breaks, oxidative DNA or 
chromosomal damage in bone marrow cells and maternal 
exposure to TiO2 NPs during pregnancy results in DNA 
deletions in offspring [10]. It was also suggested, that 
gold nanoparticles implemented to the nuclei of cancer 
cells caused DNA double-strand breaks and induced cy-
tokinesis arrest in cells which in turn resulted in abnor-
mal cell division and cell death [58]. Fe3O4 was found to 
cause cell cycle arrest in G2/M phase of rat pheochro-
mocytoma cells [59]. 

4. Epigenetic Toxicity of NPs 

As has already been mentioned, some of NPs can pene- 
trate into the nucleus modulating cellular functions and 
how cell physiology is changed depends on kind of 
chromatin being affected. NPs-mediated heterochromatin 
changes cause a dramatic nucleus shrinkage, whilst eu- 
chromatin region is only slightly modified. Perturbations 
in heterochromatin structure may contribute to improper 
nucleus architecture and its stability. AuNPs were found 
to modulate heterochromatin connections with lamin pro- 
teins and core histones which suggest that NPs could be 
considered as epigenetic agents [60]. NPs can affect 
global DNA methylation pattern and/or alter posttransla- 
tional modifications of histone proteins. It is known that 
nanoparticles can induce an increase in ROS production 
and oxidative DNA damage may affect the ability of 
methyltransferases to interact with DNA leading to DNA 
hypomethylation [61]. Moreover, ROS can alter the ex- 
pression of methylation DNA-regulated genes [62]. On 
the other hand, it is known that some metal ions, e.g. 
cadmium ions, can modulate DNA metylotransferase 
activity [63] suggesting that cadmium can alter DNA 
methylation pattern. Such an effect strictly depends on 
duration of cadmium treatment and Cd NPs can be con- 
sidered as inhibitors or activators of DNA methyltrans- 
ferase activity. Sites of DNA methylation are controlled 
by different proteins like MBD (methyl-CpG-binding 
domain protein) which provide proper enzymatic ma- 
chinery chromatin silencing [64]. It was observed that 
with increasing silica nanoparticle doses, the global level 
of mRNA expression of MBDs gradually decreased. The 
level of DNA MTase in normal human keratinocytes has 
changed in the same way which resulted in a decrease of 
genomic DNA methylation status [65]. CdTe (cadmium 
telluride) QDs can bind to core histones and the posi- 
tively charged histones can change the charge and the 
size of negatively charged QDs which in turn cause an 
increase in nanoparticle size from 4 to 150 nm and in the  
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NPs charge from −28.9 mV to +15 mV and stimulate 
aggregate formation [66]. Furthermore, cadmium tellu- 
ride QDs in low concentrations are considered as epige- 
netic activators of oncogene expression. In QDs-treated 
human breast cancer cells, two epigenetic changes have 
been observed: histone 3 hypoacetylation and chromatin 
decondensation leading to reduction in global gene tran- 
scription especially for anti-apoptotic genes. Moreover, 
an increase in p53 protein level by its activation via 
phosphorylation, nucleus and mitochondria translocation 
and in turn cell death was recorded in QDs-treated cells 
[67]. All together, it suggests that histone deacetylases 
(HDAC) could be potentially used as anticancer thera- 
peutics. Cholesterylbutyrate solid lipid nanoparticles 
releasing butyric acid have been already shown to act as 
histone deacetylase inhibitors (HDACIs) [68]. Also, K- 
182 HDACI-coated cationic nanoparticles resulted in an 
increase in gene expression and core histone hyperacety- 
lation [69]. AuNPs were found to decrease histone dea- 
cetylase activity by binding to sulfhydryl groups on the 
surface of histone deacetylase 8 [70]. Additionally, nitric 
oxide (NO) has been found as an important regulator of 
epigenetic changes. NO induces S-nitrosylation of his-
tone deacetylase 2, which leads to chromatin remodeling 
and significant inhibition of histone deacetylase activity 
[71]. Nitric oxide-releasing silica NPs have been success- 
fully used for skin and soft tissue infection treatment [72] 
which suggests that in future, NO-releasing NPs might be 
commonly used as histone deacetylase inhibitors for 
epigenetic treatment of cancer. 

5. Conclusion and Future Remarks 

Nanoparticles are ubiquitous in the environment and are 
widely used in medical science (bioimaging, diagnosis 
and drug therapy delivery). Moreover, their effectiveness 
in cancer treatment was repeatedly reported. Due to uni- 
que physicochemical properties, they are able to cross 
many barriers, which is not possible for traditional drugs. 
Nevertheless, exposure to NPs and their following inter- 
actions with organelles and macromolecules can result in 
negative effects on cells, especially they can induce cy-
totoxicity and cell death. NPs toxicity can be considered 
useful for cancer therapy, but simultaneously it seems 
harmful for non-cancer cells. Recent studies also show 
that nanoparticles can cause epigenetic and genomic 
changes which may stimulate cancer progression. “Nano- 
epigenetics” and “nano-toxicity” are promising and rap- 
idly developing fields in nanoscience and their future 
achievements might contribute to the development of 
nanoparticles of limited toxicity and side-effects. 
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