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ABSTRACT 

It is shown in the first part of this paper that a combined model comprising ordinary and quintessential matter can sup-
port a traversable wormhole in Einstein-Maxwell gravity. Since the solution allows zero tidal forces, the wormhole is 
suitable for a humanoid traveler. The second part of the paper shows that the electric field can be eliminated (Einstein 
gravity), but only by tolerating enormous tidal forces. Such a wormhole would still be capable of transmitting signals. 
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1. Introduction 

Traversable wormholes, first conjectured by Morris and 
Thorne [1], are handles or tunnels in the spacetime to- 
pology connecting different regions of our Universe or of 
different universes altogether. Interest in traversable 
wormholes has increased in recent years due to an unex- 
pected development, the discovery that our Universe is 
undergoing an accelerated expansion [2,3]. This accel-
eration is due to the presence of dark energy, a kind of 
negative pressure, implying that  in the Friedmann  0a 

equation  3
3

p 4π
a a  

p w

. In the equation of state  

 , the range of values 1 1 3w   
0a 

w

1
0p

 results in 
. This range is referred to as quintessence dark 

energy. Smaller values of  are also of interest. Thus 
 corresponds to Einstein’s cosmological constant 

[4]. The case  is referred to as phantom energy 
[5-10]. Here we have 

1w  
w  

  

     2 2 2 2 2 2 2e e sin ,r rds dt dr r d d

, in violation of the null 
energy condition. As a result, phantom energy could, in 
principle, support wormholes and thereby cause them to 
occur naturally. 

Sections 2-4 discuss a combined model of quintes-
sence matter and ordinary matter that could support a 
wormhole in Einstein-Maxwell gravity, once again sug-
gesting that such wormholes could occur naturally. The 
theoretical construction by an advanced civilization is 
also an inviting prospect since the model allows the as-
sumption of zero tidal forces. Section 4 considers the 
effect of eliminating the electric field. A wormhole solu-
tion can still be obtained but only by introducing a red-

shift function that results in enormous radial tidal forces, 
suggesting that some black holes may actually be worm-
holes fitting the conditions discussed in this paper and so 
may be capable of transmitting signals, a possibility that 
can in principle be tested. 

2. The Model 

Our starting point for a static spherically symmetric worm- 
hole is the line element 

       

   

 (1) 

 where e 1 1r b r r    r

 r  

 b r r r r

.  Here b b  is the  

shape function and  is the redshift function, 
which must be everywhere finite to prevent an event ho-
rizon. For the shape function, 0 0 , where 0  
is the radius of the throat of the wormhole. Another re-
quirement is the flare-out condition, 0  (in con- 
junction with 

  1b r 
 b r r ), since it indicates a violation of 

the weak energy condition, a primary prerequisite for the 
existence of wormholes [1]. 

In this paper the model proposed for supporting the 
wormhole consists of a quintessence field and a second 
field with (possibly) anisotropic pressure representing 
normal matter. Here the Einstein field equations take on 
the following form (assuming ): 1c 

 8π ,G G T              (2) 

where   is the energy momentum tensor of the quin- 
tessence-like field, which is characterized by a free pa- 
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rameter q  such that w 1 1 3w   

,q

q . Following Kise- 
lev [11], the components of this tensor satisfy the fol-
lowing conditions: 

t r
t r 

 
 

                     (3) 

 3 1q qw
1

2
 
  .    

 r tp p 

           (4) 

Furthermore, the most general energy momentum ten- 
sor compatible with spherically symmetry is 

 t tT p u u p g 
        




1u u  

E

     (5) 

with  . The Einstein-Maxwell field equations 
for the above metric corresponding to a field consisting 
of a combined model comprising ordinary and quintes-
sential matter are stated next [12,13]. Here  is the 
electric field strength,   the electric charge density, 
and  the electric charge.  q

28π ,qG G E  
2 2

1 1
e 8π

r r r
     
 

    (6) 

28π ,r qG E 
2 2

1 1
e 8πGp

r r r
     
 

    (7) 

   

 

21 1 1
e

2 2 2

1
8π 3 1

2t q qG p w 

       

    
 

2

1

,

r

E

      
 


    (8) 

 2 2 24π er   .                        (9) r E

Equation (9) can also be expressed in the form  

     2 2
2 2

1
e d ,

r q r
r

r r
  

 q r
r

, 0 1.p m m

0
4πE r r       (10) 

where  is the total charge on the sphere of radius 
. 

3. Solutions 

We assume that for the normal-matter field we have the 
following equation of state for the radial pressure [14]:  

r   

, 0 1.p n n

            (11) 

For the lateral pressure we assume the equation of 
state  

t   

tp
m n

             (12) 

Generally,  is not equal to , unless, of course, 
. 

rp

Following Ref. [14], the factor 2e  is assumed to 

have the form 0
sr , where s  is an arbitrary constant 

and 0  is the charge density at . As a result, 0r 

 
1

0 ,
3

sr

s




4πE r 


               (13) 

2 2
2 2 2

0 2
16π ,

3

sr
E r

s







 
 

           (14) 

and 
2 6

2 2 2
0 2

16π .
3

sr
q r

s







            (15) 

The next step is to obtain the shape function b r

 e r

πG

 by 
deriving a differential equation that can be solved for 

. The easiest way to accomplish this is to solve 
Equation (6) for 8   and substituting the resulting 
expression in Equation (7), which, in turn, is solved for 

q8πG . After substituting this expression in Equation (8) 
and making use of Equations (11) and (12), we obtain the 
simplified form  

  2e
e .rE

r r

  


              (16) 

 ,  , and Here   are dimensionless quantities 
given by the following:  

     
,

1 1 1
3 1 1 1

2 4 2qw m m n m r







 (17) 
      

 

where 

 

   

 22 2

1
= 1 3 1

2
1

3 1 1
2

1 1 1
,

4 2 2

q

q

n r m w

w r m

r r r

     

     

       

 

     

1
3 1

2
1 1 1

3 1 1 1
2 4 2

q

q

w

w m m n m r






 (18) 

      

and  

 

     

1
1 3 1

2
1 1 1

3 1 1 1
2 4 2

q

q

w

w m m n m r


 



.

     
 (19) 



Equation (16) is linear and would readily yield an ex-
act solution provided that   and   are constants. 
This can only happen if  r  for some constant    . 
In the first part of this paper we will assume that 0  , 
leading to the zero-tidal-force solution [1]. Whether oc-
curring naturally or constructed by an advanced civiliza-
tion, such a wormhole would be suitable for humanoid 
travelers. 

Returning to Equation (16) and using Equation (14), 
the integrating factor lne r r   yields the solution  
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 
   

2 4
2 2

0 2
e 16π

3 2

s

s s
,

4

r C

r
  



  

  




C
 

  (20) 

where  is an integration constant. From 
e 1 b r r   in Section 2, we obtain the shape function 

 

 
   

2 4
2 2

0 21 16π
3 2

s

b r

r
s s

  




  
 

.
4

r C

r

 
 

  

e C

 (21) 

4. Wormhole Structure 

In Equation (20), C  is an integration constant. So 
mathematically,  is a solution for every , leading 
to  in Equation (21). Physically, however,  b r  b r  
is going to satisfy the requirements of a shape function 
only for a range of values of . This problem can best 
be approached graphically by assigning some typical 
values to the various parameters and adjusting the value 
of , as exemplified by Figure 1. First observe that if 

C

C
0  , then   . For the given values 2 3wq  

1
, 

, , 0.5m  0.5n  0 

2.6 1.750.19 .r

0

   B r b r r 
B r

, and , a suitable 
value for  is , as we will see. Substituting in 
Equation (21), we obtain  

3.8 s
C 0.19

  127.62b r r

r r

       (22) 

To locate the throat  of the wormhole, we de-
fine the function  and determine where 

 intersects the   r -axis, as shown in Figure 2. Ob-
serve that Figure 2 indicates that for 0 , r  r   0B r  , 
so that  for 0 , an essential requirement 
for a shape function. Furthermore,  is a decreasing 
function near 0 ; so , which implies that 

, the flare-out condition. With the flare-out 
condition now satisfied, the shape function has produced 
the desired wormhole structure. For completeness let us  

 b r  r

r r
 0 1

r r

 B r
 B r

0
b r
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q
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0
=1, s=−3.8, C=−0.19

b(
r)

r  

Figure 1. The shape function. 

 

   Figure 2.  B r b r r r intersects the -axis at r r0

0 5.143r

. 

 
note that   and 0 . (Suitable cho- 
ices for  corresponding to other parameters will be 
discussed at the end of the section). 

  0.223b r 
C

r rTo the right of 0 ,  keeps rising, but at  b r
6.6r   , b r  is still less than unity. So at 1 6.6r  , 

the interior shape function, Equation (22), can be joined 
smoothly to the exterior function  

  5.123 7.054.extb r r   

To check this statement, observe that  

   6.6 6.6 6.107,int extb b   

while  

   6.6 6.6 0.997.int extb b  

r r

 

 To the right of 1 , 0b r r  r  as , so 
that after adjusting the constant redshift function, the 
wormhole spacetime is asymptotically flat. (The compo-
nents ˆ ˆg

 and ˆ ˆg  are already continuous for the exte-
rior and interior components, respectively [15-17]). 

Returning to Equation (21), an example of an ani- 
sotropic case is 0.6m  , , 0.3n  2 3qw   1, 0  , 
and 3.8s   C 0.12; a suitable choice for  is . The 
result is  

  2.6 2160.92 0.12 .b r r r 

5.58r

 

Here 0  and   0.48b r 
w

0.8qw

0

An example of a value of q  closer to −1, the lower 
end of the quintessence range, is the following: 

. 

 0.5m n,  1, 0    3.5s  
0.04C

, and . Letting 
 , the shape function is 

  2 13 6429.52 0.04 .b r r r 

0 10.32r

 

  and b r .  0 0.53 This time 
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 0 1b r5. Could the Electric Field Be Eliminated? 

The purpose of this section is to study conditions under 
which a combined model of quintessential and ordinary 
matter may be sufficient without the electric field . E

EIf  is eliminated, then the assumption of zero tidal 
forces becomes too restrictive. So we assume that 

r   for some nonzero constant  . This, in turn, 
means that  

1e .A r                     (23) 

Now Equation (16) yields  

2e .
A

r



                  (24) 

Both 1A  and 2A  are positive integration constants. 
(The reason that 2A  has to be positive is that   is 
close to zero whenever  is close to qw 1 3 );   and 
  now become (for 0  )  

     

   

2

3 1 1
2 4 2

1 1
3 1 1

4 2 2

q q

q

n m

w m n m

 




      
       

1 1
3w w 1 

 (25) 

and  

 

   

1

1 1
3 1 1

4 2 2

q

q

w

w m n m







       

3 1
2 .     (26) 

The last two equations are similar to those in Ref. [12], 
which deals with galactic rotation curves. 

As noted in Section 2, the shape function  b b r
 e r

 is 
obtained from , so that  

     21 .
A

r



   
 

0r

1 e rb r r r  

 0b r 

      (27) 

To meet the condition , we must have  

2

0

1 1.
A

r



    

Solving for , we obtain the radius of the throat:  0r
1

0 2 .r A





 
  
 

             (28) 

Since 2 0A  ,   and   must have opposite signs. 
From    21b r A rr     , we have  

   0 2 01A r1b r  


     

and, after substituting Equation (28), 

 

which simplifies to   
0

. It follows immedi-
ately that if 

 0 21 1b r A   
2

,
A

 
 

 
  

 
 

  , then 0 , so that the flare-out 
condition cannot be met. To get a value for 

  1b r 
  between 

0 and 1, the exponent   in the redshift function, Equa-
tion (23), has to be negative and sufficiently large in ab-
solute value. Such a value will cause   to be negative, 
which can best be seen from a simple numerical example: 
for convenience, let us choose 1 , the lower end 
of the quintessence range, and 0.1 . Then we 
must 6

 qw  
 m n

have    . The result is a large positive num- 
erator in Equation (25) because the last term is positive 
and 2 4  is large. S  o   and   have opposite signs, 
as expected. (Observe that for the isotropic case, if 

q 1w  , then the values of   and    are independent 
of  and ). m n

2 1AContinuing the numerical example, if we let   
and 7 0.8, then  , 14.6  , and   

  15.61.055 .b r r r 

0 0.820r

 

 , while  From Equation (28), 

 0 1 0.2b r     . 

 b r 0  is independent of 2As we have seen, A . So 
we are free to choose a smaller value in Equation (28) to 
obtain a larger throat size. 

We conclude that we can readily find an interior 
wormhole solution around 0  without , provided 
that we are willing to choose a sufficiently large (and 
negative) value for 

r r E

 , resulting in what may be called 
an unpalatable shape function: 1ln lnA r   . At the 
throat, 0 , which indicates the presence of an 
enormous radial tidal force, even for large throat sizes. 
(Recall that from Ref. [1], to meet the tidal constraint, we  

r 

must have roughly   2810 m


 

 b r r

1w

. Such a wormhole 

would not be suitable for a humanoid traveler, but it may 
still be useful for sending probes or for transmitting sig-
nals. 

The enormous tidal force is actually comparable to 
that of a solar-mass black hole of radius 2.9 km near the 
event horizon, making the solution physically plausible: 
since we have complete control over 0  and 0 , we 
are not only able to satisfy the flare-out condition but we 
can place the throat wherever we wish. Moreover, the 
assumption q  

m n

 is equivalent to Einstein’s cosmo-
logical constant, the best model for dark energy [18]. 
Also physically desirable is the assumption of isotropic 
pressure, i.e.,   in the respective equations of state. 
As we have seen, in the isotropic case our conclusions 
are independent of  and . So by placing the throat 
just outside the event horizon of a suitable black hole, it 
is possible in principle to construct a “transmission sta-
tion” for transmitting signals to a distant advanced civi-
lization and, conversely, receiving them. If such a 

m n
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 e r

wormhole were to exist, it would be indistinguishable 
from a black hole at a distance. This suggests a possibil-
ity in the opposite direction: A black hole could con-
ceivably be a wormhole fitting our description. The easi-
est way to test this hypothesis is to listen for signals, arti-
ficial or natural, emanating from a (presumptive) black 
hole. 

6. Conclusions 

This paper discusses a class of wormholes supported by a 
combined model consisting of quintessential matter and 
ordinary matter, first in Einstein-Maxwell gravity and 
then in Einstein gravity, that is, in the absence of an 
electric field. To obtain an exact solution, it was neces- 
sary to assume that the redshift function has the form 

1A r   for some constant  . In the Einstein-Max- 
well case, this constant could be taken as zero, thereby 
producing a zero-tidal-force solution, which, in turn, 
would make the wormhole traversable for humanoid 
travelers. Without the electric field , the exponent E   
has to be nonzero and leads to a less desirable solution 
with large tidal forces. Concerning the exact solution, it 
is shown in Ref. [19] that the existence of an exact solu-
tion implies the existence of a large set of additional so-
lutions, suggesting that wormholes of the type discussed 
in this paper could occur naturally. 

It is argued briefly in the Einstein case with a quintes-
sential-dark-energy background that some black holes 
may actually be wormholes with enormous tidal forces, a 
hypothesis that may be testable. 
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