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ABSTRACT

It is shown in the first part of this paper that a combined model comprising ordinary and quintessential matter can sup-
port a traversable wormhole in Einstein-Maxwell gravity. Since the solution allows zero tidal forces, the wormhole is
suitable for a humanoid traveler. The second part of the paper shows that the electric field can be eliminated (Einstein
gravity), but only by tolerating enormous tidal forces. Such a wormhole would still be capable of transmitting signals.
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1. Introduction

Traversable wormholes, first conjectured by Morris and
Thorne [1], are handles or tunnels in the spacetime to-
pology connecting different regions of our Universe or of
different universes altogether. Interest in traversable
wormholes has increased in recent years due to an unex-
pected development, the discovery that our Universe is
undergoing an accelerated expansion [2,3]. This accel-
eration is due to the presence of dark energy, a kind of
negative pressure, implying that & >0 in the Friedmann

. . 4 .
equation &/a= _?n( p+3p). In the equation of state

p=Wwp, the range of values —1<w<-1/3 results in
4> 0. This range is referred to as quintessence dark
energy. Smaller values of w are also of interest. Thus
w=—1 corresponds to Einstein’s cosmological constant
[4]. The case w<—1 is referred to as phantom energy
[5-10]. Here we have p+ p <0, in violation of the null
energy condition. As a result, phantom energy could, in
principle, support wormholes and thereby cause them to
occur naturally.

Sections 2-4 discuss a combined model of quintes-
sence matter and ordinary matter that could support a
wormhole in Einstein-Maxwell gravity, once again sug-
gesting that such wormholes could occur naturally. The
theoretical construction by an advanced civilization is
also an inviting prospect since the model allows the as-
sumption of zero tidal forces. Section 4 considers the
effect of eliminating the electric field. A wormhole solu-
tion can still be obtained but only by introducing a red-
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shift function that results in enormous radial tidal forces,
suggesting that some black holes may actually be worm-
holes fitting the conditions discussed in this paper and so
may be capable of transmitting signals, a possibility that
can in principle be tested.

2. The Model

Our starting point for a static spherically symmetric worm-
hole is the line element

ds? = —e®dt? + e*dr? 4+ r2 (d 0* +sin’0d ¢’ ), (1)

where eA(r):l/(l—b(r)/r). Here b=b(r) is the

shape function and ® =®(r) is the redshift function,
which must be everywhere finite to prevent an event ho-
rizon. For the shape function, b(r,)=r,, where r=r,
is the radius of the throat of the wormhole. Another re-
quirement is the flare-out condition, b’(ry)<1 (in con-
junction with b(r)<r), since it indicates a violation of
the weak energy condition, a primary prerequisite for the
existence of wormholes [1].

In this paper the model proposed for supporting the
wormhole consists of a quintessence field and a second
field with (possibly) anisotropic pressure representing
normal matter. Here the Einstein field equations take on
the following form (assuming c=1):

G,, =81G(T,, +7,,). Q)

where 7, is the energy momentum tensor of the quin-

tessence-like field, which is characterized by a free pa-
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rameter W, such that —1<w, < —1/3. Following Kise-
lev [11], the components of this tensor satisfy the fol-
lowing conditions:

Ttt :Trr ="Py> (3)
1
70 =19 :E(3wq +1) 9y ()

Furthermore, the most general energy momentum ten-
sor compatible with spherically symmetry is

T/ =(p+p)uu, - pgs +(p, - P )& S, Q)

with u“u, =-1. The Einstein-Maxwell field equations
for the above metric corresponding to a field consisting
of a combined model comprising ordinary and quintes-
sential matter are stated next [12,13]. Here E is the
electric field strength, o the electric charge density,
and g the electric charge.

eA(A_izj+L2:8nGp+8nqu+Ez, (6)
r r r

af@ 1) 1
e A(T+r—2j_r_z=8n6pr —8nGp, —E7, )

Len (l(qff +q>"—lA'cD'+l(<1>'—A’)j
2 2 2 r
. ®
:8nG(pt +5(3wq +1)qu+ E?,
(FPE) =4nrioe . )
Equation (9) can also be expressed in the form
L , q(r)
E(r):r—2j04n(r)2 oedr =5 (10)

where q(r) is the total charge on the sphere of radius
r.

3. Solutions

We assume that for the normal-matter field we have the
following equation of state for the radial pressure [14]:

p,=mp, 0<m<l. (11)

For the lateral pressure we assume the equation of
state

p,=np, 0<n<l. (12)

Generally, p, is not equal to p,, unless, of course,
m=n.

Following Ref. [14], the factor oe*”* is assumed to
have the form o,r®, where s is an arbitrary constant
and o, isthe charge density at r =0. As a result,

s+1

E(r)=4no, (13)

s+3’
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25+2

E*(r)=16n’c;, (14)

(s+3)

and

25+6
r

(s+3)2 '

The next step is to obtain the shape function b(r) by
deriving a differential equation that can be solved for
e ™ The casiest way to accomplish this is to solve
Equation (6) for 8aGp and substituting the resulting
expression in Equation (7), which, in turn, is solved for
8nG p, . After substituting this expression in Equation (8)
and making use of Equations (11) and (12), we obtain the
simplified form

q*(r)=16n’c;, (15)

, —A
(e*) el Py (16)
r r

Here o, [, and y are dimensionless quantities
given by the following:

5

(24
a= , (17)
l(3w +1)m/(m+1)+n/(m+1)+lrc1>’+l
2V 4 2

where
a =—nd)’r/(m+1)+%<3wq+l)
1 ,
+5(3wq+1)<1> r/(m+1)
+r? l(cI)’)2 +lr2q)”+erD',
4 2 2
1
5(3Wq +1)
p= I I I (18)
E(3WU|+1)m/(m+1)+n/(m+l)+zrtl) +E
and

1
i 1—5<3wq+1) )
=7 1
E(3Wq+1)m/(m+1)+n/(m+1)+zrc1>+E

Equation (16) is linear and would readily yield an ex-
act solution provided that o« and f are constants.
This can only happen if ®'=7/r for some constant 7.
In the first part of this paper we will assume that 7=0,
leading to the zero-tidal-force solution [1]. Whether oc-
curring naturally or constructed by an advanced civiliza-
tion, such a wormhole would be suitable for humanoid
travelers.

Returning to Equation (16) and using Equation (14),
the integrating factor e“"" =r“ yields the solution
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25+4
N (o) pa— +S o
a (s+3) (2s+4+a) T

where C is an integration constant. From
¢ =1-b(r)/r inSection 2, we obtain the shape function

b(r)

2s5+4 21

=r l—g—y(l6nza§) Zr —% . D
(s+3) (2s+4+a) T

4. \Wormbhole Structure

In Equation (20), C is an integration constant. So
mathematically, e is a solution for every C, leading
to b(r) in Equation (21). Physically, however, b(r)
is going to satisfy the requirements of a shape function
only for a range of values of C . This problem can best
be approached graphically by assigning some typical
values to the various parameters and adjusting the value
of C, as exemplified by Figure 1. First observe that if
n=0, then a=p. For the given values w, =-2/3,
m=05, n=05, o,=1, and s=-3.8, a suitable
value for C is —0.19, as we will see. Substituting in
Equation (21), we obtain

b(r)=127.62r>°+0.19r""™. (22)

To locate the throat r =r, of the wormhole, we de-
fine the function B(r)=b(r)—r and determine where
B(r) intersects the I -axis, as shown in Figure 2. Ob-
serve that Figure 2 indicates that for r>r,, B(r)<o0,
so that b(r)<r for r>r,, an essential requirement
for a shape function. Furthermore, B(r) is a decreasing
function near r=r;; so B'(r)<0, which implies that
b'(r,) <1, the flare-out condition. With the flare-out
condition now satisfied, the shape function has produced
the desired wormhole structure. For completeness let us

Wq=—2/3, m=0.5, n=0.5, GO=1, s=-3.8, C=-0.19

6.4

6.2

58

b(r)

5.6

5.4r

521

r

Figure 1. The shape function.
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Wq:—2/3, m=0.5,n=0.5, oc,=1,5=-3.8,(=-0.19
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Figure 2. B(r)=b(r)—r intersectsthe r-axisat r=r,.

note that r, =5.143 and b’(r,)=0.223 . (Suitable cho-
ices for C corresponding to other parameters will be
discussed at the end of the section).

To the right of r=r,, b(r) keeps rising, but at
r=6.6, b’(r) is still less than unity. So at I, =6.6,
the interior shape function, Equation (22), can be joined
smoothly to the exterior function

by (F)=5.123vr —~7.054.
To check this statement, observe that
by (6.6) =b, (6.6) =6.107,
while
by, (6.6) =b;

ext

(6.6)=0.997.

To the right of r=r, b(r)/r—>0 as r—w, so
that after adjusting the constant redshift function, the
wormhole spacetime is asymptotically flat. (The compo-
nents g, and g j; are already continuous for the exte-
rior and interior components, respectively [15-17]).

Returning to Equation (21), an example of an ani-
sotropic case is m=0.6, n=0.3, w, =-2/3, ¢, =1,
and s=-3.8; a suitable choice for C is —0.12. The
result is

b(r)=160.92r>¢ +0.12r%.
Here r,=5.58 and b'(r,)=0.48.
An example of a value of w, closer to —1, the lower
end of the quintessence range, is the following:

w, =-08, m=n=0.5, o,=1,and s=-3.5. Letting
C =-0.04, the shape function is

b(r)=429.52r7 +0.04r"%°.
This time r,=10.32 and b'(r,)=0.53.
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5. Could the Electric Field Be Eliminated?

The purpose of this section is to study conditions under
which a combined model of quintessential and ordinary
matter may be sufficient without the electric field E .

If E is eliminated, then the assumption of zero tidal
forces becomes too restrictive. So we assume that
®'=n/r for some nonzero constant 7. This, in turn,
means that

e’ =Ar". (23)
Now Equation (16) yields
e = s + % (24)
a r

Both A and A, are positive integration constants.
(The reason that A, has to be positive is that £ is
close to zero whenever w, is close to —1/3); & and
L now become (for 7 #0)

%(3Wq +1)+71:+77|:;(3Wq +l)—n}/(m+1)
Z+;+B(3wq +1)m+n}/(m+1)

a =

(25)

and

%(3Wq +l)

Z+;+B(3Wq +1)m+n}/(m+1).

The last two equations are similar to those in Ref. [12],
which deals with galactic rotation curves.

As noted in Section 2, the shape function b=b(r) is
obtained from e (", so that

e[ B A
b(r)_r(l e )_r(l r“j' 27

a

p=

(26)

To meet the condition b(r,)=r,, we must have

LA

a ry
Solving for 1, we obtain the radius of the throat:

la
. = _x ] 28
r ( ﬁAzj 29

Since A, >0, a and £ must have opposite signs.

From b(r)= r(l—ﬂ/a—AZ/r”’) , we have
b'(ry) =1—§—A2(1—a)r0‘“
and, after substituting Equation (28),

w(0)-1-L- (-0 -

a aA,
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which simplifies to b'(ry)=1-4. It follows immedi-
ately that if <0, then b'(r,)>1, so that the flare-out
condition cannot be met. To get a value for S between
0 and 1, the exponent 7 in the redshift function, Equa-
tion (23), has to be negative and sufficiently large in ab-
solute value. Such a value will cause o to be negative,
which can best be seen from a simple numerical example:
for convenience, let us choose w, =-1, the lower end
of the quintessence range, and m=n=0.1. Then we
must have 7 <—6. The result is a large positive num-
erator in Equation (25) because the last term is positive
and 7’ /4 is large. So a and S have opposite signs,
as expected. (Observe that for the isotropic case, if
W, =—1, then the values of « and S are independent
of m and n).
Continuing the numerical example, if we let A =1

and n=-7,then f=0.8, a=-14.6,and

b(r)=1.055r—r"°,
From Equation (28), r, =0.820, while
b'(r,)=1-4=02.

As we have seen, b'(r)) is independent of A,. So
we are free to choose a smaller value in Equation (28) to
obtain a larger throat size.

We conclude that we can readily find an interior
wormhole solution around r=r, without E, provided
that we are willing to choose a sufficiently large (and
negative) value for 7, resulting in what may be called
an unpalatable shape function: @ =InA +7lnr . At the
throat, |®'|=|n/r,|, which indicates the presence of an
enormous radial tidal force, even for large throat sizes.
(Recall that from Ref. [1], to meet the tidal constraint, we

must have roughly |<1)’|<(108m)72. Such a wormhole

would not be suitable for a humanoid traveler, but it may
still be useful for sending probes or for transmitting sig-
nals.

The enormous tidal force is actually comparable to
that of a solar-mass black hole of radius 2.9 km near the
event horizon, making the solution physically plausible:
since we have complete control over b'(r)) and r,, we
are not only able to satisfy the flare-out condition but we
can place the throat wherever we wish. Moreover, the
assumption W, =—1 is equivalent to Einstein’s cosmo-
logical constant, the best model for dark energy [18].
Also physically desirable is the assumption of isotropic
pressure, i.e., m=n in the respective equations of state.
As we have seen, in the isotropic case our conclusions
are independent of m and n. So by placing the throat
just outside the event horizon of a suitable black hole, it
is possible in principle to construct a “transmission sta-
tion” for transmitting signals to a distant advanced civi-
lization and, conversely, receiving them. If such a

JMP



34 P. K. F. KUHFITTIG

wormhole were to exist, it would be indistinguishable
from a black hole at a distance. This suggests a possibil-
ity in the opposite direction: A black hole could con-
ceivably be a wormhole fitting our description. The easi-
est way to test this hypothesis is to listen for signals, arti-
ficial or natural, emanating from a (presumptive) black
hole.

6. Conclusions

This paper discusses a class of wormholes supported by a
combined model consisting of quintessential matter and
ordinary matter, first in Einstein-Maxwell gravity and
then in Einstein gravity, that is, in the absence of an
electric field. To obtain an exact solution, it was neces-
sa?/ to assume that the redshift function has the form
e = Ar7 for some constant 7. In the Einstein-Max-
well case, this constant could be taken as zero, thereby
producing a zero-tidal-force solution, which, in turn,
would make the wormhole traversable for humanoid
travelers. Without the electric field E, the exponent 7
has to be nonzero and leads to a less desirable solution
with large tidal forces. Concerning the exact solution, it
is shown in Ref. [19] that the existence of an exact solu-
tion implies the existence of a large set of additional so-
lutions, suggesting that wormholes of the type discussed
in this paper could occur naturally.

It is argued briefly in the Einstein case with a quintes-
sential-dark-energy background that some black holes
may actually be wormholes with enormous tidal forces, a
hypothesis that may be testable.
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