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ABSTRACT 

In this paper, a theoretical treatment of the stability behavior of the zero solution of nonlinear damped oscillator in the 
vectorial case is investigated. We study the sufficient conditions for the boundedness of solution of the nonlinear 
damped vectorial oscillator and the conditions for the stability of the zero solution to be uniformly stable as well as as- 
ymptotically stable. 
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1. Introduction 

We consider the nonlinear second order vectorial differ- 
ential equation of the form  

     2 ,f t t t   x x x g x 0

.R

       (1) 

where; 
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t R R R f t t R



 

  

  

x

g x
 

Stability problems for the second order ordinary differ- 
ential equation has been intensively and widely studied 
[1-5]. Based on Schauder fixed point theorem T. A. Bur- 
ton and T. Furumochi [2] introduced a new method to 
study the stability of the zero solution for Equation (1). 
This problem is considered also by Gheorghe Morosanu 
and Cristian Vladimirescu [5,6]. In [6], they used rela- 
tively classical arguments to prove the stability of the 
zero solution of Equation (1). While in [5], they obtained 
new stability results for this ordinary differential equa- 
tion under more general assumptions. Their approach al- 
lows extensions to both the vector case and the case of 
the whole real line. In [7] the dynamics of various oscil- 
lators had been studied. 

2. The Main Results 

In the next theorem we state sufficient conations for the 
boundedness of the solution of Equation (1) are given. 

Theorem 1 
If the following hypotheses are hold: 
1)    1f t C R  and   0, 0f t t   . 

2)    1 ,t C R     is decreasing and   1t  , 
t R  . 
3)  nR,nC R R g  and g is locally Lipschit- zian 

in  1, , nx x , 
4) g satisfies the following estimate  
     ,t f t og x x , , where t R    denotes 

some norm in . then the solution of Equation (1) is 
bounded. 

nR

Proof  
For the n-dimensional system, we have 
 T

1 2 1 2, , , , , , , m
n nx x x y y y R  z , where m = 2n. 

Applying the transformation,  i i iy x f t x   and 
1, 2, ,i n   Equation (1) can be converted into a first 

order system of differential equations of the form: 

     , A t B t t   z z z r z            (2) 

where 

1)      
   

1 2

3 4

A t A t
A t

A t A t

 
  
 

 and  are 

m × m matrices. 

   1

0 0

0
B t

B t

 
  
 

2)      1 4A t A t f t I   ,  2A t I ,  
   3A t t I  , and    2f t f     t I1B t

0n n

 are n × 
n matrices. Note that,   and I are the zero and the 
identity matrices, respectively. 

3)       T

1, 0 , ,nt g t g t     r x x x  

 
10

,
n

t
 

 
 


g x

 

which is a 2m 1  vector. 
For , 1, 2, ,i j n  , let  is an arbitrary fixed 

and let 
0 0t 
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                   (3) 

 
be a fundamental matrix solution to the linear system: 

 A t z z                 (4) 

which equal to the identity matrix for . 0

Consider  with 
t t

0 0z 0z  small enough,  and 

let us denote by 

0 0t 

 0 0, ,t tz z

0z
 the unique solution of Equa- 

tion (2) which equal to 


 at . By hypotheses (1)  0t t
and (2),  0z0, ,t tz  is defined on a maximal right inter-  

val,  0 ,t l , and satisfies the following integral equation: 
 

              
0

1
0 0 0 0 0 0 0 0 0 0, , , , , , , , , , d

t

t

t t Z t t Z t t Z s t B s s t s s t s     z z z z z r z z  

This gives us the following integral inequality: 

              
0

1
0 0 0 0 0 0 0 0 0 0, , , , , e , , , , , d

t

t

t t Z t t Z t t Z s t B s s t s s t s     z z z z z r z z          (5) 

 
where .  T0 1 0e   

Equations (3) and (4) give us the following differential 
equations: 

 , ,i j i j n i jz f t z z     ,

,

, 

,

             (6) 

   , ,n i j i j n i jz t z f t z               (7) 

 , ,i n j i n j n i n jz f t z z                (8) 

   , ,n i n j i n j n i n jz t z f t z                (9)  

for . , 1, 2, ,i j n 

 Since  is a decreasing function, so Equations (6) 
and (7) lead to: 

t

     2 2 2 2
, , , ,

1

2 i j n i j i j n i jt z z f t t z z  
       

   
 

0

2 d
2 2
, , 0 e

t

t

f u u

i j n i jt z z t 





        (10) 

By the same way we can obtain from Equations (8) 
and (9) the following: 

 
 

0

2 d
2 2
, , e

t

t

f u u

i n j n i n jt z z


  


        (11) 

For  T

1 2 1 2, , , , , , , m
n nx x x y y y R  z , consider 

the norm 2

1

m

i
i

z


 z , where   is the norm defined 

in . mR

  
For  T

0 01 02 0 01 02 0, , , , , , , m
n nx x x y y y R  z  we 

have: 
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satisfies (4), then we get:   Using Shwartz inequality, Minkowski inequality [8] and 

suitable assumptions lead to: 

   
 

0

2 d

0 0 0 0, 3 1e

t

t

f u u

Z t t n t
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 z z     (12) 

We have also:  

0 0t s t     
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Since 

2 , ,
m

t s t 

 t  is a decreasing function of , we get:   t
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           2 2 2 2
0 0 0 0, , , , , , , , e S

 2 d
t

f u u 

i n i i n it t s t t s t s s s t s s t              
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     
 d

1
0 0 0, , e

t

S

f u u
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




                                (13) 

As mentioned the system satisfies the integral inequality (5), then inequalities (12) and (13) give  
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For all t we can replace g by another function say g 

defined as follows. By hypothesis (4) it follows that there 
exists a 

z z g x    (14) 

0   such that if x , then  

     ,t f t og x x  

We defined the function  by: : n nR R R  g
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, if
,
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g t
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
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 
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 

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
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g x

x x
 

and we h x , t  0 . 
ry , xIt is clear that for eve R t R   n

     ,t g x f t o x  

is of class and is locally Lipschitzian g  
in 

 nC R R   
 n1 2, , ,x x x

ginal function
. So, we w

 g satisfies 
 

ill admit from now that the 
all the properties of the ori g . 

Since 1f C R  we get from inequality (14) that: 

   
 

 

0
0 0 0 0, , 3 1e

t

t

f u

t

t t n t

D


 

 

 
0

0 0, , d
t

s t s

du

z z z
 

 u
g  

z z

 0 ,t t l  , with positive constant D [9,10]. This gives s 
the followin

     0 0 0 0 0, , 3 1 , ,Dht t n t e t t l   z z z   (15) 

Thus  0 0, ,t tz z as well as  0 0, ,t tz z  are bounded  

on  and so  0 ,t l  0 0, ,t tz z  can be extended to the  

right of l. This contradicts the maximality of l. This 
means that the solution of Equation (1) is bo nded. The 
proof of theorem 1 is complete. 

Theorem 2 
If the hypotheses of theorem 1 are hold and

lowing assumption is satisfied: 
1) There exist two constants  such that: 

 
u

 the fol- 

, 0h k 

       2 ,f t f t kf t t h       

then the zero solution of Equation (1) is uniformly stable 
solution.  

If in addition  


2)  
0

df t t    holds, th zero solution en the of  

Equation (1) is asymptotically stable. 
Proof  

n 
Our stability question is reduced to the stability of the 

zero solutio   0t z  
 will be divided into two intervals. In the 

to the system (2). The interval of 
t first interval 
we have  0 ,t t h   and in the second interval  ,t h  . 

l h  and si

 on a ma

Firstly, with nce the hypotheses of theorem 
1 are hold, and then the solution  ,tz   of Equation 0 0,t z

l right interval (1 xima) is defined  0 ,t l . It is 
proved in theorem 1 that the solution is bounded and 
 0 0, ,t tz z  can tended to the right of l. Therefore,  be ex  

 0 0, ,t tz z  exists on  0 ,t l  with l h . 

Assume h l   . We are going to find an estimate 
for  0 0, ,t tz z  on the interval  ,h l . From hypothesis 
(1) of theorem 2, we have for t h l  :  , 

 

   
 

   
 

      , , , d

t
u

nk f s s t g s sz z x  
d d

0 0 0 0, , 3 1e , e

t

S S

tf u u f u

t t n h h t n h 
  

  z z z z0,
h
 0 0

   
 

  
 

       
d d

0 , ,

t

h S

f u u

n h nk f s f s
 

 z z0 0 0 0
h

0 0 0 0e , , , , d

t
f u u

s t s t s


z z x z  , 3 1e ,
t

t t h t n h 


 z z
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with   

 
1

0, nk
n h




 
  
 
 

            (16) 

 

 
 

 

 
 

      

0 0

d

0 0 0

d

0 0

, ,

3 1e , ,

e

t

h

t

S

f u u

t f u u

h

t t

n h h t

n h nk f s s t s



 









 
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z z

z z

z z

 

, , d

(17) 

   
 

 

 
 

     

d

0 0 0

d

0 0

3 1e , ,

e ,

t

h

t

S

f u u

t f u u

h

v t h h t

n h nk f s s t s


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







 
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z z

z z

 

So  

, d

           1 ,v t n h nk f t v t t h l         . 

By integration we get: 

     
    

 

1 d

0 0, , e ,

,

t

h

n h nk f u u

t t t h

t h l

v v
     

 

 z z   (18

with 

) 

     0 03 1 , ,v h n h h t  z z  
From inequality (18) we can see that  0 0, ,t tz z  is 

bounded since  0 0, ,t tz z  is also bounded, it foll s 
that  For 

ow
l   . 0   we can get: 

 
     2

e

1 3 0 1 3

Dh

n h

  
 



 
 

From (15) it follows that  
 0 0, ,

1 3
t t

n h







z z   

for all  0 ,t t h  provided that 0 z ore, 
from (16) and (1 t  

. Theref
, we ge8)  0 0, ,t t v h  z z  for 

all t h o, if h , then the solution  . S 0 0t  
starting 

0 0, ,t tz z  
from any point 0z , with 0 z , exists on 

 0t ,  and satisfies  0 0, ,t t z z  for al
usly we btain that 

l 0t t . If 
 and: 0t h , then analogo o l  

   
    



0

1 d

0 e ,t

n h nk f u u     



(19

 ,t h 
Therefore, with the same 

0 0 0, , 3 1t t n t z z z ) 

t

  as before, 0 z  im-
plies again  0 0, ,t t z Hence the 

If in

z  for all 0t t . 
zero solution is uniformly stable.  

 addition  

 


0

df t t    

is satisfied, then by (16), (18) and (19) it follows tha
zero solution to (1) is asymptotically stable. The proof of 

theorem 2 is complete.  

3. Examples 

We confirm the results of the introduced theorems by 
considering two numerical examples for which the func-
tions 

t the 

 f t ,  t  and  tg  satisfy theorems assump- 
tions.

For the system 
  

    2 ,f t t  t 0   x x x g x

where 

, 

 1 2,x xx 


. 
Example 1 

  2 1

t
f t

t



,   1 1t t   ,   1 2

1 1 2 2
, ,

1

x x t
g t x x

t



 and 

 
 2 2

1 2

2 1 2 2
, ,

1

x x t
g t x x

t





. 

 

 
(a) 

 
(b) 

Figure 1. Numerical solutions if Example 1, x1 component (a) 
and x2 component (b). 
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(a) 

 
(b) 

Figure 2. Numerical solutions if example 2, x1 component (a)
and x2 component (b). 
 

Example 2 

 

  2

1
f t

t
 , ,   2

1 e tt     1 2
1 1 2 2

, ,
x x

g t x x
t

  and 

 
 2 2

1 2

22 1 2, ,
x x

t


. g t x x 

We solved these two examples numerically using 
th order Runge-Kutta method. The results of example 1
are drawn as shown in Figure 1 and the results of exam-

own in Figure 2. The curves are 
rawn for different initial values of 

d 2 demonstrate  time increases 
all the comp ents of the solutions tends to zero.
means, that t e a ptotically stable. W
verify the rightness of our proved theorems. 

4. Conclusion 

ifo ly stable as well 
as
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