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ABSTRACT 

When trying to fit data to functions of the eigensystem of a PDE-eigenvalue problem, such as Maxwell’s equation, nu- 
merical differentiation is ineffective and analytic gradients must be supplied. In our motivating example of trying to 
determine the chemical composition of the layers of specialty optical fibers, the function involved fitting the higher or- 
der derivatives with respect to frequency of the positive eigenvalues. The computation of the gradient was the most time 
consuming part of the minimization problem. It was realized that if one interchanged the order of differentiation, and 
differentiated first with respect to the design parameters, fewer derivatives of the eigenvectors would be required and 
one could take full advantage that each grid point was affected by only a few variables. As the model was expanded to 
cover a fiber wrapped around a spool, the bandwidth of the linearized symmetric eigenvalue problem increased. At the 
heart of each of the iterative methods used to find the few positive eigenvalues was a symmetric, banded, indefinite ma-
trix. Here we present an algorithm for this problem which reduces a symmetric banded matrix to a block diagonal ma-
trix of 1 × 1 and 2 × 2 blocks. Fillin outside the band because of pivoting for stability is prevented by a sequence of pla-
nar transformations. Computationally the algorithm is compared to the block unsymmetric banded solver and the block 
positive definite symmetric band solver in LAPACK. 
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1. Introduction 

In early 2000 the Lucent Fiber Division in Norcross, 
Georgia, announced the specifications for a specialty 
fiber the design of which, they estimated would take a 
year. They had software in which one inserted the widths 
of the various layers of a fiber and the refractive index 
profile, indicating the chemical composition of the layer, 
and the program would produce such optical properties 
as the dispersion and micro bendloss. 

However, sitting in the audience the day of the 
announcement was a member of the Bell Labs group 
from Murray Hill, NJ, which had created a fiber design 
tool that treated the design process as an inverse pro- 
blem- the optical properties and manufacturing con- 
straints were input and the refractive index profile was 
output. The next morning he handed the Georgia group 
three designs that met the specification, possibly remov- 
ing months from the design process. The story underlines 
the utility of treating designing optical fibers as an in- 
verse problem. It also indicates one of the main diffi- 
culties in the design process; the existence of multiple 

solutions. In [1] the physicist W. A. Reed characterized 
the search for a solution to wandering on a beach with 
footprints and holes. 

The model used by the Murray Hill group, which 
included the first author, assumed a fiber that was per- 
fectly straight, circular, and uniform along its length, so 
that Maxwell’s equations for guided waves of the fiber 
could be reduced to a family in  of problems of the 
form  

 m

 2 2 2
2

1 d d
, .

d d

x m
r r x

r r r r
x          

  
   (1) 

In (1)   is a function of   and the index of re- 
fraction profile  rn , which in some regions was piece- 
wise linear or constant as in Figure 1 and one wishes to 
determine the widths, slopes and concentrations that 
define  rn  because they dictate the chemical com- 
position of the various layers of the fiber. We will denote 
these parameters as . Among the various users of the 
tool there was little agreement on the shape of the burn 
region near the center of fiber or whether they wanted 
piecewise linear or piecewise constants in the other re- 
gions. The quantity 

v

  in (1) was a specified frequency  
*The last five authors were undergraduates and were supported by NSF 
RUI grant 0611574. 
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Figure 1. A typical index profile with parameters. 
 
and m was a specified mode number. For a typical 
problem there might be about 20 values of   and  
might take on integer values between 0 and 2. 

m

According to the Modified Chemical Vapor Deposi- 
tion (MCVD) technique, a hollow cylinder several feet 
long and several inches in radius is put on a lathe and 
gases such as silicon dioxide, gallium and fluourine are 
introduced into this tube, according to the specification 
of the refractive index profile in , and these gases 
deposit themselves on the interior of the cylinder until it 
is solid. The cylinder or preform is then put in a draw 
tower, its end is heated, and the fiber is drawn to the 
specified width. The modeling process here assumes that 
the chemicals on a given cross section of the preform 
will be found in the same arrangement on the fiber. 

 rn

The waveform in (1) is truncated at some radius 
beyond the core of the fiber and the boundary condition 
is expressed as the  order modified Bessel function 
of the second kind [2]. A finite element approach can be 
used to approximate (1) and converts the family of 
differential equations in (1) to a family of symmetric 
generalized tridiagonal eigenvalue problems  

thm

  T .q qA s   e e x x          (2) 

where  s   involves Bessel functions, A is a q × q 
symmetric tridiagonal matrix for a finite element discreti- 
zation, q  is the last column of the q × q Identity matrix, 
and M is the diagonal positive definite mass matrix 
which represents the inner product of the basis functions 
used in the finite element method. Thus the boundary 
condition changes the problem from finding the positive 
eigenvalues and corresponding eigenvectors of about 60 
linear eigenvalue problems to 60 nonlinear eigenvalue 
problems per function evaluation. 

e

Although solving the nonlinear eigenvalue problem is 
essential to designing the fiber, it is not the complete 
story. Depending on the ultimate use of the fiber (local 
area network, underwater transmissions, or to splice into 
an existing network to restore a degraded signal), after 

the appropriate eigenvalues and eigenvectors are deter- 
mined, as explained in [3], a user might wish to evaluate 
the dispersion given by 

2

,


 

 

                (3) 

the dispersion slope, 
3

2
,


 


 
                (4) 

where   is the wavelength and 2πc   where the 
frequency   is measured in radians per second and  
is the speed of light, the effective area given by 

c

2

4

d
2π ,

d

x r r

x r r

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               (5) 

the Laplace Spot Size or the square of the second Peter-  

man Radius given by 
2

2

d
2

d
d

d

x r r

x
r r

r
 
 
 




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which depends on the Laplace Spot size and the RMS  

Spot size = 
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, the macrobendloss, or the  

cutoff ratio, the largest value of  , for which there are 
no positive eigenvalues. 

The design problem can thus be posed as a constrained 
nonlinear least squares problem of trying to meet target 
values of say the dispersion (3) and/or the effective area 
(5) for values of   while keeping the width of regions 
nonnegative and satisfying manufacturing constraints. 
Because of the complexity of the eigenvalue computation 
and the further construction of the optical properties, 
optimizers tend to balk with numerical differentiation. 

There are many tantalizing aspects of this problem in- 
cluding the determination of an appropriate grid which 
couild change as the width parameters of the layers 
changed, the solution of the nonlinear eigenvalue pro- 
blem, and the characterization of the nature of the mul- 
tiple solutions of the inverse problem. In this paper we 
will concentrate on some of the ideas that were not incor- 
porated in the original package but were developed when 
the first author moved to academia and was no longer in 
the mode of trying to meet the immediate demands of 
customers. 

Often the solution of the eigenvalue problem required 
only about 20 to 30 percent of the computation time. 
Calculating the quantities in (3)-(5) and their derivatives 
with respect to the design parameters took up most of the 
remainder of the time. Initially one should always use 
symbolic and/or automatic differentiators like ADIFOR 
[4] to make sure that the derivative are correct, but 
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we found that using these techniques we were spend- ing 
much time computing quantities that were zero. In 
Section 2 we consider ways to reduce the computation 
cost of the derivatives. These techniques were suitable 
for undergraduates like the last 5 authors and hopefully 
these techniques might have more general application in 
other inverse problems. Specifically, we were concerned 
about whether it was best to interchange the order of 
differentiation if part of the objective function was a 
derivative as in (3), whether it paid to use the fact that for 
certain parameters, like the heights of the layers, the 
matrix pA  was only nonzero in the portion of its rows 
corresponding to the grid points of the current layer, and 
thirdly, how could one take advantage of the fact one 
could write the original matrix A as a linear combination 
of vectors where the coefficients were dependent only on 
  and the vectors were dependent only on  rn —i.e. 
the variables separated. 

Solving the fiber optics problem was not a one way 
street of technology transfer and hopefully this paper will 
serve to highlight some of the linear algebraic advances 
that were stimulated by this application. Several non- 
linear eigensolvers that were applied to the problem were 
compared in [5], which in turn partly motivated the re- 
search in [6-10]. Each of these solvers required the 
solution of many symmetric indefinite tridiagonal sys- 
tems. Augmenting the simple model in (1) to handle a 
fiber wrapped around a spool, changed the tridiagonal 
eigenvalue problem to a 7-diagonal eigenvalue problem 
with the largest elements on the main diagonal and the 
outermost diagonal. In [11], algorithms for solving sym- 
metric indefinite banded tridiagonal and 5 diagonal sy- 
stems are given. If the number of diagonals exceeds 5, 
the bandwidth could increase especially if the largest 
elements appeared on the outermost diagonal. The appli- 
cation motivated the first author of this paper, who was 
also a coauthor of [11] to investigate further the larger 
bandwidth problem. In Section 3 we discuss an algorithm 
for solving the symmetric indefinite banded system with 
bandwidths larger than 5 that was initially given in [12] 
and indicate how one can form a block version of the 
algorithm. 

2. Obtaining Analytic Derivatives 

In this section we look at techniques that can be used to 
speed up the computation of the derivatives. Table 1 
gives the percentage of the computation time used to 
solve the eigenvalue problem (1) and then to compute the 
various quantities like the dispersion slope (4) and the 
effective area and their derivatives with respect to the 12 
design parameters. In general each run involved about 
solving about 1800 eigenvalue systems assuming 30 fun- 
ction and/or gradient evaluations per run: Each function 
evaluation required finding the positive eigenvalues and 

their corresponding eigenvectors of about 60 systems for 
about 20 values of   and 3 of m. The point of the table 
is that an efficient eigensolver only tackles some of the 
problem.  

To get derivatives one can augment the system of 
differential equations to obtain the derivatives with re- 
spect to the design parameters but this would increase the 
dimension of the eigenvalue problem. A better idea 
would be to move immediately into the discrete domain. 
According to [2], if one uses a finite element method 
with a spacing  , then the eigenvalue   of (2) satis- 
fies 2 2

cl
2  k   where   is defined in (1) and 

cl  is the wave number of the cladding. In general the 
wave number is given by 
k

cn . 
To simplify our notation let 

  T .q qB A s   e e             (6) 

and let  be p   or one of the design parameters in v 
used in defining n. Modifying the classical formulation 
for the classical formulation for the derivative of the 
eigenvalues found in [13], and differentiating  
B Mx x , we get 

   T
q qM A s M B

p p
 

 
p

  
       

x
e e x   (7) 

which when multiplied by  eliminates the right hand 
side of (7) giving 

Tx

 T T ,q q

sA M

p p pp

  
   

       
x e e x    (8) 

where 21 qs x   , if one stipulates that T 1M x x . 
The formula given in (8) is basic to approximating the 

function value and some of the gradient of the function. 
The major part of the computation of the dispersion and 
dispersion slope required the second and third derivatives 
of   with respect of  . If we let   denote the 
derivative of   with respect to  , and A  the 
derivative of A with respect to  , then if we 
differentiate (2) twice with respect to  , multiply the 
result by  and use the fact that  we get the 
following formula to be used in the calculation of the 
dispersion: 

Tx 0M 

 T T2 ,A B       x x x x      (9) 

where 2 2
qs x  , which calls for the determination 

of x , which can be determined by differentiating (2) 
yielding  

   = .M B M B     x x     (10) 

and using the fact that . T 0M x x
The quantity   required by the dispersion slope =  

3

2


 


 
 can be derived similarly and is given by  
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Table 1. Percentage of time spent in various operations with 
12 variables. 

Operation Function only Derivatives also

Building A, M and their derivatives 5 16 

Solving the eigenvalue problem 84 27 

Derivatives of the eigensystem 0 10 

Dispersion and slope 7 36 

Effective area and Peterman radii 3 12 

 

 T T T T3 3 3A B B M



  



          x x x x x x x x
(11) 

where the quantity   has all the terms in    2

qx s   
except 2

qs x . 

2.1. Interchanging the Order of Differentiation 

Now let us consider formulae for the derivatives of (9) 
and (11) with respect to a parameter . p

If one uses the convention that pA  is the derivative 
of the A matrix with respect to the pth parameter and px  
is the derivative of the eigenvector  with respect to 
the  design parameter , then it has been shown in [14] 
that if 

x
thp
  contains all the known terms in   p

s 2   
then p  can be expressed several ways including 


  

T

T T T T2

p p

p

A

B B B B



 

 

          p p p

x x

x x x x x x x x
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where   collects the terms other than  2

p qx s  in 

 2

q p
x s     and px  satisfies 

   
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and the condition M M  p px x x x
x x

. Table 1 uses the 
formula in (12) which requires ,  , and for the  
design parameter 

thp

px  and px . For 12 design parame- 
ters one must solve for 26 vectors. 

Another formula for the gradient vector of the dis- 
persion can be derived by interchanging the order of 
differentiation. More specifically, one begins with (7) for 
the  design parameter, multiplies through by  to 
remove the term with the derivative of the vector and 
then continues to differentiate with respect to 

thp Tx

  yield- 
ing the equation 



 

where 

  

 

2

,

M B M B

M B

 



     

 

x x

x


     (14) 

and T TM M  x x x x . 
The second formula for p  in (13) requires , x x , 
x . Thus for 12 design parameters the formula in (13) 

requires 3 vectors. Theoretically, (12) requires at least 
twice as much work as (13). 

The gradient of the dispersion slope (4) with respect to 
the  design parameter requires the derivative of thp   
with respect to that parameter. We have looked at several 
formulae for p  including 


 
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3
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p

x x x x x x

x x x x x x x x

x x x x x x

x x x x x x

p

  (15) 

where   has all terms in  except   2
q p

x s  
 2
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
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p p

p p p
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B M

M M M




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  

       

x x x x x x

x x x x

x x x x x x

The main advantage of (16) is that one does not have 
to compute px , px , and px , which are the most time 
consuming portions of (15). It was derived by first diffe- 
rentiating with respect to the design parameter and then 
with respect to ω three times. From Table 2 we see the 
advantage of using (16) and (13) over (15) and (12) just 
by changing the formulae. Using both sets of formulae 
the numerical values for the gradient of the dispersion 
and its slope are the same as long as the eigenvalues are 
accurate to full precision. Although px  is not needed in 
(16), it is needed to compute the gradient of the effective 
area if that is part of the specifications of the fiber. 

 

(13) 
The theory and methodology given in (15) for (1) can 

be easily extended to spooled models or full vector 
models and other approximations of the differential 
operator such as those used in [15,16], or the plane-wave  

Copyright © 2012 SciRes.                                                                                AJCM 



L. KAUFMAN  ET  AL. 325

Table 2. Time (sec.) for one value of ω, one mode order, n = 
736, 12 variables. 

Eigen calculation (2 eigenvalues) 0.048 

Determining xp for all the design variables 0.017 

Dispersion and slope based on (12) and (15) 0.063 

Dispersion and slope based on (13) and (16) 0.033 

Dispersion and slope based on (13) and (16) 
taking advantage of the zero structure 
of matrices in formulae 

0.015 

 
method [17] or a finite difference method [18]. 

2.2. Taking Advantage of the Structure of the 
Derivative Matrices 

Another advantage of (16) is that all the matrices in the 
formulae involve derivatives with respect to the design 
variables  and all these parameters had a limited range 
of support. If the  design parameter denoted the 
height of a profile in a layer then Mp = 0 and 

v
thp

pA , pA  
and pA  were 0 for those grid points outside the layer. If 
the pth design parameter denoted the width of a layer, the 
grid points corresponding to the layers closer to the 
center of the fiber were zero, but because the preform 
had a finite width, those grid points within the layer and 
further from the center contributed nonzero value to the 
M and A matrices. 

Using the fact that some of these matrices had only a 
few rows that were nonzero decreased the time for con- 
structing the matrices pA , pA , pA , and pA  as well 
as computing the effective area. Reworking the code to 
take advantage of the fact that these matrices had a small 
range of support was not trivial. The program for build- 
ing the matrices and using them processed one grid point 
at a time and symbolic differentiation was used to insert 
lines for computing the derivative with respect of . In 
certain parts of the code attempting to take advantage of 
the support grid points for each parameter meant chang- 
ing data structures and inverting loops; in other portions, 
the code was changed so that the matrices were con- 
structed based on layers, whose number was an input 
parameter, and not on grid points, whose location and 
number could be readjusted for every value of 

v

  at 
every function value. 

Lastly, as more derivatives with respect to   were 
required, the formulae for the derivatives with respect to 
  and v  of the potential     2, ,    

v

v n v

i v

 in 
(1) became more complicated. But actually the potential 
at the  grid point  can be rewritten as thi  ,i 

         2

1 2,i is c s c    v v     (17) 

where  denotes the dopant concentration at the 
 grid point, and 

 ic v
thi  1s   and  2s   are functions of 

  and the Sellmeier coefficents [19]. To add a new 
derivative of   with respect to  , entails determining 
new values of the derivatives of 1s  and 2s  once for all 
grid points and then 2 multiplications are needed for each  

grid point. Similarly once i

p

c

v




 has been computed, it  

can be used with the appropriate derivatives of 1s  and 

2s  to form pA , pA , pA , and pA . Note for the para-  

meters that denote the widths of the layers i

p

c
 was  

v

zero for all grid points and for the other parameters 
which were used to dictate the height of a grid point in a  

particular layer, i

p

c

v




 was zero outside of their own  

layer. 
Using the separable form of (17) greatly simplifies the 

construction of the matrices in (12). Table 3 gives the 
proportion of time spent in various sections in the final 
code. The big hit that was initially seen inn Table 1 for 
of the calculation of analytic derivatives has disappeared. 

3. Fiber around a Spool-Solving Banded  
Symmetric Indefinite Linear Systems 

For the model in (1) at each iteration one was concerned 
with getting the few positive eigenvalues and their eigen- 
vectors. Usually a generalized Rayleigh quotient iteration  

that minimized   TA q qs e x Mx e  was effec-  

tive: 
Nonlinear Rayleigh Quotient 
1) Determine a lower bound μl and an upper bound μu 

for the desired eigenvalue μ. 
Set μ0 to μl. 
2) Set x = e, the vector of all 1’s if a good approxima- 

tion to the eigenvector is not avilable from a previous 
iteration. 

Set j to 0. 
3) Until convergence. 

a) Set   T
j n ns  e eB A  . 

b) Solve  jB I y x  and determine the inertia of 
(B − μjI). 

c) If the inertia claims that μj is less than μ, reset μl to 
μj. 

d) If the inertia says that μj is greater than μ, reset μu to 
μj. 

e) Set z = By. 

f) Set 
 
  2

T

T

z y n n

n

s y z

y y s y










. 

g) If α < μl, set 1 0.9 0.1j l u    
0.9 0

. 
If α > μu, set 1 .1j u l     . 
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Table 3. Speedup in derivative calculations using ideas in 
Section 2 for one mode order, one ω, 736 gridpoints, 12 
variables. 

 Speedup Percentage of total

Building matrices 2.76 12 

Eigenvalue problem 1.0 53 

Dispersion and slope 4.3 16 

Gradient of the eigensystem 1.75 11 

Effective area 2.26 9 

Total 1.96  

2  no mode is found whose innerproduct with a specific 
node at say 1  is within 0.9 of that at 1 , then a new 
value of  , the geometric mean of 1  and 2  was 
used. 

In (2) the matrix A had a tridiagonal structure, but for 
the spooled problem, if say 3 modes were found for a 
given  , the matrix A would have the form  

1

2

3

.

T C H

C T G

H G T

 
 
 
 
 

 

where the C, H, and G matrices were diagonal and the 
 matrices were tridiagonal. If one denoted the ith 

diagonal of C, H, G, as i , , 
T

c ih ig , respectively then 
 ic0  ,  0 ig   and  ih 20  , i.e. small. Let 

,i j  denote the ith diagonal of d jT  and ,i j  the ith 
diagonal of 

e

jT . These elements were usually of 0(1). To 
reduce its bandwidth the A matrix for the spooled matrix 
could be permuted into a 7 diagonal matrix given in (18) 
with the largest off diagonal elements in magnitude 
appearing on the outermost band. 

 
If μl ≤ α ≤ μu set μj+1 = α. 

h) set  Tx y y y . 

increment j. 
The inertia is a triple of the number of positive, nega- 

tive, and zero eigenvalues. To get the bounds in step 1, to 
solve for y  in step 3b) and to calculate the inertia, the 
factorization algorithm for tridiagonal matrices in [11] 
was used. This algorithm reduced a matrix to a block 
diagonal form of 1 × 1 and 2 × 2 block. Since each 2 × 2 
block corresponded to a positive negative pair, by adding 
the number of 2 × 2 blocks to the number of positive 1 × 
1 blocks, one could determine the inertia of the system. 

Bunch and Kaufman [11] gave algorithms for factor- 
ing dense matrices, tridiagonal and 5 diagonal matrices. 
They did not give an algorithm for a 7 diagonal matrix or 
indeed for a general banded matrix. To bound the ele- 
ment growth of the final block diagonal matrix, Bunch 
and Kaufman insisted that at each stage whenever 2 rows 
and columns were to be eliminated leading to a 2 × 2 
diagonal block, the rows and columns of the matrix had 
to be permuted so that the (2,1) element be the largest off 
diagonal element in magnitude in its column. The per- 
mutation and the elimination of the 2 rows and columns 
could upset the band structure. For a matrix like that in 
(18) where the largest would have been in the fourth row, 
the permuted matrix would have a zero structure like  

One of the concerns of fiber designers is how wrapp- 
ing the fiber around a spool would affect the optical pro- 
perties of a fiber. Decades ago Marcuse [20] suggested a 
model that considered the deformation of the modes (the 
eigenvectors) of a spooled fiber. For a given frequency 
one would add a coupling term that was based on the 
ratio   of the radius of the fiber to the radius of the 
spool. With 0 

m
, one would get the solutions for 

various values of  that were obtained in (2) and one 
wished to track these modes as   increased. If at some 
 

1,1 1 1 2,1

1 1,2 1 2,2

1 1 1,3 2,3

2,1 2,1 2 2 3,1

2,2 2 2,2 2 3,2

2,3 2 2 2,3 3,3

,1 ,1

,2 ,2

,3 ,3

n n n

n n n

n n n n

d c h e

c d g e

h g d e

e d c h e

e c d g e

e h g d e

e d c

e c d

e h g d

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n

n

h

g

.        (18)
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.

d e y y

e d y y y y y

y y x x x x

y y x x x

y x x x x x x

y x x x x x x

y x x x x x x

x x x x x x

x x x x x

x x x x

 
 
 






 

























   (19) 

The reason why one of the  elements is denoted by y
y  will become clear later. 

Eliminating the y elements of (19), would leave a 
matrix whose zero structure would look like 

d e

e d

x x x x f

x x x x x

x x x x x x

x x x x x x x

f x x x x x x x

x x x x x x

x x x x x

x x x x






































   (20) 

where f lay outside the original band structure so that one 
had a 9 diagonal matrix rather than a 7 diagonal matrix. 

If again a 2 × 2 pivot was chosen and f was the largest 
offdiagonal element, the second and fifth rows and 
columns of the reduced matrix would be permuted and 
after elimination of the unwanted off diagonal elements, 
the matrix would be 13 diagonal. The process of in- 
creasing the band width could continue. In fact that was 
just what observed when the algorithm was applied to the 
spooled problem. The factorization given in [11] could 
not be used as originally given. 

If one partitions (19) into 

T

.
D Y

A
Y B

 
 
 

            (21) 

where D is the top 2 × 2 submatrix, Y has 2 columns that 
contain the  elements below D in (19) and B is the 
portion with the 

y
x s . Let F be that portion of (20) 

having the x s  and f. In block form  

F B YZ   

where 1 TZ D Y . The matrix Z  has 2 rows and if one 
writes it as 

,
z v w w w

Z
s t u u u

 
  
 

      (22) 

then the unwanted element f in (20) is f ys   where 
y  is given in (19) and s is given in (22). If s in (22) had 

been 0, there would have been no fill and one could have 
continued on as a 7-diagonal matrix and not a 9-diagonal 
matrix. 

If one did a planar transformation on the first 2 
columns of Z to annihilate s in (22) the fillin would be 
prevented. Applying this planar transformation to the 
first two rows and columns of  in (21) lengthens the 
short second rows and columns of B by one element but 
no nonzero element is introduced outside the band. Thus 
making s zero by applying a transformation to Y, Z and B 
means that f in (20) will be zero and we have an 
algorithm that can be used to factor a 7-diagonal matrix. 
Using this symmetric banded algorithm rather than a 
specifically tuned unsymmetric band solver reduced the 
computation time for a linear Rayleigh quotient iteration 
for the spooled problem by about 37 percent. In a pro- 
blem with 12 variables, producing the dispersion at 5 
specific values of 

B

  required eigen solutions at 25 va- 
lues of   in order to follow the mode. Thus decreasing 
the eigendecomposition time was significant. 

The algorithm can be generalized to larger bandwidths. 
Assume we are working with a matrix A with bandwidth 
2 1g   and that the Bunch-Kaufman algorithm version C 
has dictated using a 2 × 2 pivot requiring the permutation 
of rows and columns 2 and  so that the second row 
and column are long and the  row and column are 
short so that Y in (21) can be written as 

r
rth

0

0 0

Y

 
 
 
 

y y

y
1 2


              (23) 

where the length of  is  and y 3r  Z  in (21) as 
T T

T T
.

v
Z

t

 
 
 

z w

s u
          (24) 

The length of  is Ts 3r   so t would be alligned 
with the short column of the permuted A. 

When the new matrix F B YZ 

Ts

 is formed, ele- 
ments will appear outside the original bandwidth by the 
multiplication of . If however,  in (24), no 
elements would appear outside the band in F. Anni- 
hilating  using a single Householder transformation 
introduces elements outside the band structure in F. But a 
sequence of r

Tys

3

0

Ts

  planar transformations in planes 
     3, 2r r1, 2r r, 2, 2 , ,  

B
 

k

 always involve the 
short column of  and there is no fillin. 

For a symmetric banded matrix  A  with  rows 
and bandwidth 

k
2 1g   the retraction algorithm proceeds 
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as follows 
1) Let  

,1
k k

ra   = maximum element in absolute 
value in the first column. 

2) If    
1,1

ka k , use a 1 × 1 pivot to obtain  1kA  ,  

decrease k by 1) and return to 1). Here γ is a scalar of 
about 1/3 to balance element growth. 

else 
3) Determine  k , largest element in absolute value 

of the rth column. 

4) If      2

1,1
k ka k   , use a 1 × 1 pivot to obtain  

 1kA  , decrease k by 1) and return to 1). 
else 
5) Interchange the rth and second rows and columns of 

Ak and partition it like (21). 
6) Form the Z matrix Z = D−1YT. 
7) For i = 1, ··· min(r − 3, k − r). 
Do a sequence of planar rotations in planes (i, r − 2) to 

eliminate elements in the second row of Z and apply 
these transformations to the corresponding rows of Y, and 
A(k) 

8) Perform a 2) by 2) pivot to obtain  2kA  , decrease 
k by 2) and return to 1) 

For a matrix A of  rows, the retraction algorithm 
outlined above using stabilized elementary transforma- 
tions for the planar rotations requires between 

n

21 2 gn  
and 25 4 gn  multiplications compared to between 2gn  
and 22gn  multiplications required by unsymmetric 
Gaussian elimination. It requires 2 1g n

3 1
 elements to 

hold the Z matrices compared to g n  operations. 
As reported in [12] where the planar transformations 
were introduced not as a preventative measure but as a 
way of cleaning up elements that appeared outside the 
original band structure, an implementation of the algo- 
rithm was faster than LAPACK’s DGBTF2 [21] for 
nonsymmetric banded matrices. However, when g  was 
sufficiently large so that it was advantageous to use a 
block structured algorithm, the retraction algorithm could 
not compete with LAPACK’s DGBTRF. 

Since the publication of [12], it was realized that it was 
possible to use the extra space required for the Z  
matrices to generate a block approach for those portions 
of the algorithm whenever the planar transformations 
were not required. By embedding the matrix in the larger 
 2 1g n   array one can avoid some of the difficulties 
in the block symmetric codes in LAPACK which store 
and access only the lower triangular portion of the matrix. 
Similarly one can avoid a few of the problems associated 
with the banded codes of continually copying and re- 
trieving a block or a triangle to a scratch space. The 
sketch in Figure 2 indicates how we partitioned the 
matrix with the dashed lines indicating the structure of  

 

Figure 2. Computational idea of lower trianglular portion 
of banded matrix. 
 
the mathematical object and the sequences of rectangles 
the computational object. When applying transformations 
matrix-matrix operations could be used exclusively. 

In Figure 3 the times for the symmetric indefinite 
block version of the retraction algorithm is compared to 
DPBTRF, Lapack’s positive definite banded routine 
block version, and DGBTRF for various bandwidths. For 
the retraction algorithm the block size is 16 while for that 
of the other algorithms, it is set at 32. ATLAS BLAS 
were used in FORTRAN. 

In Figure 4 the matrices all have the same bandwidth, 
but the outer diagonal and the main diagonal are varied 
to produce matrices that require various number of planar 
transformations. In this version, a block concept of the 
retraction algorithm is pursued until one hits a 2 by 2 
pivot that requires planar transformations. At the cross- 
over point about 60 percent of the rows are involved in 2 
× 2 blocks. It is obvious that the more transformations, 
the greater the time. 

4. Conclusions 

Although this research was directed at the fiber optic 
industry, we hope its impact will have a significant wider 
breath to cover other PDE-eigenvalue problems with de- 
sign parameters. Specifically, this paper should be appli- 
cable to inverse problems where finding the gradient is 
absolutely necessary but seems to involve a tremendous 
amount of computation. We have shown that it pays to 
take advantage of local support of variables, to write the 
function in a separable form if possible and if the func- 
tion is itself a derivative, to ask whether it pays to change 
the order of differentiation when producing the gradient. 

Trying to solve the spooled fiber optics problem sug- 
gested to the first author that there are linear systems that 
are symmetric indefinite and banded. Her first attempts 
seemed to suggest that only for examples where the iner- 
tia is definitely required or the bandwidth is not large, 
that the retraction algorithm is useful. However, recently 
she has realized that the extra space required by the algo- 
rithm to store information for solving linear systems 
could be used to produce a viable block version. 
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Figure 3. Time vs. half bandwidth, n = 2000, positive defi-
nite matrices. 
 

 

Figure 4. Time vs. number of planar transformations, n = 
2000, g = 400. 
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