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ABSTRACT 

The proton and electron charge inner structures are considered in the frame of the non-local quantum hydrodynamics 
based on the non-local physical description. From calculations follow that proton and electron can be considered like 
charged balls (shortly CB model) which charges are concentrated mainly in the shell of these balls. The proton-electron 
collision in the frame of CB-model should be considered as collision of two resonators. In this case can be explained a 
number of character collisional features depending on the initial and final electron energies and the scattering angles. 
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1. Introduction 

About the basic principles of the Generalized Quan-
tum Hydrodynamics (GQH). 

I begin with the short reminding of basic principles of 
GQH created in particular in [1-8]. As it is shown the 
theory of transport processes (including quantum me-
chanics) can be considered in the frame of the unified 
theory based on the non-local physical description. In 
particular the generalized hydrodynamic equations rep-
resent an effective tool for solving problems in the very 
vast area of physical problems. For simplicity in intro-
duction, we will consider fundamental methodic aspects 
from the qualitative standpoint of view avoiding exces-
sively cumbersome formulas. A rigorous description is 
found, for example, in the monograph [6]. 

Let us consider the transport processes in open dissi-
pative systems and ideas of following transformation of 
generalized hydrodynamic description in quantum hy-
drodynamics which can be applied to the individual par-
ticle. 

The kinetic description is inevitably related to the sys-
tem diagnostics. Such an element of diagnostics in the 
case of theoretical description in physical kinetics is the 
concept of the physically infinitely small volume. The 
correlation between theoretical description and system 
diagnostics is well-known in physics. Suffice it to recall 
the part played by test charge in electrostatics or by test 
circuit in the physics of magnetic phenomena. The tradi-

tional definition of PhSV contains the statement to the 
effect that the PhSV contains a sufficient number of par-
ticles for introducing a statistical description; however, at 
the same time, the PhSV is much smaller than the vol-
ume V of the physical system under consideration; in a 
first approximation, this leads to local approach in inves-
tigating of the transport processes. It is assumed in clas-
sical hydrodynamics that local thermodynamic equilib-
rium is first established within the PhSV, and only after 
that the transition occurs to global thermodynamic equi-
librium if it is at all possible for the system under study. 
Let us consider the hydrodynamic description in more 
detail from this point of view. Assume that we have two 
neighboring physically infinitely small volumes 1  
and 2  in a non-equilibrium system. The one-parti-
cle distribution function (DF) ,1 1sm

PhSV
PhSV

 , ,f tr v

1PhSV
 corresponds 

to the volume , and the function  , ,,2 2smf tr v

2PhSV
 

—to the volume . It is assumed in a first ap-
proximation that  ,1 1, ,smf tr v
PhSV

 does not vary within 

1 , same as  2 , ,,2smf tr v
PhSV

PhSV
PhSV

 does not vary within the 
neighboring volume 2 . It is this assumption of 
locality that is implicitly contained in the Boltzmann 
equation (BE). However, the assumption is too crude. 
Indeed, a particle near the boundary between two vol-
umes, which experienced the last collision in 1  
and moves toward 2 , introduces information about 
the  , ,,1 1smf tr v PhSV

2PhSV

 into the neighboring volume 2 . 
Similarly, a particle near the boundary between two vol-
umes, which experienced the last collision in  
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and moves toward 1 , introduces information about 
the DF ,2 2sm

PhSV
 , ,f tr v

r

PhSV
PhSV

PhSV

 into the neighboring volume 

1 . The relaxation over translational degrees of 
freedom of particles of like masses occurs during several 
collisions. As a result, “Knudsen layers” are formed on 
the boundary between neighboring physically infinitely 
small volumes, the characteristic dimension of which is 
of the order of the path length. Therefore, a correction 
must be introduced into the DF in the PhSV, which is 
proportional to the mean time between collisions and to 
the substantive derivative of the DF being measured 
(rigorous derivation is given in [6]). Let a particle of fi-
nite radius be characterized as before by the position  
at the instant of time t of its center of mass moving at 
velocity . Then, the situation is possible where, at 
some instant of time t, the particle is located on the in-
terface between two volumes. In so doing, the lead effect 
is possible (say, for 2 ), when the center of mass of 
particle moving to the neighboring volume 2  is 
still in 1 . However, the delay effect takes place as 
well, when the center of mass of particle moving to the 
neighboring volume (say, 2 ) is already located in 

 but a part of the particle still belongs to 
. 

PhSV

PhSV
PhSV

v

PhSV

2

1

Moreover, even the point-like particles (starting after 
the last collision near the boundary between two men-
tioned volumes) can change the distribution functions in 
the neighboring volume. The adjusting of the particles 
dynamic characteristics for translational degrees of free-
dom takes several collisions. As result, we have in the 
definite sense “the Knudsen layer” between these vol-
umes. This fact unavoidably leads to fluctuations in mass 
and hence in other hydrodynamic quantities. Existence of 
such “Knudsen layers” is not connected with the choice 
of space nets and fully defined by the reduced description 
for ensemble of particles of finite diameters in the con-
ceptual frame of open physically small volumes, there-
fore—with the chosen method of measurement. This en-
tire complex of effects defines non-local effects in space 
and time. 

The physically infinitely small volume (PhSV) is an 
open thermodynamic system for any division of macro-
scopic system by a set of PhSVs. But the Boltzmann 
equation (BE) [1,9-12] 

BDf Dt  J ,              (1.1) 

where BJ  is the Boltzmann collision integral and 
D Dt  is a substantive derivative, fully ignores non- 
local effects and contains only the local collision integral 

BJ . The foregoing nonlocal effects are insignificant only 
in equilibrium systems, where the kinetic approach 
changes to methods of statistical mechanics. 

This is what the difficulties of classical Boltzmann 
physical kinetics arise from. Also a weak point of the 

classical Boltzmann kinetic theory is the treatment of the 
dynamic properties of interacting particles. On the one 
hand, as follows from the so-called “physical” derivation 
of BE, Boltzmann particles are regarded as material 
points; on the other hand, the collision integral in the BE 
leads to the emergence of collision cross sections. 

Notice that the application of the above principles also 
leads to the modification of the system of Maxwell equa-
tions. While the traditional formulation of this system 
does not involve the continuity equation, its derivation 
explicitly employs the equation 

0
a

a

t

 
  

 
j

r
a

,            (1.2) 

where   is the charge per unit volume, and  is the 
current density, both calculated without accounting for 
the fluctuations. As a result, the system of Maxwell 
equations written in the standard notation, namely 

aj


0, ,

,

a

a

t t


   

 
   
     

   

B D
r r

B D
E H j

r r

,a fl a f  

      (1.3) 

contains 
l  j j j .           (1.4) 

fl f , The lj

 

 fluctuations calculated using the gen-
eralized Boltzmann equation are given, for example, in 
Ref. [2,4,6]. The violation of Bell’s inequalities [13] is 
found for local statistical theories, and the transition to 
non-local description is inevitable. 

The rigorous approach to the derivation of the kinetic 
equation relative to one-particle DF f fKE  is based 
on employing the hierarchy of Bogoliubov equations. Gen-
erally speaking, the structure of K fE  is as follows: 

B nlDf
J J

Dt
 

nl

,                (1.5) 

where J  is the non-local integral term. An approxi-
mation for the second collision integral is suggested by 
me in generalized Boltzmann physical kinetics, 

nl D Df
J

Dt Dt
   
 

.              (1.6) 

Here,   is non-local relaxation parameter, in the sim-
plest case—the mean time between collisions of particles, 
which is related in a hydrodynamic approximation with 
dynamical viscosity   and pressure p, 

p  ,                  (1.7)  

where the factor   is defined by the model of collision 
of particles: for neutral hard-sphere gas,   = 0.8 
[11,12]. All of the known methods of the kinetic equation 
derivation relative to one-particle DF lead to approxima-
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tion (1.6), including the method of many scales, the 
method of correlation functions, and the iteration me- 
thod. 

In the general case, the parameter   is the non-lo-
cality parameter; in quantum hydrodynamics, its magni-
tude is correlated with the “time-energy” uncertainty rela-
tion [7,8]. 

Now we can turn our attention to the quantum hydro-
dynamic description of individual particles. The abstract 
of the classical Madelung’s paper [14] contains only one 
phrase: “It is shown that the Schrödinger equation for 
one-electron problems can be transformed into the form 
of hydrodynamic equations”. The following conclusion 
of principal significance can be done from the previous 
consideration [7,8]: 

1) Madelung’s quantum hydrodynamics is equivalent 
to the Schrödinger equation (SE) and leads to description 
of the quantum particle evolution in the form of Euler 
equation and continuity equation. Quantum Euler equa-
tion contains additional potential of non-local origin 
which can be written for example in the Bohm form. 

2) SE is consequence of the Liouville equation as re-
sult of the local approximation of non-local equations. 

3) Generalized Boltzmann physical kinetics leads to 
the strict approximation of non-local effects in space and 
time and after the transmission to the local approxima-
tion leads to parameter  , which on the quantum level 
corresponds to the uncertainty principle “time-energy”. 

4) Generalized hydrodynamic equations (GHE) lead to 
SE as a deep particular case of the generalized Boltz-
mann physical kinetics and therefore of non-local hy-
drodynamics. 

In principal GHE needn’t in using of the “time-en-
ergy” uncertainty relation for estimation of the value of 
the non-locality parameter  . Moreover the “time-en- 
ergy” uncertainty relation does not lead to the exact rela-
tions and from position of non-local physics is only the 
simplest estimation of the non-local effects. Really, let us 
consider two neighboring physically infinitely small 
volumes 1  and 2  in a non-equilibrium sys-
tem. Obviously the time 

PhSV PhSV
  should tends to diminish 

with increasing of the velocities  of particles invading 
in the nearest neighboring physically infinitely small 
volume (  or ): 

u

2PhSV1PhSV
nH u  .              (1.8) 

But the value   cannot depend on the velocity direc-
tion and naturally to tie   with the particle kinetic en-
ergy, then 

 2H mu  ,            (1.9) 

where H  is a coefficient of proportionality, which re-
flects the state of physical system. In the simplest case 
H  is equal to Plank constant  and relation (1.8) be-

comes compatible with the Heisenberg relation. Possible 
approximations of  -parameter in details in the mono-
graph [6] are considered. But some remarks of the prin-
cipal significance should be done. 

It is known that Ehrenfest adiabatic theorem is one of 
the most important and widely studied theorems in 
Schrödinger quantum mechanics. It states that if we have 
a slowly changing Hamiltonian that depends on time, and 
the system is prepared in one of the instantaneous eigen-
states of the Hamiltonian then the state of the system at 
any time is given by an the instantaneous eigenfunction 
of the Hamiltonian up to multiplicative phase factors 
[15-19]. Since the establishment of this theorem many 
fundamental results have been obtained, such as Landau- 
Zener transition [15,16], the Gell-Mann-Low theorem 
[17], Berry phase [18] and holonomy [19]. 

The adiabatic theory can be naturally incorporated in 
generalized quantum hydrodynamics based on local ap-
proximations of non-local terms. In the simplest case if 

Q  is the elementary heat quantity delivered for a sys-
tem executing the transfer from one state (the corre-
sponding time moment is ) to the next one (the time 
moment ) then 

int

et



 1
2Q T 


 

t t

,           (1.10) 

where e in    and T  is the average kinetic energy. 
For adiabatic case Ehrenfest supposes that 

1 22 , ,T    

, ,

           (1.11) 

where 1 2    are adiabatic invariants. Obviously for 
Plank’s oscillator (compare with (1.9)) 

2T nh  .                (1.12) 

Conclusion: adiabatic theorem and consequences of 
this theory deliver the general quantization conditions for 
non-local quantum hydrodynamics. 

2. Generalized Quantum Hydrodynamic 
Equations 

Strict consideration leads to the following system of the 
generalized hydrodynamic equations (GHE) [6] written 
in the generalized Euler form: 

 : Continuity equation for species 

 

   

 

0

0 0 0 0

1
0I ,

t t

t

p q
R

m


  

   

 
   



  

   

 

            
          

       



v
r

v v v v
r r

F v B
r

    (2.1) 

a nd continuity equation for mixture 
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 

     

0

1
0 0 0 0

v
t t

p q

t m


 



 
    

 


  

    

            

  
        
   






r

v v v v F
r r r 0I 0.
      
   

v B

                    (2.2) 

Momentum equation for species 

       

   



1 1
0 0 0 0 0

1
0 0 0 0 0

0 0 0 0I

p q

t t m

q p q

m t m

p p
t

 
         



  
      

 

    

       

     

  

               0t



            

v
r

               

 
    
 

 

v v v v F v B F
r r

v v v v F v B B
r r

v v v v
r

    

         

0 0 0 0

1 1
0 0 0 0 0 0 0

, ,

I 2I

I

d d .st el st inel

p

q q
p

m m

m

q

m

J m J

 

 
      

 

      









   

              
          

  





v v v v
r r

v F v v F v B v v v B
r

v v v v

    (2.3) 

Generalized moment equation for mixture 

       

     

1 1
0 0 0 0 0

0 1
0 0 0 0 0

0 0 I

p q

t t m

q p q

m t m

p
t

 
        

 

  
      

  




       

     

 

                 0t



            

v
r  

                   

 
   
 

 






v v v v F v B F
r r

v v v v F v B B
r r

v v
r

     

         

0 0 0 0 0 0

1 1
0 0 0 0 0 0 0

I 2I

I 0

q

m
p p

q q
p

m m

   

 
      









 

   

               
          

 



v v v v v v
r r

v F v v F v B v v v B
r

  (2.4) 

Energy equation for component 

 

2 2
20 0
0 0 0

1 2 2
0 0 0 0 0 0 0

2
0 0 0

3 3 1
  

2 2 2 2 2 2

1 5 1 5

2 2 2 2

1 7
  

2

v v
p n p n v p

t t

v p n v p
t

v

 
        

         



 
   

    



                    
                    


  


v v
r

F v v v v v v
r

v v
r

0

0 0

5
n

n

 







  
 





v

v

   

         

   

 

   

2
2

0 0 0 0 0 0

2
1 12 0

0 0 0

1 1 1
0 0 0 0

1 5

2 2 2

1 3 5
  

2 2 2 2

  

p p
p p v n

m

v q q q
v p p n

m m m

p
t

 
      

 

   
     

  

        

  



 

    

        
 

       

  
         

  

v v v v F v

F F v B v B v B

F v F v v v F
r r

  


 

1 1
0

1
0

p

n

 

   

   

 


v F

F



0

2 2
, ,d d .

2 2
st el st inel

q n

m v m v
J J

 

   
      

     
 

   
      

   
 

v B

v v

 
 

 

          (2.5) 
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and after summation the generalized energy equation for mixture 

 

2 2
20 0
0 0

1 2 2
0 0 0 0 0 0 0

2
0 0 0

3 3
  +

2 2 2 2 2 2

1 5 1 5

2 2 2 2

1
  

2

v v
p n p n v

t t

v p n v
t

v


      

 

      
 



 
   

    



                   
                


 


 

 

r

F v v v v v
r

v v
r

0 0

0 0

1 5
p n

p n

  

 





  
 

  
 

v v v

v v

         

       

   

2
2

0 0 0 0 0

2
1 1 1 12 0

0 0 0 0

1 1
0 0 0

1
0 0 0

7 1 5

2 2 2

1 3
  

2 2 2

5
  

2

  

p p
p p v n

m

v q
p v p

m

q q
p n n

m m

p
t

 
    

 

 
       



 
       

 

    

 



 

  

  

 
        

 

        

      


  
      

  



v v v v

F v v F F F v B

v B v F F v F

F v v v
r r

  



    1
0 0.q n   


      

 F v B

          (2.6) 

 
 1
Here F

B I q
 are the forces of the non-magnetic origin, 

—magnetic induction, 


—unit tensor,  —charge of 
the  —component particle, p —static pressure for 
 —component,  —internal energy for the particles of 
 —component, 0 —hydrodynamic velocity for mixture. 
For calculations in the self-consistent electro-magnetic 
field the system of non-local Maxwell equations should 
be added (see (1.3)). 

v

It is well known that basic Schrödinger equation (SE) 
of quantum mechanics firstly was introduced as a quan-
tum mechanical postulate. The obvious next step should 
be done and was realized by E. Madelung in 1927—the 
derivation of special hydrodynamic form of SE after in-
troduction wave function   as 

  , , , ,   i , , ,, , x y z tz t e x y z t x y  .       (2.7) 

Using (2.7) and separating the real and imagine parts 
of SE one obtains 

2 2

0
t m

   
  r r



2

 
 

 
,             (2.8) 

and Equation (2.8) immediately transforms in continuity 
equation if the identifications for density and velocity 

     ,                   (2.9) 

 m

r

v                   (2.10) 

introduce in Equation (2.8). Identification for velocity 
(2.10) is obvious because for 1D flow 

   

 1

v m
x m

px v
m x 

 
 
 


 



 1
kE t px

x
    

v

,    (2.11) 

where   is phase velocity. The existence of the condi-
tion (2.10) means that the corresponding flow has poten-
tial 

m .                 (2.12)   

As result two effective hydrodynamic equations take 
place: 

  0
t

  
  

 
v

r
,           (2.13) 

2
21 1

2 2
v U

t m m




    
        

v

r r


.     (2.14) 

But 
22

2 2

1

2

  
  
       r

,          (2.15) 

and the relation (2.15) transforms (2.14) in particular 
case of the Euler motion equation 

1
U

t m
          

v
v v

r r
,        (2.16) 

where introduced the efficient potential 

22 1

4 2
U U

m


 


          r


.      (2.17) 

Additive quantum part of potential can be written in 
the so called Bohm form 

22 2 1

4 22 mm

 
 

          r

 
.    (2.18) 

Then 
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2
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.
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m
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quU U U U

U
m





 



       



r

2

p


    

  


         (2.19) 

Some remarks: 
a) SE transforms in hydrodynamic form without addi-

tional assumptions. But numerical methods of hydrody-
namics are very good developed. As result at the end of 
seventieth of the last century we realized the systematic 
calculation of quantum problems using quantum hydro-
dynamics (see for example [1,20]). 

b) SE reduces to the system of continuity equation and 
particular case of the Euler equation with the additional 
potential proportional to . The physical sense and the 
origin of the Bohm potential are established later in [7,8]. 

c) SE (obtained in the frame of the theory of classical 
complex variables) cannot contain the energy equation in 
principle. As result in many cases the palliative approach 
is used when for solution of dissipative quantum prob-
lems the classical hydrodynamics is used with insertion 
of additional Bohm potential in the system of hydrody-  

namic equations. 
d) The system of the generalized quantum hydrody-

namic equations contains energy equation written for 
unknown dependent value which can be specified as 
quantum pressure   of non-local origin. 

In the following I intend to apply generalized non-lo-
cal quantum hydrodynamic Equations (2.1)-(2.6) to in-
vestigation of the proton and electron internal charge 
structures. 

3. The Charge Internal Structures of Proton 
and Electron 

Let us consider a positive charged physical system 
placed in a bounded region of a space. Internal energy 

  of this one species object and a possible influence of 
the magnetic field are not taken into account. The char-
acter linear scale of this region will be defined as result 
of the self-consistent solution of the generalized non- 
local quantum hydrodynamic Equations (2.1)-(2.6). Sup-
pose also that the mentioned physical object for simplic-
ity has the spherical form and the system (2.1)-(2.6) takes 
the form [21,22]: 

Continuity equation: 

   
 

2 2 2
0 02 2
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0

r r
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r v r v p
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       
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, (3.1) 

Momentum equation: 
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                                    



                  (3.2) 
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Energy equation: 
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      (3.3) 
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Moreover let us admit that stationary physical system 

is at the rest, namely  and 0 0rv  0
t





. 

Is it possible to obtain the soliton type solution for this 
object under these stiff conditions? Let us show that the 
system (2.1)-(2.6) admits such kind of solutions. For 
mentioned case system (2.1)-(2.6) can be written as (see 
also (3.1)-(3.3): 

Poisson equation: 

2
2

1

r
4πr q

r r

       
,           (3.4) 

where  —scalar electric potential and q is the positive 
charge (per the unit of volume) of the one species quan- 
tum object. 

Continuity equation: 

2 p

r r
  


 
0r q

r

      
.         (3.5) 

Momentum equation: 

0
p

q
r r

 
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 
.                  (3.6) 

Equation (3.5) is satisfied for all parameter of non-lo- 
cality if Equation (3.6) is fulfilled. 

Energy equation takes the form: 

2
2

2
2

2

1 5

2

1 5
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r rr

p
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r rr

p
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   (3.7) 

or using(3.6) 

2
2 0

p

r 
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
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 
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.      (3.8) 

From (3.8) follows 

2p
C

r r 
  

     
2 2q

p r r
  ,              (3.9) 

where C is constant of integration. If the non-locality 
parameter   does not depend explicitly on  and the 
left side of Equation (3.9) turns into zero by 

r
0r  , then 

. Equation (3.9) is written as 0C 
2

0
p

r r 
  

     

q
p


           (3.10) 

or using (3.6) and the relation mq e   

0
p

r q

 
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С
p Cq

,                 (3.11) 

which leads to the solution with new constant of integra-

tion  
.                  (3.12) 

From (3.6), (3.12) one obtains 

 1ln q C C 

C
C

.          (3.13) 

with new constants of integration С  and 1 . Let us 
use these constants as scales, namely 0 1 0C q,   
denoting of dimensionless values by wave 0 ,q q q  

0   . Equation (3.4) transforms into dimensionless 
equation 

 2 2 expA r r
r r

        

  
 

,        (3.14) 

where the form-factor is introduced 

 2
0 0 04πA r q .              (3.15) 

For other equations one obtains 

2 21 q
r r q

r q r

  
   

  
  

A ,           (3.16) 

2 21 p
r r p

r p r

  
   

  
  

p CC q

A ,           (3.17) 

where the scale for pressure is 0 1 0 0  . Equa-
tions (3.16), (3.17) have the same dimensionless solu-
tions. Definition (3.15) for dimensionless factor A can be 
written as 

 2
0 0 04πq r A

  124πC r A




.            (3.18) 

It means that 0,cap 0  can be considered as 
the scale of proton capacity per unit of volume and for  

scale of volume 3
0 0

4
π

3
V r

r

 the scale of proton capacity  

is equal to  if 0 1 3A . 
Figures 1 and 2 reflect the solutions of (3.14), (3.16) 

correspondingly for 1 3A , Maple notations are used 

( v ,    vD t
r







q , q ). 

Cauchy conditions for these calculations: 

   v 0 0 1, 

  

  

 v 0 0 0D
r








 ;  

  10 eq 

  

,  

 0 0 0
q

D q
r








. 

From Figures 1 and 2 follow that solutions exist for 
this case in the domain less than 0

From (3.16) follows that the proton charge qpr is equal 
to 

3r r  . 
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Figure 1.  ,r v =      D t r
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Figure 2.  q q r =  for proton. 
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 (3.18) 
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          (3.19) 

if ,0 0 0pr . 
Relation (3.19) delivers the natural boundary condition 

for the external area of proton. For example if the restric-  

tions 0 prr r , 0 3
0.75

π
pr

pr

q
q

r
 2

0 0prr q  and  (there-

fore 0

3

4π
pr

pr

q

r
  ) are introduced then 

0

ln 4π

3
pr

pr

r r pr

qq

r r 

     




~

         (3.20) 

and in the vicinity of prr r  we have 

4π
exp

3pr

pr

r r

r r

q C r


       
 

3

.       (3.21) 

Obviously (3.21) can be written using the dimensional 
( cm ) form-factor qF  

 pr q prq r r F q  .           (3.22) 

For the chosen scales 

0
2

0

1

4π4π pr

A
r q


  .         (3.23) 

As we see the choice of scales is the question of con-
venience by the interpretation of the experimental data 
and the corresponding choice of the Cauchy conditions. 

Now we can apply the previous theory to the calcula-
tion of the internal electron structure. As before we in-
tend to consider the electron at the rest placed in the 
self-consistent intrinsic electric field without an intrinsic 
magnetic field. 

In our electron model, we no longer regard the elec-
tron as a point-like particle. Similar to the proton’s elec-
tric charge, which has continuum distribution inside of 
the proton, we make the same basic assumptions based 
on the application of the non-local theory. On this step of 
investigation no reason to introduce the simplest model 
of electron spin like a spinning electrically charged ball 
or much more complicated theory which leads to the 
magnetic charge continuum distribution inside of the 
electron using the Dirac monopole speculations [23,24]. 

Obviously Poisson Equation (3.4) transforms into 

2
2

1
4πr q

r rr

      
,         (3.24) 

where  —scalar electric potential and   is the 
negative charge (per the unit of volume) of the one spe-
cies quantum object. In other words  is absolute charge 

q

q
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density for electron. Two other Equations (3.16), (3.17) 
do not change the forms 

2 21 q
r r q

r q r

  
   

  
  

,            (3.25) A

2 21 p
r r p

r p r

  
   

  
  

,            (3.26) A

A  is the same dimensionless factor (3.15) but where 
eq    and 

 2 expr2A r
r r

   
   


 

   .          (3.27) 

Figures 3 and 4 reflect the solutions of (3.27), (3.25) 
correspondingly for 1 3A  , Maple notations are used  

  v( v   D t
r







q q 



, ). Cauchy conditions for  

this calculations: 

   0 1,    v 0   0 0
r


 






v 0D ;  

 0q e  ,  0 0 0
r

 

q 

D q .  

From Figures 3 and 4 follow that solutions exist for 
this case in the domain less than 0

From calculations follow that proton and electron can 
be considered like charged balls (shortly CB model) 
which charges are concentrated mainly in the shell of 
these balls. Relativistic consideration (see also [22]) can-
not change this conclusion based on principal of non- 
local physics. 

1.1r r  . 

 

 

Figure 3.  r v =   ,  (solid line);  D

 

 q q r =  for electron. Figure 4. 

 
In the developed theory spin and magnetic moments of 

proton and electron can be introduced without changing 
the main conclusions. Really the mentioned characteris-
tics correspond to  —internal energy for the particles 
of  —species. For example for electron  

, ,el el sp el m

t r
r

 


v =



 (dashed 

line) for electron. 

   ,  

where ,el sp 2  ,el, and m   p B pm int ; m —elec-
tron magnetic moment; Bint —intrinsic electron mag-
netic induction. But  

2m
e

e
p

m
 


, then 

2el eff


const

. 

As it follows from (2.6) written in the spherical coor-
dinate system by the condition eff   all previous 
calculations take place with the additional relation  
5

const
2 e el

p
m 


 

e p

. 

4. To the Theory of Proton and Electron as 
Ball-Like Charged Objects 

The affirmation that proton and electron can be consid-
ered as the ball-like charged objects radically changes the 
theoretical results of  scattering. The wave length 
  is correlated with the particle impulse pp  as 

ph p  , this relation leads to condition of the particle 
localization. At very low electron energies when the 
wave length is much more than the proton radius pr

~

 the 
scattering is equivalent to that from “point-like” spin-less 
object. The localization begins when pr  and im-
pulse is about 1 GeV/c. At high electron energies pr  , 
the wavelengths is sufficiently short to resolve substruc-
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ture. 
It is reasonable to write down the Rosenbluth formula 

for elastic  scattering expressed as e p

2 2

Mott

d d

d d 1
E p M

p

G G
2 22 tan

2p MG
  



         

 
 


,  (4.1) 

where 
Mott

d

d

 
  

is the Mott differential cross-section  

which includes the proton recoil. It corresponds to scat-
tering from a spin-0 proton. Formula (4.1) formally is 
valid for extended charged object. With this aim Rosen-
bluth introduced the dimensionless electric EG  and 
magnetic MG  form factors. Formula (4.1) contains also  

Lorentz invariant quantity 
2

2 2
0

4
pq

M cp    . The form  

factors are a function of 2
pq


 rather than scalar produc-  

tion 2
p pp p

E E

 in the three dimensional space and  

generally speaking cannot be considered in terms of the 
Fourier transformation of the charge and magnetic mo-
ment distribution. If  and  are initial and final 
electron energies than 

 22
2

1
pq E

c
   2

E  p pp p ,        (4.2) 

or 

 
2

1
2

pq

Mc

  
   
   

2 2
pq  p pp p ;        (4.3) 

only if 
2

2 2
1

4

pq

M c


 2
  p pp p

   2

,                 (4.4) 

one obtains  with typical approxima-
tion  

2
pq

  2
 p pp p M MG GE EG G ,  p pp p

  xp i  

. 

In the limit (4.4) the Fourier transforms are used like 

   2 3d eE pG q q   p p r  

  xp i  

 r r ,      (4.5) 

   2 3d eM pG q    p p r   r r .      (4.6) 

Rosenbluth formula is derived for a spin-half Dirac 
particle, then for magnetic moment 

e

M
μ S . 

The typical experimental correction leads to additional 
coefficient 

.             (4.7) 

All calculations depends significantly on the choice 
the approximation for the charge

of 
 density  q r . Until 

now the following  q r  approximations are considered: 
point-like, exponential dependence which gro s smaller 
with the distance from he proton center, Gaussian, uni-
form sphere, Fermi function. In general the calculations 
are sensitive to the choice of  

w  
t

2

2 2
0

4
p

p

q

M


c
   . 

 2 0p pq   we have For low 

2d d

d E
Mottd

G
  


.           (4.8) 

For high 

  

 2 1p pq    

2.79
e

M
μ S

2 2

Mott

d d
1 2 tan

d 2M pd
G

            
.     (4.9) 

From the first glance it seems that the theo
scattering needs only in recalculation (4.5), (4
ne



ry of elastic 
.6) using 

w models for the internal proton and electron charge 
distribution. But situation is more complicated. 

The proton-electron collision in the frame of CB- 
model should be considered as collision of two resona-
tors. 

In this case can be explained a number of character 
collisional features depending on the initial and final 
electron energies and the scattering angle. At low 

 22
pq   p pp p

c

 one observes not only the elastic peak 
but also the resonance curves typical for the excitations 
in resonators in luding discrete and continuum spectra. 
Resonance curves disappear when the cavity cannot 
serves as resonator. It is the situation which is well- 
known from radio physics. For example the usual reso- 
nance band corresponds to approximately 8 GeV and the 
wave length ~ 141.5 10 cm , [25]. It leads to the relation 

~ 0.1prr . This relation is typical for axially symmetric 
resonators, (see for example [26]). This paper contains 
calculations for the complex shaped cavity with axial 
symmetry; the resonance frequency is about 70 GHz with 
the character length ~35 mm. In the definite sense it is 
the similar situation; the cavity contains very compli-
cated topology of the electro-magnetic field. Curves of 
the equal amplitudes of the intensity of electric field cre-
ate domains in the form of many “islands”—caustic sur-
faces of electromagnetic field. These “islands” could be 
the origin of specific features of the electron scattering 
usually related with partons or quarks. In support of this 
conjecture can be indicated the results [27]. In [27] M. 
Popescu realizes the analyses of the cross-sections by 
collisions π p  and π p . It was noticed that the ex-
perimental data converge to show that the curves giving 
the total cross-section versus energy are smoothed curves, 
with large s (reso ce) for medium energies and a peak nan
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slow variation with some waving on the high energy side. 
Popescu points out that the curves exhibit striking re-
semblance to scattering curves obtained by electron, neu-
tron or X-ray scattering in liquid and amorphous materi-
als. Starting from this observation Popescu developed a 
method to extract structural information on the proton 
internal structure, in the hypothesis that ions are scattered 
by unknown internal centers when they knock the proton. 
The result of this analysis was very interesting because 
the total number of scattering centers was estimated as 20 
- 30 with the severe variance with the number of quarks 
now supposed to be integrated in the proton. It should be 
added that mentioned number of scattering centers is 
typical for the quantity of “islands” in resonators for the 
mentioned conditions. 

In this connection another interesting problem is aris-
ing. Can be experimentally confirmed the resonator 
model for the electron? In this case it is reasonable to 
remind one old Blokhintsev paper published in Phys-
ics-Uspekhi as the letter to Editor [28]. He considered the 
process of the interaction neutrino   and electron e 
with transformation of electron in  -meson: 

e     . In this case the energy density W  can 
be estimated as 

eW g      
 ,        

where 

   (4.10) 

g  is Fermi constant, , ,e      are wave 
functions for el

 
ectron,  -m

ng I.S. Sha
eson a

spondingly ollowi pir
nd neutrino corre-

o, Blokhintsev esti-. F
mated g  as 

  2
0g c   ,               (4.11) 

with 16100 ~ cm . His conclusion consists in affirm
strong interaction

place when the ve length 
ss tha

) c  be considered as estim
for revealing of the reson
hintzev supposes that fulfi
ni

of the inner charge distribution of the pro-
 the frame of the non-local quan
s to following main results: 

 shell of 

th

ty of 
el
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tion that the 
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  of the neutrino wa
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0  .                   (4.12) 

The inequality (4.12 an

ket le

ation 
ance electron properties. Blo-
lling of (4.12) leads to the sig-

ficant changes in the Compton effect and to other 
changes in electro-magnetic interaction of electrons. It is 
possible also to wait for the influence of the resonance 
electron effects on investigation of hypothetical neutrino 
oscillations. 

5. Conclusions 

Investigation 
ton and electron in
hydrodynamics lead

tum 

1) From calculations follow that proton and electron 
can be considered like charged balls (shortly CB model) 
which charges are concentrated mainly in the

ese balls. In the first approximation this result does not 
depend on the choice of the non-locality parameter. 

The proton-electron collision in the frame of CB- 
model should be considered as collision of two resona-
tors. Curves of the equal amplitudes of the intensi

ectric field create domains in proton in the form of 
many “islands”—caustic surfaces of electromagnetic field 
which can serve as additional scattering centers. It can 
open new way for explanation a number of character 
collisional features depending on the initial and final 
electron energies without consideration partons or quarks 
as scattering centers. 
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