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ABSTRACT 

Hyperelastic model with damage induced compressibility is implemented in the ABAQUS software using the subrou- 
tine Umat. A thermodynamic model is proposed taking into account the nonlinearity of the material behavior. Within 
the present work, the behavior of laminated rubber bearing structure is studied for two geometrical sets of materials 
(A-type and equivalent material) under complex monotonic loading conditions. A new geometric edge of laminated 
rubber bearing is proposed in order to reduce the development costs of the structure. The proposed model allowed find-
ing a good homogenized damage distribution for the same overall stiffness. 
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1. Introduction 

Rubber, thermoplastics and nano-composites with poly- 
meric matrix are recent materials compared with metallic 
materials. These rubbers-like materials are frequently 
used in different fields such as the automobile and aero- 
nautic industries. They are known to undergo large elas- 
tic strains and highly non-linear behavior, sensitive to the 
strain rate and the temperature. Moreover, their mecha- 
nical response varies according to the degree of cross 
linking as well as the incorporated particles nature and 
volume fraction.  

Several models have been proposed and developed in 
literature in accordance with various phenomena: mod- 
eling of the continuum damage due to the Mullins effect, 
visco-hyperelastic approach with continuous and discon- 
tinues damage concept, thermo mechanical coupling and 
hyperelasticity investigations in the case of monotonic 
loading.  

The first pioneers working in this field are Rivlin, 
Treloar and Ogden [1-3]. They developed incompressible 
hyperelastic laws which were successfully implemented 
in most finite elements software like ABAQUS. How- 
ever, recent studies assume that these materials have a 
compressible hyperelastic behavior sensitive to the strain 
rate and they report that a volume variation is often ob- 
served due to the damage process [4-12]. 

In this paper, a compressible hyperelastic law is im- 

plemented and coupled with the damage induced by the 
compressibility effect. This law is written in a thermo- 
dynamic formalism with an irreversible process accord- 
ing to the phenomenological approach (local method) 
developed by Lemaître and Chaboche [13]. This ap- 
proach is based on experimental observation results 
where a state variable is used to reproduce each identi- 
fied experimental process. It is found that laws formu- 
lated with this approach are in agreement with mass and 
energy conservation principles as well as the first and the 
second thermodynamics laws.  

In this work, we will firstly introduce and define the 
state variables and the free energy function used in this 
study. The potential dissipation and the damage criteria 
surface will then be presented. A Neo-Hooke law cou- 
pled with damage and a Mooney Rivlin law are subse- 
quently adopted and implemented in ABAQUS through 
the user subroutine Umat. Illustrative examples of the 
model use are ultimately given.  

2. Model Formulation 

2.1. Thermodynamic Potential 

In the present work, the main interest is the study of 
damaged compressible hyperelastic isothermal behavior 
laws. The compressibility effect is induced by damage 
growth. The state potential is built on the base of two  
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observable state variables: B the left Cauchy Green ten-
sor, and D the scalar variable describing the evolution of 
the isotropic damage, considered as the only source of 
energy dissipation. The multiplicative decomposition of 
the deformation gradient F  and of the left Cauchy- 
Green tensor B into dilational and distortional parts is 
adopted. The modified (barred) tensors (Equation (1)) are 
associated with volume-preserving deformations, while 
the jacobian J accounts for volumetric changes. 

The uncoupled form of the free energy in a volumetric 
and isochoric contribution written in terms of the trans- 
formation jacobian J is given by the Equation (2).  

1 2
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           (1) 
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where: 
 sW  and 0W  are the spherical and the deviatoric part 

of the potential, respectively. 
 K is the compressibility modulus of material. 
 J is the effective variable of J given by: 
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In Equation (3), ( )g D  is a positive increasing func- 
tion of D and   is an intrinsic material parameter, usu- 
ally taken between 0 and 1. The deviatoric part of the 
potential 0 , represents the deformation energy of un- 
damaged solid (incompressible part, i.e. deviatoric part 
of the state potential or distortional part) affected by 

 due to the damage effect. The fundamental 
Clausius-Duhem inequality is written as follows:  
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The associate thermodynamic forces (states relations) 
given in Equations (5) and (6) are the Kirchhoff stress 
tensor   and the thermodynamic damage force Y.  

Similar to the state potential, these forces are decom- 
posed into a spherical part (of pure volumetric compres- 
sion), and a distortional part (incompressible or isochoric) 
as follows: 
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The dissipation condition is represented by the fol- 
lowing equation: 

0YD                    (7) 

2.2. Damage Description 

The damage evolution is described by the convex of non 
damage that is available at any time of the loading his- 
tory [8,9] as follows: 

   ;f Y D Y Q D 0              (8) 

where  is a positive increasing function of D, 
giving the size of the damage surface in the deformation 
space. In this work, a simple form of  is chosen 
as: 
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where 0 , 0  and n are constant material parameters. 
According to the standard normality argument, the dam- 
age evolution law is integrated using the following sys- 
tem of equations: 
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where   is the damage multiplier. Using the consis- 
tency condition (i.e. 0f  ), the damage evolution law 
can be determined by:  
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where (*)dev denotes the deviatoric part of *, <x> is a 
positive part of x and H  is a positive scalar  defined 
by: 
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2.3. Application to the Hyperelastic Models 

The formulation of the Mooney Rivlin potential proposed 
initially by Mooney used in the studies [1,2] will be 
adopted in the present work. From a mechanical view-
point, this law has the advantage of being stable which is 
expressed as follows: 
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The state relations that define the damaged hyperelas- 
tic behavior are described by:  
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The Cauchy stress tensor is described by the following 
equations system: 
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2.4. Implementation Procedure  

In the previous section, a Mooney Rivlin law coupled 
with damage is defined. This law is implemented in the 
commercial code ABAQUS/implicit using a new material 
behavior through the user subroutine Umat. ABAQUS/ 
implicit is based on an iterative solver like the Newton- 
Raphson scheme that needs the determination of the tan- 
gent matrix ijkl . This matrix must be consistent with 
the integrated scheme of the previous developed consti- 
tutive equations by means of the differential form of the 
Kirchoff stress tensor: 
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3. Application to a Laminated Rubber 
Bearing  

As an application for the proposed model we choose a 
bridge which consists mainly of bridge deck supported 
by piers. The laminated rubber bearing with cylindrical 
shape is placed between the bridge deck and the piers. 
Bridge bearings are devices used for transferring loads 
and displacements from deck to piers. Their main role is 
to avoid damage during thermal expansion, vehicular 
motion and loading to piers. Neoprene is the material 
used for the bridge bearing which contains two rigid 
frames (RM) (see Figure 1). This hyperelastic material is 
used to accommodate the displacement without transmit- 
ting harmful stress. The Neoprene material (NM) is also  

dJ J
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Figure 1. Laminated rubber bearing model constituted by 
three layers in Neoprene (NM) and two armatures in rigid 
material (RM with E = 200 GPa and n = 0.3). 
 
able to absorb and isolate energy resulting from impacts 
and vibrations. The proposed hyperelastic model coupled 
with damage is implemented in the FE (finite elements) 
application using ABAQUS code through the Umat sub- 
routine. The damage parameters are shown in Table 1, 
where K, 10  and 01C  are the compressible parame- 
ters. The intrinsic material parameter 

C
  relates to the 

rate dependence of the damage induced by compressibil- 
ity (Equation (3)). 0 , 0  and n represent the parame- 
ters of the chosen potential of damage (Equation (11)). 
Two loading steps are imposed on the structure. A com- 
pression loading is applied during a first step up to 24 
tons along F direction. At this level of charge, a 10 mm 
shear displacement is imposed in a second step along the 
U direction as illustrated by Figure 1. The overall results 
will be discussed in the following sections for two cases: 
Neo-Hooke and Mooney Rivlin potentials applied for 
both cylindrical (common) and chamfered edge case.  

Q D

3.1. Cylindrical Shape 

The previously described equations are integrated to an 
ordinary geometry of the laminated rubber bearing using 
a cylindrical shape as shown in Figure 1. Because of the 
geometrical symmetry of the parts, only half of the 
structure is modeled using 3D hybrid quadratic brick 
C3D20H elements. Table 1 summarizes the geometric, 
material and loading parameters. The rubber bands have 
the well known cylindrical shape where the neoprene 
material (A-type) is affected for the three layers. Apply- 
ing the Neo-Hooke hyperelastic potential 01 0C  , the 
damage distribution shown in Figure 2(a) presents a 
pronounced disparity in such values especially in the 
lower band near the interface with the frame where the 
maximum reaches 34%. 

In order to better homogenize the damage distribution 
through the overall structure, we propose to consider 
different materials for the three neoprene bands. The so 
called “equivalent material” is then used. It consists of 

affecting the set B, C and D for the upper, middle and 
lower band respectively. The results can be clearly ob-
served in Figure 2(b), where the damage distribution 
does not present any particular concentration and the 
overall stiffness remains slightly unchanged. Moreover, 
the evolution of damage and Von Mises stress versus true 
strain in the integration point which presents the maxi- 
mum value is illustrated in Figure 3 for both A-type ma- 
terial and the equivalent material. It appears clearly that 
for the coupled case the stress level decreases and the 
damage is higher for the A-type material compared to the 
equivalent material. The disparity of damage evolution 
between the two configurations increases for deforma-
tions beyond 10% as illustrated in Figure 3. 

At the same integration point, the damage evolution 
changes position from compression to shear as shown in 
Figure 4. This behavior could be attributed to the low 
drop in the equivalent stiffness of the structure which is 
more sensitive in shear than in compression. This is due 
to the imposed higher displacements. 

3.2. Chamfered Edge 

In a second step, a chamfered edge is adopted as a new 
geometrical model where the A-type material is consid- 
ered for the whole structure. Figure 5 shows the pro- 
posed model meshed using 8481 3D 20-node quadratic 
brick hybrid elements. The overall stiffness of the struc- 
ture is highlighted in both compression and shear loading 
for the cylindrical and the chamfered edge geometry. 
With shear loading the coupled behavior is more noti- 
ceable in the chamfered case compared to the cylindrical 
case for the damage evolution.  

Subsequently, the impact of the chamfered edge on the 
damage distribution is well characterized by a better ho- 
mogenous distribution as shown in Figure 6 compared to 
the above mentioned cylindrical shape using the same 
material conditions (Figure 2(a)). 

3.3. Extension to the Mooney Rivlin Potential 
(Chamfered Case) 

The model equations described above are integrated ac- 
cording to the Mooney Rivlin law. Figure 7 shows the 
overall stiffness of the laminated rubber bearing using 
the Mooney Rivlin (simple line) and the Neo-Hooke 
model (marked line). A significant discrepancy in the 
predicted stiffness is found between the two results. It 
appears clearly that the Neo-Hooke model underesti- 
mates the stiffness of the structure.  

This could be due to the corrective term 01C  that 
better defines the cross-linkage density of the hyper 
elastic material. In fact, it is well known that the cross- 
linking increases with a drop of the 01 10C C  ratio; i.e.  
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Table 1. Geometric, load and material parameters of the laminated rubber bearing used during simulations. 

Material Material Parameters Set Dimensions Load 

Equivalent Material (EqMat)Compressibility 
Parameters 

A 
(AMat) B C D 

K(MPa) 1149 1130 1134 1140 

R 
(mm) 

a 
(mm) 

b 
(mm) 

F 
(KN) 

U 
(mm) 

Neoprene 
Material 

(NM) 

C10(MPa) 0.4 0.342 0.399 0.461 100 8 2.5 240 10 

E(GPa) 200 　 Q0 D0 N Rigid 
Material 　 0.3 

Damage  
Parameters 0.8 2.5 0.0001 2.0 

 

 
(a)                                        (b) 

Figure 2. Damage distribution in three layers of laminated rubber bearing: (a) The material A (AMat) is used; (b) The 
equivalent material B, C and D (EqMat) is used. 
 

 

Figure 3. Equivalent Von Mises and damage vs. true train in the chosen element number (see Figure 2(a)): Stress in 
compression case (NCS: non coupled stress, CS: coupled stress); Damage in compression (AMat: damage where the material 
A is used, EqMat: damage where the equivalent material B, C and D is used). 
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Figure 4. Damage vs. time resolution in the chosen element number (see Figure 2(a)): Damage where the material A is used 
(AMat); Damage where the equivalent material B, C and D is used (EqMat). 
 

 

Figure 5. Meshed view representing a partial of the lami- 
nated rubber bearing with a chamfered edge in the three 
layers of neoprene material.  
 
microscopically speaking, the molecule chains are short- 
er and more entangled. Such behavior expressed by a de- 
crease in the overall stiffness of the structure seems to be 
in agreement with the Neo-Hooke model. 

The consistency of the Mooney Rivlin law in compa- 
rison with the Neo-Hooke model is also shown in Figure 
8 where the damage evolution is better described. This 
figure emphasizes the high level of nonlinearity with 
shear loading starting from t = 1 s in time axis. This non 
linearity is well established by Mooney Rivlin law (sim- 
ple line) where the Neo-Hooke model faces a conver- 
gence issues (marked line). This result is in agreement 
with most investigations conducted in the literature  

 

Figure 6. Damage distribution in three layers of laminated 
rubber bearing using material A with a chamfered edge 
structure. 
 
where the applicability of the Neo-Hooke model does not 
exceed 60% of deformation [14]. Furthermore, it is well 
known that the mobility of the molecular chains is related 
to the material coefficients 10  and 01C . The motion of 
the molecular chains is affected by the increase of 01  
value which in turn increases the material energy dissipa- 
tion.  

C
C
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Figure 7. Stiffness evolution considering the two hyperelas- 
tic potentials: Neo-Hooke in marked and Mooney-Rivlin in 
simple line.  
 

 
Figure 8. Damage evolution considering the two hyper-elas- 
tic potentials: Neo-Hooke in marked and Mooney-Rivlin in 
simple line. 

4. Conclusions 

A numerical tool based on the finite elements method is 
developed to predict the behavior of the damage induced 
compressibility of a hyperelastic structure subjected to a 
monotonic loading (compression and shearing). This for- 
malism is applied to the case of a laminated rubber bear- 
ing for different geometrical sets of materials. We found 
that damage prediction could be improved using an equi- 
valent material instead of the A-type one. A new appro- 
ach is adopted to better homogenize the damage distri- 
bution by substituting the exterior cylindrical shape with 
a chamfered edge while maintaining the initial A-type 

material. The comparison between the Neo-Hooke and 
Mooney Rivlin model highlights the ability of the Moo- 
ney Rivlin model to predict not only the stiffness of the 
structure but also the damage evolution with a highly non 
linear behavior. 

Future works will focus on the extension of this for- 
malism by taking into account the stress softening, hys- 
teresis loss and cyclic softening in the random fatigue 
case. This will enable us to predict the fatigue strength of 
this new laminated rubber bearing. Such analysis is cur- 
rently in progress and material parameters will be identi- 
fied from experimental responses.  
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