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ABSTRACT 

Inferential models are widely used in the chemical industry to infer key process variables, which are challenging or ex- 
pensive to measure, from other more easily measured variables. The aim of this paper is three-fold: to present a theo- 
retical review of some of the well known linear inferential modeling techniques, to enhance the predictive ability of the 
regularized canonical correlation analysis (RCCA) method, and finally to compare the performances of these techniques 
and highlight some of the practical issues that can affect their predictive abilities. The inferential modeling techniques 
considered in this study include full rank modeling techniques, such as ordinary least square (OLS) regression and ridge 
regression (RR), and latent variable regression (LVR) techniques, such as principal component regression (PCR), partial 
least squares (PLS) regression, and regularized canonical correlation analysis (RCCA). The theoretical analysis shows 
that the loading vectors used in LVR modeling can be computed by solving eigenvalue problems. Also, for the RCCA 
method, we show that by optimizing the regularization parameter, an improvement in prediction accuracy can be 
achieved over other modeling techniques. To illustrate the performances of all inferential modeling techniques, a com- 
parative analysis was performed through two simulated examples, one using synthetic data and the other using simu- 
lated distillation column data. All techniques are optimized and compared by computing the cross validation mean 
square error using unseen testing data. The results of this comparative analysis show that scaling the data helps improve 
the performances of all modeling techniques, and that the LVR techniques outperform the full rank ones. One reason for 
this advantage is that the LVR techniques improve the conditioning of the model by discarding the latent variables (or 
principal components) with small eigenvalues, which also reduce the effect of the noise on the model prediction. The 
results also show that PCR and PLS have comparable performances, and that RCCA can provide an advantage by opti- 
mizing its regularization parameter. 
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Columns 

1. Introduction 

Models play an important role in various process opera- 
tions, such as process control, monitoring, and optimiza- 
tion. In process control, where measuring the controlled 
variable (s) is difficult, it is usually relied on inferential 
models that can estimate the controlled variable (s) from 
other more easily measured variables. For example, the 
control of distillation column compositions requires the 
availability of inferential models that can accurately pre- 
dict the compositions from other variables, such as tem- 
perature and pressure at different trays of the column. 
These inferential models are expected to provide accurate 
predictions of the output variables over a wide range of 
operating conditions. However, constructing such infer- 

ential models is usually associated with many challenges, 
which include accounting for the presence of measure- 
ment noise in the data and dealing with collinearity or 
redundancy among the variables. 

Collinearity is common in inferential models since 
they usually involve a large number of variables. The 
presence of collinearity increases the variance of the es- 
timated model parameters, and thus degrades the predic- 
tion accuracy of the estimated models. Over-parameter- 
ized models can fit the original data well, but they usu- 
ally lead to poor predictions [1]. One simple approach for 
dealing with this problem is to select a subset of inde- 
pendent variables to be used in the model [2-4]. Other 
modeling techniques that deal with collinearity can be 
divided into two main categories: full rank models and 
reduced rank models (or latent variable regression mod- 
els). Full rank models utilize regularization to improve 
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the conditioning of the input covariance matrix [5-7], and 
include Ridge Regression (RR). RR reduces the varia- 
tions in the model parameters by imposing a penalty on 
the L2 norm of their estimated values. RR also has a 
Bayesian interpretation, where the estimated model pa- 
rameters are obtained by maximizing a posterior density 
in which the prior density function is a zero mean Gaus- 
sian distribution [8]. 

Latent variable regression (LVR) models, on the other 
hand, deal with collinearity by transforming the variables 
so that most of the data information is captured in a 
smaller number of variables that are used to construct the 
model. In other words, LVR models perform regression 
on a small number of latent variables that are linear com- 
binations of the original variables. This generally results 
in well-conditioned models and good predictions [9]. 
LVR model estimation techniques include principal com- 
ponent regression (PCR) [5,10], partial least squares 
(PLS) [5,11,12], and regularized canonical correlation 
analysis (RCCA) [13-16]. PCR is performed in two main 
step: transform the input variables using principal com- 
ponent analysis (PCA), and then construct a simple 
model relating the input to the transformed inputs (prin- 
cipal components) using ordinary least squares (OLS). 
Thus, PCR completely ignores the output(s) when de- 
termining the principal components. Partial least squares 
(PLS), on the other hand, transforms the variables taking 
the input-output relationship into account by maximizing 
the covariance between the transformed inputs and out- 
puts variables. Therefore, PLS has been widely used in 
practice, such as in the chemical industry to estimate 
distillation column compositions [1,17-19]. Other LVR 
model estimation methods include regularized canonical 
correlation analysis (RCCA). RCCA is an extension of 
another estimation technique called canonical correlation 
analysis (CCA), which determines the transformed input 
variables by maximizing the correlation between the 
transformed inputs and the output(s) [13,20]. Thus, CCA 
also takes the input-output relationship into account 
when transforming the variables. CCA, however, re- 
quires computing the inverses of the input covariance 
matrix. Thus, in the case of collinearity among the vari- 
ables, regularization of these matrices is performed to 
enhance the conditioning of the estimated model, which 
is referred to as regularized CCA (RCCA). Since the 
covariance and correlation of the transformed variables 
are related, RCCA reduces to PLS under a certain as- 
sumptions. 

There are three main objectives in this paper. The first 
objective is to theoretically review the formulations and 
the underlying assumptions of some of the inferential 
model estimation techniques, which include OLS, RR, 
PCR, PLS, and RCCA. This theoretical review will shed 
some light on the similarities and differences among 

these modeling techniques. The second objective is to 
enhance the prediction ability of LVR inferential models 
by optimizing the regularization parameter of the RCCA 
modeling method. The third objective of this paper is to 
compare the performances of these techniques through 
two simulated examples, one using synthetic data and the 
other using simulated distillation column data. This 
comparative antilysis also provides some insight about 
some of the practical issues involved in constructing in- 
ferential models. 

The remainder of this paper is organized as follows. In 
Section 2, a problem statement is presented followed by 
a theoretical review of the various inferential model es- 
timation techniques in Section 3. This theoretical discus- 
sion includes full rank models (such as OLS and RR) and 
latent variable regression models (such as PCR, PLS, ad 
RCCA). This discussion presented an extension to opti- 
mize the RCCA to enhance its prediction ability. Then, in 
Section 4, the various modeling techniques are compared 
through two simulated examples, one involving synthetic 
data and the other involving distillation column data. 
Finally, some concluding remarks are presented in Sec- 
tion 5. 

2. Problem Statement 

This work addresses the problem of developing linear 
inferential models that can be used to estimate or infer 
key process variables that are not easily measured from 
other more easily measured variables. All variables, in- 
puts and outputs, are assumed to be contaminated with 
additive zeros mean Gaussian noise. Also, it is assumed 
that there exists a strong collinearity among the variables. 
Thus, given measurements of the input and output data, it 
is desired to construct a linear model of the form,  

, y Xb ε

n m

                  (1) 

where,  1n is the input matrix, X  y 
1m

 is the 
output vector, b 

1n
 is the unknown model parame- 

ter vector, and ε   is the model error, respectively. 
Several estimation techniques have been developed to 
solve this modeling problem; some of the full rank mod-
els and latent variable regression models are described in 
the following section. In this paper, however, we seek to 
review the formulations of these inferential modeling 
methods, present an extension of the RCCA method for 
enhanced prediction, and provide some insight about the 
performances of these techniques along with a discission 
of some of the practical aspects involved in inferential 
modeling. 

3. Theoretical Formulations of Linear  
Inferential Models 

In this section, a theoretical perspective of some of the 
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full rank and latent variable regression model estimation 
techniques is presented. Full rank modeling techniques 
include ordinary least square (OLS) regression and ridge 
regression (RR); while latent variable regression tech- 
niques include principal component regression (PCR), 
partial least squares (PLS), and regularized canonical 
correlation analysis (RCCA). The objective behind this 
theoretical presentation of the various inferential model- 
ing techniques is to provide some insight about the simi- 
larities and differences between these techniques through 
their formulations and the assumptions made by each 
technique. 

3.1. Full Rank Models 

3.1.1. Ordinary Least Squares (OLS) 
Ordinary least square regression is one of the most 
popular model estimation techniques, in which the model 
parameters are estimated by minimizing the L2 norm of 
the residual error or the sum of residual square error 
[5,10]. Therefore, the model parameter vector is esti- 
mated by solving the following optimization problem: 

 2

2
 ,X yb

b̂

  1
.T T

ˆ arg min
b

b           (2) 

which has the following closed form solution for the pa- 
rameter vector : 

ˆ X X X y


 T

b              (3) 

Note that the OLS solution (3) requires inverting the 
matrix X X  T. Therefore, when X X

b̂

 is close to 
singularity (due to collinearity among the input variables), 
the variance of estimated parameter vector  increases, 
which also increases the uncertainty about its estimation. 
One way to deal with this collinearity problem is through 
regularization of the estimated parameters as performed 
in ridge regression (RR), which is described next. 

3.1.2. Ridge Regression (RR) 
To reduce the uncertainty about the estimated model pa- 
rameters, RR not only minimizes the L2 norm of the 
model prediction error (as in OLS), but also the L2 norm 
of the estimated parameters themselves [6]. Thus, RR 
can be formulated as follows:  

 2 2

2 2
 , b

 1
,T T

ˆ arg min X y 
b

b b         (4) 

which has the following closed form solution:  

ˆ X X X y


I

m m

 b          (5) 

where λ is a positive constant, and I   is the iden- 
tity matrix. It can be seen from Equation (5) that adding 
λI to the matrix TX X  before inverting improves the 
conditioning of the estimation problem. The L2 regulari- 

zation of the model parameters in RR makes it an effec- 
tive means to achieve numerical stability in finding the 
solution and also to improve the predictive performance 
of the estimated inferential model. 

3.2. Latent Variable Regression (LVR) Models 

Dealing with the large number of highly correlated mea- 
sured variables involved in inferential models is one of 
the key issues that affect their estimation and predictive 
abilities. It is known that over-parameterized models can 
fit the original data well, but they usually lead to poor 
predictions. Multivariate statistical projection methods 
such as PCR, PLS, and RCCA can be utilized to deal 
with this issue by performing regression on a smaller 
number of transformed variables, called latent variables 
(or principal components), which are linear combinations 
of the original variables. This approach, which is called 
latent variable regression (LVR), generally results in 
well-conditioned parameter estimates and good model 
predictions [9]. In the subsequent section, the problem 
formulations and solution techniques for PCR, PLS, and 
RCCA are presented. 

However, before we introduce these methods, let’s in- 
troduce some definitions. Let the matrix D be defined as 
the augmented scaled input and output data, i.e., 

 D  X y . Note that scaling the data is performed by 
making each variable (input and output) zero mean with 
a unit variance. Then, the covariance of D can be defined 
as follows [16]:  

 
    
   
   

  

T

T

T T

T T

E

E

E E

E E





 
 
 
 

 
  
  

XX Xy

yX yy

C DD

X y X y

X X X y

y X y y

C C

C C

          (6) 

where the matrices XXC , XyC yXC C,  and yy  are of 
dimensions  m m  1m ,  , , and  1m  1 1 , 
respectively. 

Since the latent variable model will be developed us-
ing transformed variables, let’s define the transformed 
inputs as follows:  

z ,i iXa                    (7) 

where iz  is the i  latent input variable , 
and i  is the  input loading vector, which is of di-
mension 

th  1, ,i m 
a thi

 1m . 

3.2.1. Principal Component Regression (PCR) 
PCR accounts for collinearity in the input variables by 
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reducing their dimension using principal component 
analysis (PCA), which utilizes singular value decomposi- 
tion (SVD) to compute the latent variables or principal 
components. Then, it constructs a simple linear model 
between the latent variables and the output using ordi- 
nary least square (OLS) regression [5,10]. Therefore, 
PCR can be formulated as two consecutive estimation 
problems. First, the loading vectors are estimated by 
maximizing the variance of the estimated principal com- 
ponents as follows: 

 ˆ arg  var  max

. .   1;   

i
i i

T
i i is t  

a
a z

a a z X

   1, ,

i

i m  

a
    (8) 

which, since the data are mean centered, can also be ex- 
pressed in terms of the input covariance matrix XXC

 1, ,i i m C a

ˆ ˆ  ,i i i

 as 
follows:  

ˆ arg   max

. .    1.

T
i i

i

T
i is t





XX
a

a a

a a

  (9) 

The solution of the optimization problem (9) can be 
obtained using the method of Lagrangian multiplier, 
which results in the following eigenvalue problem (see 
proof in Appendix A): 

XXC a a                (10) 

which means that the estimated loading vectors are the 
eigenvectors of the matrix XX

Secondly, after the principal components (PCs) are es- 
timated, a subset (or all) of these PCs (which correspond 
to the largest eigenvalues) are used to construct a simple 
linear model, that relates these PCs to the output, using 
OLS. Let the subset of PCs used to construct the model 
be defined as 1

C . 

pZ z p mz  , where , then the 
model relating these PCs to the output can be estimated 
as follows: 

 2

2
 nˆ arg mi y


 Zβ

  1T T

          (11) 

which has the following solution,  

ˆ .Z Z Z y


p m

β              (12) 

Note that if all the estimated principal components are 
used in constructing the inferential model (i.e., 

3.2.2. Partial Least Square (PLS) 
PLS computes the input loading vectors, i , by maxi- 
mizing the covariance between the estimated latent vari- 
able 

a

ˆiz  and model output, , i.e., [20,21]:  y

 ˆ arg cov ,max

. .   1;  

i

i i

T
i i i is t



 

a

a z y

a a z Xa

1, , , i p p m

            (13) 

 . Since i izwhere,  Xa  and the data 
are mean centered, equation (13) can also be expressed in 
terms of the covariance matrix XyC

ˆ arg  max

. .   1.

i

T
i i

T
i is t





 as follows:  

Xy
a

a a C

a a

2ˆ ˆi i i

            (14) 

The solution of the optimization problem 14 can be 
obtained using the method of Lagrangian multiplier, 
which leads to the following eigenvalue problem (see 
proof in Appendix B):  

 ), 
then PCR reduces to OLS. Note also that all principal 
components in PCR are estimated at the same time (using 
Equation (10)) and without taking the model output into 
account. Other methods that consider the input-output 
relationship into consideration when estimating the prin- 
cipal components include partial least squares (PLS) and 
regularized canonical correlation analysis (RCCA), which 
are presented next. 

Xy yXC C a a               (15) 

which means that the estimated loading vectors are the 
eigenvectors of the matrix  C C

 ˆ arg  corr ,max

. .   

i i
i

i is t





a

a z y

z Xa

1, , , i p p m

Xy yX

Note that PLS utilizes an iterative algorithm [20,22] to 
estimate the latent variables used in the model, where 
one latent variable or principal component is added itera- 
tively to the model. After the inclusion of a latent vari- 
able, the input and output residuals are computed and the 
process is repeated using the residual data until a cross 
validation error criterion is minimized [5,10,22,23]. 

. 

3.2.3. Regularized Canonical Correlation Analysis 
(RCCA) 

RCCA is an extension of a method called canonical cor- 
relation analysis (CCA), which was first proposed in [13]. 
CCA reduces the dimension of the model input space by 
exploiting the correlation among the input and output 
variables. The assumption behind CCA is that the input 
and output data contain some joint information that can 
be represented by the correlation between these variables. 
Thus, CCA computes the model loading vectors by maxi- 
mizing the correlation between the estimated principal 
components and the model output [13-16], i.e.,  

          (16) 

where,   . Since the correlation between 
two variables is the covariance divided by the product of 
the variances of the individual variables, Equation (16) 
can be written in terms of the covariance between iz  
and  subject to the following two additional con- 
straints: i i

y
ˆ ˆ 1T XX  and yy . Thus, the CCA 

formulation can be expressed as follows,  
a C a 1C
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  cov ,maxi i
i

z 0ˆ =arg
a

a y         (17) 

Note that the constraint  = 1C yy is omitted from 
Equation (17) because it is satisfied by scaling the data to 
have a zero mean and a unit variance as described in Sec- 
tion 3.2. Since the data are mean centered, Equation (17) 
can be written in terms of the covariance matrix XyC

 ,

 1.

i i

T
i i XX

a z y

a C a

1 2ˆ ˆ i i iyXC a a

1

 as 
follows: 

ˆ arg  covmax

. .   ;  

i

i is t


a

z Xa
      (18) 

The solution of the optimization problem (18) can be 
obtained using the method of Lagrangian multiplier, 
which leads to the following eigenvalue problem (see 
proof in Appendix C): 


XX XyC C          (19) 

which means that the estimated loading vector is the ei-
genvector of the matrix XX Xy yX

Equation (19) shows that CCA requires inverting the 
matrix 

C C C . 

XX  to obtain the loading vector, i . In the 
case of collinearity in the model input space, the matrix 

C a

XX  becomes nearly singular, which results in poor 
estimation of the loading vectors, and thus a poor model. 
Therefore, a regularized version of CCA (called RCCA) 
has been developed in [20] to account for this drawback 
of CCA. The formulation of RCCA can be expressed as 
follows: 

C

  1.a i   

C

I a

2ˆ ˆ i i iyXC C a a

1
  

 

ˆ arg  max

. .    1

T
i i

i

T
i as t

 Xy
a

XX

a a

a C

  (20) 

The solution of Equation (20) can be obtained using 
the method of Lagrangian multiplier, which leads to the 
following eigenvalue problem (see proof in Appendix 
D): 

  1
1   a a 


   XX XyC I  (21) 

which means that the estimated loading vectors are the 
eigenvectors of the matrix  

  1   a a  XX Xy yXC CC I . 

Note from Equation (21) that RCCA deals with possi- 
ble collinearity in the model input space by inverting a 
weighted sum of the matrix XXC

 a a    XXC I

 and the identity matrix, 
i.e., 

1 , 

instead of inverting the matrix XXC  itself. However, 
this requires knowledge of the weighting or regularize- 
tion parameter a . We know, however, that when 

a  , the RCCA solution (Equation (21)) reduces to 
the CCA solution (Equation (19)). On the other hand, 
when a 1  , the RCCA solution (Equation (21)) reduces 
to the PLS solution (Equation (15)) since  is a scalar. yyC

3.2.4. Optimizing the RCCA Regularization  
Parameter 

The above discussion shows that depending on the value 
of a , where a0 1  , RCCA provides a solution that 
converges to CCA or PLS at the two end points, 0 or 1, 
respectively. The authors in [20] showed that RCCA can 
provide better results than PLS for some intermediate 
values of a  between 0 and 1. This observation moti- 
vated us to enhance the prediction ability of RCCA even 
further by optimizing its regularization parameter. To do 
that, in this section, we propose the following nested op- 
timization problem to solve for the optimum value of 

a : 

   ˆ ˆˆ arg min

ˆ. .    RCCA model prediction.
a

T

a

s t


   



y y y y

y
       (22) 

The inner loop of the optimization problem shown in 
Equation (22) solves for the RCCA model prediction 
given the value of the regularization parameter a , and 
the outer loop selects the value of a  that provides the 
least cross validation mean square error using unseen 
testing data. The advantages of optimizing the regulari- 
zation parameter in RCCA will be demonstrated through 
simulated examples in Section 4. 

Note that RCCA solves for the latent variable regres- 
sion model in an iterative fashion similar to PLS, where 
one latent variables is estimated in each iteration [20]. 
Then, the contributions of the latent variable and its cor- 
responding model prediction are subtracted from the in- 
put and output data, and the process is repeated using the 
residual data until an optimum number of principal com- 
ponents or latent variables are used according to some 
cross validation error criterion. More details about the 
selection of optimum number of principal components 
are provided through the illustrative examples in the next 
section, which will provide some insight about the rela- 
tive performances of the various inferential modeling 
methods and some of the practical issues associated with 
implementing these methods. 

4. Illustrative Examples 

In this section, the performances of the inferential mod- 
eling techniques described in Section 3 and the advan- 
tages of optimizing the regularization parameters in 
RCCA are illustrated through two simulated examples. In 
the first example, models relating ten inputs and one 
output of synthetic data are estimated and compared us- 
ing the various model estimation techniques. In the sec- 
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ond example, on the other hand, inferential models pre- 
dicting distillation column composition are estimated 
from measurements of other variables, such as tempera- 
ture, flow rates, and reflux. In both examples, the esti- 
mated models are optimized and compared using cross 
validation, by minimizing the output prediction mean 
square error (MSE) using unseen testing data as follow,  

variables are “block” and “heavy-sine” signals, and the 
other input variables are computed as linear combina- 
tions of the first two inputs as follows:  

    2
ˆy k y k


1

1
MSE 

n

kn 

        (23) 

where y k  and  ŷ k


 are the measured and pre- 
dicted outputs at time step k

3 1 2 ; 

, and n is the total num- 
ber testing measurements. Also, the number of retained 
latent variables (or principal components) by the various 
LVR modeling techniques (PCR, PLS, and RCCA) is 
optimized using cross validation. Finally, the data (inputs 
and output) are scaled (by subtracting the mean and di- 
viding by the standard deviation) before constructing the 
models to enhance their prediction abilities. More details 
about the advantages of data scaling are presented in Sec- 
tion 4.1.3. 

4.1. Example 1: Inferential Modeling of  
Synthetic Data 

In this example, the performances of the various inferen- 
tial modeling techniques are compared by modeling syn- 
thetic data consisting of ten input variables and one output. 

4.1.1. Data Generation 
The data are generated as follows. The first two input  

 x x x 4 1 20.3 0.7 ; x x x

5 3 40.3 0.2 ;

 

 x x x 6 1 32.2 1.7 ; x x x

7 6 52.1 1.2 ;

 

 x x x 8 2 71.4 1.2 ; x x x

9 2 11.3 2.1 ;

 

 x x x 10 6 91.3 2.3 ; x x x

10

1

 i i
i

b




 

which means that the input matrix X is of rank 2. Then, 
the output is computed as a weighed sum of all inputs as 
follows:  

y x                 (24) 

where,  




0.07, 0.03, 0.05, 0.04, 0.02,

1.1, 0.04, 0.02, 0.01, 0.03

ib  

   

1, ,10i

 

for  . The total number of generated data sam- 
ples is 128. All variables, inputs and output, are assumed 
to be noise-free, which are then contaminated with addi- 
tive zero mean Gaussian noise. Different levels of noise, 
which correspond to signal-to-noise ratios (SNR) of 10, 
20, and 50, are used to illustrate the performances of the 
various methods at various noise contributions. The SNR 
is defined as the variance of the noise-free data divided 
by the variance of the contaminating noise. A sample of 
the output data, where SNR = 20 is shown in Figure 1. 

 

 

Figure 1. A sample output data set used in the synthetic example for the case where SNR = 20 (solid line: noise-free data; dots: 
noisy data). 
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4.1.2. Simulation Results 
The simulated data are split into two sets: training and 
testing. The training data are used to estimate inferential 
models using the various modeling methods, and the 
testing data are used to compute the model prediction 
MSE (as shown in Equation (24)) using unseen data. To 
make statistically valid conclusions about the perform- 
ances of the various modeling techniques, a Monte Carlo 
simulation of 1000 realizations is performed and the re- 
sults are shown in Table 1 and Figure 2. These results 
show that the performance of RR is better than that of 
OLS, and that the performances of the LVR modeling 
techniques (PCR, PLS, and RCCA) clearly outperform 
the performances of the full rank models (OLS and RR). 
This is, in part, due to the fact that in LVR modeling, a 
portion of the noise in the input variables is removed 
with the neglected principal components, which enhances 
the model prediction. This is not the case in full rank 
models (OLS and RR) where all inputs are used to pre- 
dict the model output. The results also show that the per- 
formances of PCR and PLS are comparable. These re- 
sults agree with those reported in the literature [24,25], 
where the number of principal components is freely op- 
timized for each model using cross validation and the 
models predictions are compared using unseen testing 
data. The optimum numbers of principal components 
used by the various LVR models for the case where 

 are shown in Figures 3(a), (c) and (e), which 
show that the optimum number of principal components 
used in PCR is usually more than what is used in PLS 
and RCCA to achieve a comparable prediction accuracy. 
The results in Table 1 and Figure 2 also show that 
RCCA provides a slight advantage over PCR and PLS 
when the optimum value of the regularization parameter 

a

=20SNR

  is used. The value of a  is optimized using cross 
validation as shown in the RCCA problem formulation 
given in Equation (22). The optimization of a  for one 
realization is shown in Figure 4, in which a  is opti- 
mized by minimizing the cross validation MSE of the 
estimated RCCA model with respect to the testing data. 
Note also from Figures 3(a), (c) and (e), which compare 
the number of principal components used by the various  
 
Table 1. Comparison between the prediction MSE’s ob- 
tained by the various modeling methods with respect to the 
noise-free testing data. 

Model Type SNR = 10 SNR = 20 SNR = 50 

RCCA 2.117 1.067 0.4294 

PLS 2.183 1.111 0.4510 

PCR 2.223 1.127 0.4565 

RR 2.288 1.148 0.4584 

OLS 3.849 1.955 0.7853 

 

 

 

Figure 2. Histograms comparing the prediction MSE’s for 
the various modeling techniques and at different signal-to- 
noise ratios. 
 
modeling methods, that RCCA is capable of providing 
this improvement using a smaller number of principal 
components than PCR and PLS. 

4.1.3. Effect of Scaling the Data on the Predictions 
and Dimensions of Estimated Models 

As mentioned earlier, scaled input and output data are 
used in this example to estimate the various inferential 
models. To illustrate the advantages of scaling the data 
(over using the raw data), the prediction and the number 
of principal components used (in the case of LVR models) 
are compared for the various model estimation tech- 
niques. To do that, a Monte Carlo simulation of 1000 
realizations is performed to conduct this comparison, and 
the results are shown in Figures 3 and 5. Figure 5, 
which compares the MSE for the various modeling tech- 
niques using scaled and raw data, shows a clear advan- 
tage for data scaling on the models’ predictive abilities.  
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                                         (a)                                        (b) 

 
                                         (c)                                        (d) 

 
                                         (e)                                        (f) 

Figure 3. Histograms comparing the optimum number of principal components used by the various modeling techniques for 
scaled and raw data for the case where SNR = 20. 
 

Optimal value 

Regularization parameter in RCCA (τa) 

M
S

E
 

 

Figure 4. Optimization of the RCCA regularization parameter using cross validation with respect to the testing data. 
 
Figure 3, on the other hand, which compares the effect 
of scaling on the optimum number of principal compo- 
nents (for PCR, PLS, and RCCA), shows that when 
scaled data are used, smaller numbers of PCs are needed 
for all model estimation techniques, and that RCCA uses 
the least number of PCs among all techniques. 

4.2. Example 2: Inferential Modeling of  
Distillation Column Compositions 

In this example, the various modeling techniques are 
compared when they are used to model the distillate and 
bottom stream compositions of a distillation column from 
other easily measured variables. 
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4.2.1. Process Description 
The column used in this example, which is simulated 
using Aspen Plus, consists of 32 theoretical stages (inclu- 
ding the reboiler and a total condenser). The feed stream, 
which is a binary mixture of propane and isobutene, en- 
ters the column at stage 16 as a saturated liquid. The feed 
stream has a flow rate of 1 kmol/s, a temperature of 322 
K, and a propane composition of 0.4. The nominal steady 
state operating conditions of the column are presented in 
the Table 2. 

4.2.2. Data Generation 
The data used in this modeling problem are generated by 
perturbing the flow rates of the feed and the reflux 
streams from their nominal operating conditions. First, 

step changes of magnitudes ±2% in the feed flow rate 
around its nominal condition are introduced, and in each 
case, the process is allowed to settle to a new steady state. 
After attaining the nominal conditions again, similar step 
changes of ±2% in the reflux flow rate around its nomi- 
nal condition are introduced. These perturbations are 
used to generate training and testing data (each consist- 
ing of 64 data points) to be used in developing the vari- 
ous models. These perturbations (for the training and 
testing data sets) are shown in Figures 6(e)-(h). 

In this simulated modeling problem, the input vari- 
ables consist of ten temperatures at different trays of the 
column, in addition to the flow rates of the feed and re- 
flux streams. The output variables, on the other hand, are 
the compositions of the light component (propane) in the  

 

 

Figure 5. Comparison between the prediction MSE’s of the various modeling techniques using scaled and raw data for the 
case where SNR = 20. 
 

Table 2. Steady state operating conditions of the distillation column. 

Process Variable Value Process Variable Value 

Feed    

F 1 kg·mole/sec P 1.7022 × 106 Pa 

T 322 K xD 0.979 

P 1.7225 × 106 Pa Reboiler Drum  

zF 0.4 B 0.5979 kg·mole/sec 

Reflux Drum  Q 2.7385 × 107 Watts 

D 0.40206 kg·mole/sec T 366 K 

T 325 K P 1.72362 × 106 Pa 

Reflux 62.6602 kg/sec xB 0.01 
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                                        (a)                                        (b) 

 
                                        (c)                                        (d) 

 
                                        (e)                                        (f) 

 
                                        (g)                                        (h) 

Figure 6. Sample data sets showing the changes in the feed and reflux flow rates and the resulting dynamic changes in the 
distillate and bottom stream compositions; For the composition data—solid line: noise-free data, dots: noisy data, SNR = 20. 
 
distillate and bottom streams (i.e., Dx  and Bx , respec- 
tively). The dynamic temperature and composition data 
generated using the Aspen simulator (due to the pertur- 
bations in the feed and reflux flow rates) are assumed to 
be noise-free, which are then contaminated with zeros 
mean Gaussian noise. To assess the robustness of the 
various modeling techniques to different noise contribu- 
tions, different levels of noise (which correspond to sig- 
nal-to-noise ratios of 10, 20 and 50) are used. Sample 
training and testing data sets showing the effect of the 
perturbations on the column compositions are shown in 
Figures 6(a)-(d) for the case where the signal-to-noise 
ratio is 20. 

4.2.3. Simulation Results 
The simulated distillation column data (training data and 
testing) used in this example are scaled as discussed in 
Example 1. The training data set are used to estimate the 
model, while the testing data are used to optimize and 
validate the quality of the estimated models. As per- 
formed in example 1, the number of principal compo- 
nents (in the case of LVR techniques, i.e., PCR, PLS, and 
RCCA) and other parameters (such as the regularization 
parameters, i.e., λ in RR or a  in RCAA) are deter- 
mined by minimizing the cross validation MSE for the 

To obtain statistic

unseen testing data. 

ally valid conclusions about the per- 
formances of the various modeling techniques, a Monte 
Carlo simulation of 1000 realizations is performed, and 
the results are presented in Figure 7 and Table 3. These 
results show that, in general, the LVR modeling methods 
(PCR, PLS, and RCCA) outperform the full rank meth- 
ods (OLS and RR). The results also show that the per- 
formances of PCR and PLS are comparable, and that by 
optimizing its regularization parameter a , RCCA can 
provide an improvement over these te hniques. The 
value of a

c
  is optimized using cross validation as 

shown in th RCCA problem formulation given in Equa- 
tion (22). The optimization of a

e 
  for one realization for 

the output Dx  is shown in Figure 8. Finally, the results 
show that t prediction abilities of all modeling tech- 
niques degrade for larger noise contents, i.e., for smaller 
signal-to-noise ratios. The results obtained in this distil- 
lation column example agree with the results obtained in 
Example 1. 

he 

5. Conclusion 

are very commonly used in practice to 

theoretical review, an extension to optimize RCCA for  

Inferential models 
estimate variables which are difficult to measure from 
other easier-to-measure variables. This paper presents a 
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Figure 7. Histograms chart comparing the prediction MSE’s of the various modeling techniques using the distillation column 
data. 

3. Comparison between the prediction MSE’s (with respect to the noise-free testing data) of the distillate and bottom 
ream compositions for the various modeling techniques and at different signal-to-noise ratios. 

 
Table 
st

output- Dx  output- Bx  
Model Type 

SNR = 10 (×106) SNR ×106) SNR = 50 (×106) SNR = 10 (×106) SNR ×107) SNR = 50 (×107) = 20 (  = 20 (

RCCA 6.7717 3.6050 1.7532 1.2393 6.9890 3.0253 

PLS 6.9062 3.7153 1.8206 1.4192 7.2797 3.2215 

PCR 6.9606 3.7237 1.8117 1.4707 7.4419 3.2046 

RR 7.706 4.0508 1.8929 1.1979 7.0000 3.1120 

OLS 10.787 5.6261 2.549 2.3522 11.670 5.017 

 
enhan diction, l as a com e analysis 

r various inferential modeling techniques, which in- 

 

gression ( chniques R, PLS, and RCCA) 
outperform the full rank techniques (i.e., OLS and RR). 

ced pre as wel parativ
fo
clude ordinary least square (OLS) regression, ridge re- 
gression (RR), principal component regression (PCR), 
partial least square (PLS), and regularized canonical cor- 
relation analysis (RCCA). The theoretical review shows 
that the loading vectors used in LVR modeling can be 
computed by solving eigenvalue problems. For RCCA, it 
is shown that it can be optimized (to provide enhanced 
prediction ability) by optimizing its regularization pa- 
rameter, which can be performed by solving a nested 
optimization problem. The various inferential modeling 
techniques are compared through two examples, one us- 
ing synthetic data and the other using simulated distilla- 
tion column data, where the distillate and bottom stream 
compositions are estimated using other easily measured 
variables. Both examples show that the latent variable 

This is due to their ability to improve the conditioning of 
the model by neglecting principal components with small 

re LVR) te (i.e., PC

eigenvalues, and thus reducing the effect of noise on the 
model prediction. The obtained results also show that the 
performances of PCR and PLS are comparable when the 
number of principal components used are freely opti- 
mized using cross validation. Finally, it is shown that by 
optimizing its regularization parameter, RCCA can pro- 
vide an improvement (in terms of its prediction MSE) 
over PCR and PLS using a smaller number of principal 
components. 

6. Acknowledgements 

This work was made possible by NPRP grant NPRP  

Copyright © 2012 SciRes.                                                                                  ICA 



M. MADAKYARU  ET  AL. 387

 

Optimal value 

Regularization parameter in RCCA (τa) 

M
SE

 

 

Figure 8. Optimization of the RCCA regularization parameter using cross validation with respect to the testing data. 
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ppendix A. Determining the Loading A
Vectors Using PCR 

tarting with the optimization problem shown in Equa- 
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the Lagrangian function can be written as:  

 ,  T   1 .T i i i i i iXXXyL a a C a C a     (C.2) 

Taking the partial derivative of L  with respect to a  
and equating it to 

i

0 get,  we 

2 i
i


 

 Xy XX

L
C C

a

1 ˆi i

0,i a      (C.3) 

which gives the following solution,  

 XX XyC C a            (C.4) 

where 2 .i i   Multiplying Equa ˆT
ition (C.4) by XX

t,

ˆ ˆ . i i i

a C  
and enforcing the constraint (i.e., ˆ 1 a ), we ge  ˆT

i iXXa C

ˆT T
i i  XXC a         (C.5) 

Taking the transpose of Equation (C.5), we get,  

Xya C a

ˆ . i iyXC a                (C.6) 

Combing Equations (C.4) and (C.
genval

ˆ .i i a       

Appendix D. Determining the Loading 
V

Starting with the optimization p
tio

a i   I

   ,  1 1 . T T
i i i i i a   

6), we get the fol- 
lowing ei ue problem:  

1 2ˆi
 XX Xy yXC C C a     (C.7) 

ectors Using RCCA 

roblem shown in Equa- 
n (20), i.e., 

ˆ arg  max
T

i ia a C

 . .   1

i

T
i as t 

Xy
a

XXa C 1 a
    (D.1) 

the Lagrangian multiplier function can be written as 
follows: 
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