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ABSTRACT 

In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme 
is used to avoid the numerical instabilities. The Burgers’ equation subjected to deterministic boundary conditions and 
random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simula-
tions are used to validate and compare the developed solver. The mean, standard deviation and the probability distribu-
tion function (p.d.f) of the stochastic Burgers’ solution is quantified and the effect of some parameters is investigated. 
The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, 
Monte-Carlo simulations are done in parallel and the execution times are compared in both cases. 
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1. Introduction 

In engineering fields, most models are represented as 
partial differential equations (PDEs), assuming all input 
data are perfectly known. Unfortunately, geometry and 
material characteristics for instance would rather present 
uncertainties. Under those conditions, the output data 
become also uncertain. To deal with propagation of the 
input data uncertainties to the output data, probabilistic 
models are more appropriate than deterministic ones. 
Several methods of solution are developed to assess the 
response due to the uncertainties. This response depends 
on two main factors: the first factor is the geometric do-
main discretization; the second is the discretization in-
volved random process [1,2]. The methods of solution 
may be classified according to the first factor to meshless 
methods [3], stochastic finite difference methods [4], and 
stochastic finite element methods [5]. On the other hand, 
according to the second factor the methods of solution 
may be classified to Monte-Carlo simulations (MCS) [6], 
perturbations [7], and spectral stochastic finite element 
methods (SSFEM) [8,9]. Recently, the SSFEM is one of 
the most widely used methods [7].  

On the other hand, the capability of neural network to 
analyze stochastic finite element is discussed by Hurtado 
[10]. He discussed simple beam with stochastic modulus 
of elasticity and deterministic load. Homogenous chaos 
expansion Radial basis (RBF) neural network was trained 
with some pairs of input and output by MCS simulations. 

Later, El-Beltagy et al. [11] developed this method to 
include the effect of random load and random modulus of 
elasticity using both of RBF neural network and polyno-
mial chaos expansion (PCE). 

Burgers’ equation is an important partial differential 
equation from fluid dynamics, and is widely used for 
various physical applications, such as modeling of gas 
dynamics and traffic flow, shock waves [12], investigat-
ing the shallow water waves [13,14], in examining the 
chemical reaction diffusion model of Brusselator etc. [15]. 
In fact, it can be used as a model for any nonlinear wave 
propagation problem subject to dissipation [16]. Depend- 
ing on the problem being modeled, this dissipation may 
result from viscosity, heat conduction, mass diffusion, 
thermal radiation, chemical reaction, or other source. 
Burgers’ equation may be analyzed by using the exact 
shock-wave solution. In the current paper, finite-volume 
upwind technique is used to avoid the numerical insta-
bilities and compute solution for small viscosity as dis-
cussed by Stephens et al. [17]. 

The SSFEM, and also the stochastic finite-volume, 
produces large sparse linear systems. Also, Burgers’ 
equation with zero or small viscosity will be hyperbolic 
PDE which produces stiff linear system and requires very 
small time steps to be solved adequately. To enhance the 
performance of the developed solver, parallelization 
should be considered. Additionally, MCS should be of 
order 104 or more for reliable comparisons. These simu-
lations should be done in parallel as well. In the current 
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paper, parallelization of both techniques is considered. 

2. Polynomial Chaos Expansion 

Polynomial chaos expansion has many advantages in 
evaluating both statistical moments of any order and the 
p.d.f of system response which represents a complete 
solution of the random systems. Ghanem and Spanos [8], 
evaluated the system response as a summation of non- 

linear functional of a set of  multiplied by    
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deterministic constants. The system response in terms of 
polynomial chaos is written in the form: 

     

 

0 0 1 2
1 1 1

3
1 1 1

,

, ,

ii i ij
i i j

ijk
i j

j

k
i j k

a a a

a

 



 

 


  

  

  

  

     

  

 

 
   (1) 

where p  is the polynomial chaos of order  in a set 
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where ci is a set of deterministic coefficients, and  
 is a set of polynomials of random variables, 

these polynomials are orthogonal. 
 i n   

3. Stochastic Finite-Volume Formulation for 
Burgers’ Equation 

Consider the one dimensional Burgers’ equation [13,14] 
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Subject to the following deterministic initial and bound- 
ary conditions:  
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When the time derivative term is dropped from equa- 
tion, and for large viscosity, we are left with an elliptic 
partial differential equation representing the steady-state 
balance between the convective and diffusive terms. The 
difficulty in computing solutions to the Burgers’ equation 
lies in the inability to effectively balance the nonlinear 
convective term, and the diffusive term. For zero (or 
small) viscosity, the equation tends to be hyperbolic and 
the solution technique should be adapted to account for 
the characteristics of the equation.  

Considering   is a stochastic viscosity, the response 
will be also stochastic and they can both expanded using 
polynomial chaos expansion as:  
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The number of polynomials ( ) is a function of the 
required order (p) and dimension (M). Then, the differen-
tial equation can be written as: 

pc

0 0 0

2

2
0 0

pc pc pc

i i i j j i
i i j

pc pc

j i j i
i j

d d
t x

v d
x

  

 

d
            

 
    

  

 
       (6) 

Galerkin projection scheme can be applied to Equation 
(6) through multiplying both sides by Ψi and applying the 
expectation operator, yields: 
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Using the finite-volume node-centered approach by 
integrating over the control volume, yields: 
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By using the upwind scheme for the face-centered 
values, then the differential equation is reduced to: 
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or 
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Equations (10a) and (10b) result in sparse linear sys- 
tem. The linear system becomes larger as the order 
and/or the dimension of the polynomial chaos are in- 
creased. Figure 1 shows the sparsity pattern when dis- 
cretizing the domain into 100 divisions and for different 
values of the order and dimension. The number of non- 
zeros (NNZ) is shown below the figure of each case. 
Sparse storage should be considered to save the memory 
and to enhance the performance by using a suitable 
sparse linear solver. 

4. Solution Techniques and Discussion 

Consider the one dimensional viscous Burgers’ equation 
on the interval [0, 1] with Dirichlet boundary conditions; 
u = 1 at x = 0 and u = −1 at x = 1 respectively. The inter- 
val is discretized into N = 128 finite elements. Different 
values of order p and dimension M are used with differ- 
ent values of the mean viscosity 0 . In the current work, 
the stochastic variation of the viscosity is taken as: 
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This means that the first stochastic component of the 
viscosity is only 20% of the mean value to avoid nega-
tive values of viscosity. Using the above proposed solver, 
we can notice that the effect of the mean viscosity on the 
solution. The larger the viscosity is, the smoother the 
solution is (parabolic behavior of Burgers’ equation). On 
the other hand, as the mean viscosity decreases (and may 
reach zero) the response will be similar to the hyperbolic 
wave equation and a shock wave (with zero velocity) will 
be constructed. Figure 2 shows the mean solution using 
both the stochastic solver and the MCS simulations. The 
mean solutions are in a good agreement for different val-
ues of the mean viscosity. 

Figure 3 shows the convergence history of the sto-
chastic finite volume solver for different mean values of 
viscosity. The residual logarithm is reduced up to −10. 
The figure shows that the number of iterations required 
for convergence increases as the mean value of the vis-
cosity is decreased. Consequently the CPU time in-
creases for small values of viscosity due to the slow rate  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Sparsity pattern for for different order (p) and 
different dimension (M). The number of nonzeros (NNZ) is 
shown. (a) p = 1, M = 1; (b) p = 1, M = 2; (c) p = 2, M = 2; (d) 
p = 2, M = 4. 
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Figure 2. Mean value of the stochastic solver and MCS for 
different values of mean viscosity. (a) Viscosity = 1.0; (b) 
Viscosity = 0.1; (c) Viscosity = 0.01; (d) Viscosity = 0.001. 

 

Figure 3. Solver convergence (Log-Log scale) for different 
values of mean viscosity with p = 2 and M = 2. 
 
of convergence and smaller time steps. The CPU time 
needed to solve the stochastic system is listed in Table 
(1). The used workstation was intel® xean® CPU X5690 
3.47 GHz (6 cores), 8 GB RAM, 64-bit O.S. The PAR- 
DISO (Parallel Direct Solver) [18,19] is used in solving 
the stochastic linear system. The parameters of the PAR- 
DISO solver are set to utilize the 6 cores available on the 
workstation. More than 50% performance increase is 
obtained in solving the linear system when using PAR- 
DISO.  

Additionally, the stochastic linear system can be con-
structed in parallel, but this was not done in the current 
work as it will consume more memory storage. The MCS 
simulations can be done by generating random normal 
distribution for a certain mean viscosity and use these 
values to run the deterministic finite-volume solver. The 
deterministic solver can be developed in a similar way as 
the above described stochastic solver. In the current work, 
the stochastic solver with zero order and zero dimension 
is used instead. This will assure that all parameters are 
the same when comparing the two solution techniques 
(Stochastic and MCS). The MCS simulations are done 
also in parallel. The MCS simulations are independent 
runs and hence the parallelization is straight forward us-
ing Open-MP support available with the current C++ 
compilers. Histograms of the stochastic values of viscos-
ity with mean value of 0.1 is shown in Figure 4.  

Table 1 shows the CPU time comparisons between the 
stochastic solver and the MCS simulations. It can be no-
tice that using of stochastic solver decrease CPU time 
dramatically with acceptable accuracy. 

The standard deviation of stochastic response of Bur-
gers’ equation for different values of viscosity compared 
with MCS is shown in Figures 5 and 6. It can be noticed 
that the standard deviation shrinks vanishes around the 
midpoint for all values of the mean viscosity. The MCS 
simulations are in a good agreement with the stochastic 
solver for larger mean values of the viscosity. As the  
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Figure 4. Histogram of the random values of viscosity used 
in MCS with mean value = 0.1. 
 
Table 1. Time comparison (seconds) between MCS and the 
stochastic solver for different mean viscosity, different or-
der (p) and dimension (M). 

 visc = 0.1 visc = 0.01 

MCS: 100 29.33 3.69 

MCS: 1000 233.48 30.9 

MCS: 10000 1991.33 303.56 

PCE: p = 1 M = 1 2.9 1.25 

PCE: p = 2 M = 2 11.8 7.27 

 
mean viscosity decreases, the deviations with the MCS 
are increased. Figure 5(d) is the same as Figure 5(c) but 
with different domain to show the deviations when using 
both solution techniques. Similarly, Figures 6(a) and (b) 
are the same but with different domains. 

Figure 7 shows the relative error in the mean and the 
standard deviation when using the two techniques. As it 
is shown in the figure, the relative error in the mean in-
creases as the mean viscosity decreases. On the other 
hand, the relative error in the standard deviation decrea- 
ses as the mean viscosity decreases. 

Figure 8 shows the first stochastic solution component 
of the polynomial chaos expansion  1d  for different 
values of the mean viscosity. As the viscosity decreases, 
the first stochastic component becomes localized around 
the midpoint and its magnitude increases. The other 
(higher) stochastic components are small compared to the 
first component. So, the first component is approximately 
equals to the standard deviation.  

Figure 9 shows the stochastic solution (mean plus first 
stochastic component) for different values of the mean 
viscosity. The first component is scaled up by a factor of 
10 to clarify the effect on the stochastic response. There 
are irregularities in the solution due to the random varia-
tion of the viscosity. These irregularities may become 
very sharp even around the shock wave. 

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

X

st
an

d
ar

d
 d

ev
ia

ti
o

n

 

 

MC 100

MC 1000
PC P=2 M=2

 
(a) 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

X

st
an

d
ar

d
 d

ev
ia

ti
o

n

 

MC 100
MC 1000
PC  P=2 M=2

 
(b) 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

X

st
an

d
ar

d
 d

ev
ia

ti
o

n

 

 

MC 100
MC 1000
PC  P=2 M=2

 
(c) 

0.4 0.45 0.5 0.55 0.6
0

0.02

0.04

0.06

0.08

0.1

X

st
an

d
ar

d
 d

ev
ia

ti
o

n

 

 

MC 100
MC 1000
PC  P=2 M=2

 
(d) 

Figure 5. Standard deviation of the stochastic solver and 
MCS for different values of mean viscosity. (a) viscosity = 
1.0; (b) viscosity = 0.1; (c) viscosity = 0.01; (d) viscosity = 
0.01. 
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(b) 

Figure 6. Standard deviation of the stochastic solver and 
MCS for mean viscosity = 0.001. (a) and (b) are the same 
but different domain. 
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(b) 

Figure 7. Relative error for the mean (a) and the standard 
deviation (b) using the stochastic solver and MCS for dif-
ferent values of viscosity.  
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Figure 8. The first term polynomial chaos d1 of the stochas-
tic response for different values of the mean viscosity with p 
= 2 and M = 2. 
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Figure 9. Mean solution plus the first stochastic component 
of the response obtained for different values of viscosity (the 
1st stochastic component is scaled by a factor of 10). 
 

Figure 10 illustrates the p.d.f of the solution at se-
lected nodes for different values of the mean viscosity. 
The p.d.f is in a good agreement for larger values of the 
mean viscosity. As the mean viscosity decreases, the 
p.d.fs from both techniques deviate. The minimum and 
the maximum values of the response can be obtained 
easily, this issue is very important in the design stage and 
for reliability and safely analysis. 

5. Conclusion 

The stochastic finite-volume solution has advantages in 
evaluating the p.d.f of the system response with mini-
mum cost. The developed solver based on the polynomial 
chaos expansion succeeds in analyzing stochastic nonlin- 
ear systems with high performance. Using the upwind 
scheme was proven as an appropriate choice to handle 
the system in the parabolic regime and also in the hyper-
bolic regime. The MCS simulations deviate from the 
stochastic solution when the system tends to be hyper-
bolic (mean viscosity decreases). Parallelization of the 
stochastic solver is important to increase the performance 
especially when solving the resulting linear sparse sys-  
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(d) 

Figure 10. The p.d.f of stochastic solver and MCS for dif-
ferent values of mean viscosity: (a) at x = 0.5078, viscosity = 
1.0; (b) at x = 0.3047, viscosity = 0.1; (c) at x = 0.4531, vis-
cosity = 0.01; (d) at x = 0.4844, viscosity = 0.001.  

tem. The stochastic solver developed in this work can be 
extended to higher dimensions in a straight forward way.  
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