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ABSTRACT 

The paper forms the first part of an introduction to possible impacts of climate change on daily streamflow and ex- 
tremes in the Province of Ontario, Canada. In this study, both conceptual and statistical streamflow simulation modeling 
theories were collectively applied to simulate daily streamflow volumes. Based on conceptual rainfall-runoff modeling 
principle, the predictors were selected to take into account several physical factors that affect streamflow, such as 1) 
current and previous quantities of rainfall over the watershed; 2) an index of pre-storm moisture conditions; 3) an index 
of pre-storm evapotranspiration capacities; and 4) a seasonal factor representing seasonal variation of streamflow vol- 
ume. These rainfall-runoff conceptual factors were applied to an autocorrelation correction regression procedure to de- 
velop a daily streamflow simulation model for each of the four selected river basins. The streamflow simulation models 
were validated using a leave-one-year-out cross-validation scheme. The simulation models identified that the explana- 
tory predictors are consistent with the physical processes typically associated with high-streamflow events. Daily 
streamflow simulation models show that there are significant correlations between daily streamflow observations and 
model validations, with model R2s of 0.68 - 0.71, 0.61 - 0.62, 0.71 - 0.74, and 0.95 for Grand, Humber, Upper Thames, 
and Rideau River Basins, respectively. The major reason for the model performance varying across the basins might be 
that rainfall-runoff response time and physical characteristics differ significantly among the selected river basins. The 
results suggest that streamflow simulation models can be used to assess possible impacts of climate change on daily 
streamflow and extremes at a local scale, which is major objective of a companion paper (Part II). 
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1. Introduction 

Increased flooding risks from heavy rainfall events are 
recognized as the most important threat from climate 
change in many regions of the world (e.g., [1-6]). In 
Canada, the number of flood disasters has significantly 
risen in the past three decades. From the Canadian Dis- 
aster Database of the Public Safety and Emergency Pre- 
paredness Canada [7], there were less than 10 flood dis- 
asters per decade in the first half of the 20th century and 
44, 50, and 51 in the 1970s, 1980s, and 1990s, respec- 
tively. To better understand whether the frequency of 
heavy rainfall-related flooding will continue to increase 
in the 21st century, Environment Canada, in partnerships 
with four local Conservation Authorities, Ontario Minis- 
try of Natural Resources, and CGI Insurance Business 
Services, has completed a three-year research project. 

This project attempts to assess possible impacts of cli- 
mate change on future daily heavy rainfall, high/low 
streamflow, and flooding risks in the 21st century for the 
four selected watersheds (Grand, Humber, Rideau, Upper 
Thames) in the Province of Ontario, Canada. This current 
paper and a companion paper (Part II: future projection, 
Cheng et al. [8]) focus on projection of changes in fre- 
quency of future daily high-/low-streamflow events, us- 
ing downscaled GCM simulations of future daily rainfall 
quantities derived by Cheng et al. [9,10]. 

It has been well known that there are three types of 
rainfall-runoff transfer models: 1) physically-based, 2) 
conceptually-based, and 3) statistical. As Wood and 
O’Connell [11] pointed out, the key objective of the 
physically-based approach is to use “the equations of 
mass, energy, and momentum to describe the movement 
of water over the land surface and through the unsatu- 
rated and saturated zones.” Physically-based models at- *Corresponding author. 
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tempt to account for the spatially and temporally varying 
nature of the hydrological processes of water movement, 
considering watershed inputs (precipitation), losses (eva- 
potranspiration), and characteristics (topography, per- 
meability, vegetation) [12-14]. Although physically-based 
rainfall-runoff models can theoretically simulate the rain- 
fall-runoff response, data support, in practice, is limited 
[15]. Many requirements of physically-based models 
cannot be obtained and calibrated using available rain- 
fall-runoff data. 

An alternative to the physically-based approach is the 
conceptually-based approach. This approach can simplify 
representation of physical processes according to the 
researchers’ conceptualization of the perceived important 
underlying rainfall-runoff transfer processes [15]. There 
are various conceptual models that apply different per- 
ceptions and conceptualizations of system components. 
For example, the antecedent precipitation index (API) is 
one conceptual model that, in a simple manner, uses a 
linear equation to transform the precipitation excess into 
streamflow forecasts [16-19]. The API, which is cur- 
rently used operationally by the Ontario Ministry of 
Natural Resources in their flood forecasting program, is 
computed from rainfall data for a number of days prior to 
a storm. Bruce and Clark [17] developed the API for 
Ontario, Canada and pointed out that the API takes into 
account several physical factors that affect streamflow, 
such as 1) previous moisture conditions of the watershed; 
2) infiltration rates of rain into the soil of the watershed 
basin; and 3) initial losses of rain to surface detention. In 
the current study the API was used as a predictor to 
simulate daily streamflow volumes. 

A study [15] has tested 12 conceptual model structures 
on 28 different kinds of catchments in the UK to select 
conceptual models for use in model regionalization stud- 
ies. Although the study was unable to suggest the pre- 
ferred conceptual model structure for a specific type of 
the catchment, the results from the study indicated that 
the four model structures might be the most suitable for 
regionalization across UK catchments. The four models 
are the modified Penman model with two parallel linear 
routing reservoirs, and the probability distributed soil 
moisture model with either two parallel routing linear 
reservoirs, three parallel linear routing reservoirs, or the 
macropore adaptation. This study suggests that it is very 
challenging for researchers to select an appropriate con- 
ceptual model for a particular watershed of interest.  

The third category of models—statistical models—has 
also been commonly used to simulate rainfall-runoff 
processes, referring as the systems approach [11,12]. 
Statistical simulation models focus on development of 
direct relationships between the streamflow volume and 
values of precipitation and other parameters as well as 

streamflow at previous times. Compared to physically- 
based models, the statistical model is relatively easy to 
use and provides quick forecasts of streamflow values in 
the simplest way [12]. The statistical schemes used in the 
previous studies differ according to application of dif- 
ferent statistical fitting procedures. For example, an au- 
toregressive and moving average (ARMA) model has 
become quite popular for both simulation and forecasting 
of hydrometeorological processes [20]. The ARMA as- 
sumes that the flow at any time is a function of the ante- 
cedent flows, and it does not properly account for the 
rising limb and recession characteristics that are typical 
of hourly and daily flow hydrographs [20,21]. Another 
approach—artificial neural network (ANN)—has been 
employed in modeling rainfall-runoff processes (e.g., 
[22-25]). Hsu et al. [25] pointed out that the ANN ap- 
proach provided a better representation of the rainfall- 
runoff relationship in the medium-size Leaf River Basin 
near Collins, Mississippi than the ARMA time series 
approach and the conceptual Sacramento soil moisture 
accounting (SAC-SMA) model. Using past rainfall 
depths as the only input information, Toth et al. [26] 
pointed out that the ANN approach could significantly 
improve flood forecasting accuracy compared to the use 
of the ARMA and non-parametric nearest-neighbours 
method. However, the ANN approach is often criticized 
as a black-box model since it does not provide much in- 
sight into the model structure (e.g., [27]). After applying 
a nonlinear polynomial regression and ANN models to 
simulate daily discharge at Glenmore Reservoir (located 
in the southwest of Calgary, Alberta), Chen et al. [27] 
concluded that the polynomial regression model with ten 
terms yielded superior results to the ANN.  

In the previous studies, the statistical streamflow 
simulation modeling selected only rainfall and other me- 
teorological variables as predictors but didn’t fully take 
into consideration the conceptually-based modeling prin- 
ciples. The statistical modeling should also consider the 
conceptualization of the perceived underlying rainfall- 
runoff transfer processes that were used in conceptual 
streamflow simulation modeling. The current paper de- 
scribes the background to the development of daily 
streamflow quantitative simulation models, combining 
theories from both conceptual and statistical modeling 
altogether. Several physical factors represented concep- 
tualization of the perceived important underlying rain- 
fall-runoff transfer processes were used as predictors in 
autocorrelation correction regression analysis (refer to 
Analysis Techniques section for detailed information). 
These daily streamflow simulation models developed in 
this current study are primarily applied to project chan- 
ges in frequency of future daily high- and low-stream- 
flow events, which is the major objective of a companion 
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paper (Part II: future projection, Cheng et al. [8]). basins, such as areas, physical features, mean streamflow 
volume and seasonal rainfall totals (April-November), 
are outlined in Table 1. As described in a recent study 
[9], there are a couple of reasons for the selection of the 
warm season (April-November). First, this study is part 
of a project focusing on investigation of climate change 
impacts on future daily rainfall-related high-/low-stream- 
flow events, of which snowmelt or ice jam flooding 
events were not considered. Second, in the study area, 
most of the heavy rainfall events occur during this warm 
season. 

This paper is organized as follows: in Section 2, the 
main characteristics of selected watersheds are described. 
Section 3 summarizes data sources and treatment. Sec- 
tion 4 presents the analysis techniques as applied to de- 
velopment and validation of daily streamflow simulation 
models. Section 5 includes the results and discussion, 
and the conclusions and recommendations from the study 
are summarized in Section 6. 

2. Selected Watersheds 
The characteristics of the selected river basins are 

quite different from one another. For example, the 
Rideau River Basin is the most naturalized tributary  

Four watersheds in southern Ontario were selected: 
Grand, Humber, Rideau, and Upper Thames Rivers, as 
shown in Figure 1. The main characteristics of the river  
 

 

Figure 1. Study area and location of four selected river basins in Ontario, Canada (Dots: climate stations having daily obser-
vations. Stars: location of the cities with meteorological stations having hourly observations). 
 

Table 1. Main characteristics of the studied watersheds and tributaries of four selected river basins. 

Watersheds Tributary at Gauge Tributary/Watershed Land Use (%)

streamflow2 

(m3·s–1) River Population 
Drainage 

Area(km2) 
Seasonal  

Rainfall1(mm) 
Streamflow  

Monitoring Station
Drainage Area

(km2) 
Slope 

(m/km)
Mean Std Dev

Forest 
Woodland 

Pasture 
Crop 

Marsh 
Wetland

Urban

Grand 925,000 6700 619 
Nith River near 

Canning 
1120 1.2 8.94 16.06 20 70 8 2 

Humber 670,000 903 547 
Black Creek at 
Scarlett Road 

58 0.9 0.78 1.39 0 0 2 98 

Rideau 620,000 4000 604 
Jock River near 

Richmond 
559 2.0 6.12 13.57 39 45 15 1 

Upper 
Thames 

420,000 3482 649 
Middle Thames 

River at Thamesford
277 1.6 2.61 5.06 10 87 0 3 

1Mean seasonal rainfall totals derived from the average of selected climate stations’ daily rainfall within the river basin for the period April-November 
1958-2002; 2Daily means streamflow volume and standard deviation for the period April-November 1958-2002 in Grand and Upper Thames Rivers, 
April-November 1967-2002 in Humber River, and April-November 1970-2002 in Rideau River. 
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among the selected river basins. Specifically, it has the 
greatest percentage coverage of forest (39%) and wet- 
land (15%). Conversely, the Humber River (the Black 
Creek tributary) flows through a developed, urban area; 
of all the selected watersheds, it has the greatest per- 
centage of urban coverage (98%). This urban watershed 
was selected, because of its canalized waterway with the 
faster rainfall-streamflow response timing compared to 
natural waterways in rural watersheds, to witness there is 
any difference in development of daily streamflow 
simulation models between urban and rural watersheds. 
Other two watersheds, the Upper Thames and Grand, are 
predominantly covered by agricultural fields with 87% 
and 70% coverage, respectively. The major soil types 
found in each of the river basins also differ: the Rideau is 
composed of clay and limestone, the Grand is governed 
by till soils (in the northern half) and sandy moraine soils 
(in the southern half), the Upper Thames is made up of 
loam and silt/clay loams, and the Humber is primarily 
concrete surfaces. 

3. Data Sources and Treatment 

Historical observations on daily rainfall and daily mean 
temperature for the period April-November 1958-2002 
were also used in this study. Daily rainfall data were 
extracted from Environment Canada’s National Climate 
Data and Information Archive. As shown in Figure 1, a 
number of climate stations within each of the river basins 
were selected for the analysis: 13, 12, 13, and 9 for 
Grand, Humber, Rideau, and Upper Thames Rivers, re- 
spectively, based on the length of the available data re- 
cord (e.g., above 25 years). Daily rainfall data observed 
at the selected climate stations in each river basin were 
used to calculate mean daily rainfall quantities, repre- 
senting average rainfall conditions for the catchments. 
Within-river-basin average daily rainfall amounts were 
used to develop daily streamflow simulation models in 
the current study. In addition, daily mean temperature 
observed at the meteorological station located in the in- 
ternational airport within each of the watersheds was 
used in daily streamflow simulation modeling. 

Daily streamflow data were retrieved from Environ- 
ment Canada’s HYDAT CD-ROM that provides access 
to the National Water Data Archive. The archive con- 
tains daily and monthly data for streamflow, water level, 
and sediment data for over 2500 active and 5500 discon- 
tinued hydrometric monitoring stations across Canada 
[28]. In each of the selected river basins, there are a 
number of streamflow monitoring stations available. To 
more effectively develop a rainfall-runoff transfer model, 
non-regulated streamflow monitoring stations should be 
used. One non-regulated streamflow monitoring station 

in each river basin was recommended and selected by 
scientists from the local Conservation Authorities, as 
shown in Table 1. Another consideration for selection of 
streamflow stations is the length of the data record. For 
both Grand and Upper Thames rivers, the data record of 
the period April-November 1958-2002 observed at the 
selected streamflow monitoring stations was used in the 
study, April-November 1967-2002 for Humber River, 
and April- November 1970-2002 for Rideau River. Of 
the selected streamflow monitoring stations, about 0.05% 
of the total days in the study period possess missing data 
for the Nith River near Canning in the Grand River Basin; 
there is no missing data for other selected streamflow 
monitoring stations in the remaining three watersheds. 

4. Analysis Techniques 

4.1. Development of Daily Streamflow  
Simulation Models 

Streamflow simulation models developed in this study 
are comprised of a two aspects: 1) selection of a regr- 
ession method and 2) selection of predictors. When time- 
series data, like daily streamflow volumes, are used in 
developing a regression-based prediction model, the se- 
rial correlation in time-series data should be taken into 
account. Without considering serial correlation, the or- 
dinary regression residuals, assumed to be independent 
of one other, are usually correlated over time due to 
autocorrelation [29]. Consequently, the regression analy- 
sis excluding autocorrelation is not suitable when using 
time-series data because the statistical assumptions on 
which the linear regression model is based are usually 
violated. On the other hand, the autoregressive model is 
not appropriate either as it does not account for the rising 
limb and recession characteristics of the daily flow hy- 
drographs [20,21]. To overcome these problems, an al- 
ternative technique that caters for both the serial correla- 
tion and rising limb/ recession characteristics should be 
employed to simulate daily streamflow volumes. Auto- 
regressive error correction regression is able to take into 
consideration both persistence and deterministic terms in 
daily streamflow simulation modeling [29]. The Statisti- 
cal Analysis Software (SAS) AUTOREG procedure [29] 
was used in the study since the procedure can simulta- 
neously estimate the regression coefficients by fitting an 
ordinary least squares model and the autoregressive error 
model parameters by fitting a generalized least squares 
model to correct the regression estimates for autocorrela- 
tion. 

Predictors used in the development of the daily stre- 
amflow simulation model are listed in Table 2. These 
predictors were selected based on a nalyses of the rela- 
tionships between streamflow and predictors as well as 
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Table 2. Predictors used in the development of daily stre- 
amflow simulation models. 

Predictor Description 

V01 Antecedent precipitation index (API) 

V02 API2 

V03 Antecedent temperature index (ATI) 

V04 
Previous-days’ rainfall amount and current-day rainfall 
amount 

V05 Polynomial function of Julian day 

 
the results derived from the previous studies (e.g., 
[17,19]). The antecedent precipitation index (API) takes 
into account several physical factors that affect stream- 
flow, as Bruce and Clark [17] pointed out, such as 1) 
pre-storm moisture conditions in the watershed, 2) infil- 
tration rates of rain into the soil of the river basin, and 3) 
initial losses of rain to surface detention. The API was 
calculated following Kohler and Linsley’s equation [16], 
using river-basin-averaged daily rainfall data: 

1
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
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 AP                (1) 

where Pt is precipitation during day t, n is the number of 
antecedent days, and k is a decay constant. The Ontario 
Ministry of Natural Resources (MNR) has used the val- 
ues n = 24 and k = 0.84 in API calculations for Ontario 
operational flood forecasting program. Before applying 
these parameters to the current study, the relationship 
between the API and decay constants and the number of 
antecedent days needs to be evaluated, using river-basin- 
averaged rainfall data, to ascertain whether the parame- 
ter’s values are representative in the study area. As an 
example shown in Figure 2 for Upper Thames River, the 
API curved lines can be divided into two distinctive 
groups by the line with 0.84 of the decay constant (simi- 
lar results were discovered for other rivers as well). With 
a larger decay constant (>0.84), it takes very long time 
(more than one or two months) for the API to approach a 
stable value. On the other hand, when using a smaller 
decay constant (<0.84), the API approaches a stable 
value in a very short time period (only a few days). 
When k = 0.84 is used, it takes about 24 days for the API 
to reach a stable value. To calculate the API for April, 
the rainfall data observed in March were used in the 
analysis. In addition to the API, the API2 was also used 
in the study since there is a quadratic relationship be- 
tween the API and daily streamflow volumes in the se- 
lected river basins based on analysis.  

The antecedent temperature index (ATI) was com- 
puted from daily mean temperature data for the seven 
days prior to the present rainfall being recorded. Daily 

mean temperature was used to compute the ATI because 
of its stronger relationship with station elevations and 
latitudes than either maximum or minimum temperatures 
[30]. The ATI was first introduced by Hopkins and 
Hackett in 1961 as a factor in the prediction of runoff 
from storm rainfall in New England and New York, the 
United States. The ATI takes into account previous 
evapotranspiration capacities that affect streamflow, espe- 
cially during drought summertime. The ATI was calcu- 
lated by the following algorithm modified from Hopkins 
and Hackett’s equation, using daily mean temperature 
observed at a meteorological station within each river 
basin: 
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where subscript i represents today, and the second term 
of the equation’s right side represents mean temperature 
(T) for the past seven days. For the early April, the ATI 
was calculated using the temperature data observed in 
the late March.  

Another important predictor for development of 
streamflow simulation models is rainfall information. 
The current-day, previous-day, and day-before-yesterday 
rainfall quantities were considered as predictors when 
developing the daily streamflow simulation models. 
Which of those to be selected as predictors depend on the 
rainfall-streamflow response time of the river basin. 
These predictors were tested to develop daily streamflow 
simulation models based upon their relationship with 
streamflow for each of the river basins. The test results 
indicated that the current-day rainfall significantly con- 
tributes to the streamflow for all selected river basins. 
The previous-day rainfall is also included in streamflow 
simulation modeling, which was selected by autoregres- 
sive error correction regression for the Humber and Up- 
per Thames Rivers. The day-before-yest erday’s rainfall 
is selected to develop daily streamflow simulation mod- 
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Figure 2. Relationships between the antecedent precipita-
tion index (API) and decay constants/the number of ante-
cedent days using Upper Thames River Basin’s daily aver-
age rainfall (1961-2002). 
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els for the Grand and Rideau Rivers. 

The last predictor used in the daily streamflow simula- 
tion modeling represents streamflow seasonal variation. 
Streamflow volumes possess a seasonal variation: high 
flow usually occurs in the spring as a result of the melt- 
ing of accumulated winter snowfall; summer and autumn 
are the seasons of generally low flows as a result of the 
depletion of groundwater reservoirs during these months 
(Figure 3). Such seasonal variation should be taken into 
account when developing daily streamflow simulation 
models. As shown in Figure 3, a fourth-order polyno- 
mial function of Julian day best fits the daily mean 
streamflow data for the four selected river basins, with 
model R2s of 0.87, 0.88, and 0.91 for the Upper Thames, 
Grand, and Rideau rivers, respectively. However, the 
model R2 of 0.33 for Humber River is much lower than 
other river basins. The possible reason for this might be 
that the daily streamflow volume in Humber River Basin 
is much lower than it is in three other river basins; con- 
sequently, the seasonal variation is much smaller. Al- 
though the polynomial function of Julian day is devel- 
oped from year-round recorded data, only eight months 
(April– November) of the time are actually used in the 
daily streamflow simulation modeling. 

4.2. Validation of Daily Streamflow Simulation 
Models 

The daily streamflow simulation models were validated 
using a leave-one-year-out cross-validation procedure, in 

which the regression procedure was repeatedly run to 
develop a streamflow simulation model that would vali- 
date one year of independent data for each year in the 
dataset. The validated data were then compared with 
observations to evaluate model performance. As a result, 
the number of simulation models developed in the study 
is the number of the total years used in the analysis. For 
example, in the Upper Thames River Basin the data ob- 
served for the period 1958-2002 were used in the devel- 
opment and validation of daily streamflow simulation 
models; therefore, 45 models in total were developed. 
Each model was developed using 44 years of data and 
one-year data were withheld to validate the model. One 
of the advantages using the cross-validation procedure is 
that it is able to use a series of models to evaluate the 
reliability of the streamflow simulation models when the 
models’ performances are consistent at a certain level. 

5. Results and Discussions 

Daily streamflow simulation models developed by auto- 
regressive error correction regression for all selected 
river basins, of which one model for each river basin is 
shown in Table 3 as an example. This model was devel- 
oped when the data for the year 1979 were withheld as an 
independent dataset for validation of the model. As 
shown in Table 3, there are significant correlations be- 
tween daily streamflow volumes and model simulations, 
with model R2s of 0.62, 0.71, 0.74, and 0.95 for Humber, 
Grand, Upper T hames, and Rideau River basins, re- 
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Figure 3. Polynomial function of Julian Day fitting daily mean streamflow volumes for the selected streamflow stations. 
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Table 3. Summary of the streamflow simulation models 
when the data of the year 1979 withheld as an independent 
dataset for validation of the model in the four selected river 
basins. 

Variable Estimate Std Err t Value Approx Pr > |t|

Grand River Basin (R2 = 0.71, RMSE = 7.50) 

Intercept –4.4427 0.9743 –4.56 <0.0001 

API 0.5021 0.0454 11.07 <0.0001 

API2 0.0002 0.0009 0.18 0.8578 

ATI –0.2454 0.0471 –5.21 <0.0001 

Julian Day 0.9752 0.0556 17.53 <0.0001 

Current-Day Rainfall 0.0035 0.0169 0.21 0.8372 

Day-before-Yesterday 
Rainfall 

0.5275 0.0145 36.39 <0.0001 

AR1 –0.7544 0.0054 –139.18 <0.0001 

Humber River Basin (R2 = 0.62, RMSE = 0.75) 

Intercept –0.2999 0.0557 –5.38 <0.0001 

API 0.0151 0.0028 5.43 <0.0001 

API2 0.00002 0.0001 0.31 0.7576 

ATI –0.0255 0.0012 –21.71 <0.0001 

Julian Day 0.7610 0.0619 12.30 <0.0001 

Current-Day Rainfall 0.1313 0.0018 73.66 <0.0001 

Previous-Day Rainfall 0.1573 0.0022 72.68 <0.0001 

AR1 –0.1100 0.0089 –12.37 <0.0001 

Rideau River Basin (R2 = 0.95, RMSE = 2.95) 

Intercept 4.3389 0.9030 4.81 <0.0001 

API 0.1983 0.0165 12.02 <0.0001 

API2 0.0015 0.0003 5.06 <0.0001 

ATI –0.2523 0.0586 –4.31 <0.0001 

Julian Day 0.1612 0.0258 6.24 <0.0001 

Current-Day Rainfall 0.0226 0.0059 3.83 0.0001 

Day-before-Yesterday 
Rainfall 

0.0608 0.0046 13.13 <0.0001 

AR1 –0.9626 0.0025 –375.75 <0.0001 

Upper Thames River Basin (R2 = 0.74, RMSE = 2.40) 

Intercept –2.3247 0.3478 –6.68 <0.0001 

API 0.2190 0.0160 13.66 <0.0001 

API2 0.0040 0.0003 13.08 <0.0001 

ATI –0.1452 0.0174 –8.36 <0.0001 

Julian Day 0.9333 0.0593 15.74 <0.0001 

Current-Day Rainfall 0.0406 0.0059 6.89 <0.0001 

Previous-Day Rainfall 0.0546 0.0070 7.76 <0.0001 

AR1 –0.7312 0.0056 –130.55 <0.0001 

Note: RMSE = root mean squared error; API = antecedent precipitation 
index; ATI = antecedent temperature index; AR1 = the order 1 or lag 1 
autocorrelation parameter; Estimate = the coefficient of the regression algo-
rithm; and Std Err = standard error. 

spectively. The simulation models have identified that 
the predictors are consistent with the physical processes 
typically associated with high flow events. From the 
simulation models provided in Table 3 it is seen that the 
first-order autoregressive process (AR1), which repre- 
sents the serial correlation of streamflow itself and the 
explanatory predictors, significantly contribute to stream- 
flow simulation. Since a negative AR1 is built in the 
autoregressive error correction modeling, there is a posi- 
tive relationship between the AR1 and daily streamflow 
volumes. In addition to the persistence of high-stream- 
flow, rainfall/moisture conditions (i.e., today/previous- 
day rainfall and API) and streamflow seasonal variation 
(i.e., polynomial function of Julian day) are positively 
associated with daily streamflow volumes. Furthermore, 
there is a significantly negative relationship between the 
ATI and daily streamflow volumes since the ATI repre- 
sents evapotranspiration within the river basins. The ro- 
bustness of the developed streamflow simulation models 
is examined considering not only the AR1 but also the 
higher order parameters, such as the second-order to 
fifth-order autoregressive processes. The test results 
showed that considering any of higher order parameters, 
the simulation models didn’t improve much on the model 
performance in terms of model R2 (with 0.00 - 0.02 in- 
crease) and root mean squared errors (with 0.0 - 0.2 
m3·s–1 decrease). As a result, it is not necessary to con- 
sider any of order parameters higher than the first-order 
autoregressive process in the daily streamflow simulation 
modeling. 

In addition to sample models summarized in Table 3, 
all streamflow simulation models’ R2s and root mean 
squared errors (RMSEs) for the selected river basins are 
shown in Table 4. For reference, overall daily mean 
streamflow volume and standard deviation for the entire 
study period are also listed in Table 4. Furthermore, the 
comparison between streamflow observations and model 
validations is illustrated in Figure 4, of which the model 
R2s and RMSEs are very similar to the model simulations 
as shown in Table 4. To effectively measure difference 
between model simulations and validations, the differ- 
ence between the two data sample means and variances 
was analyzed, respectively using t- and F-tests; no sig- 
nificant (<0.05 level) difference between the daily 
streamflow simulations and validations was detected. It 
implies that the stream- flow simulation models devel- 
oped in the study are reliable with a great potential to be 
used to downscale future daily streamflow volumes at a 
local scale. 

From Table 4 and Figure 4, it can be seen that the 
streamflow simulation model performance for Upper Th- 
ames and Grand Rivers is very similar, with model R2s 
ranging from 0.68 to 0.74. The streamflow simulation 
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models for Rideau River demonstrated the strongest 
models of the selected river basins with R2 of 0.95; for 
Humber River, the simulation models are the weakest 
with R2 ranging from 0.61 to 0.62. This implies that the 
methods used in the study are more suitable to develop 
simulation models of daily rainfall- related streamflow 
volumes for nature waterways in rural watersheds, such 
as Rideau, Grand, and Upper Thames Rivers. The meth- 
ods are limited for an urban river basin like the Black 
Creek tributary of the Humber River. The reasons for this 
might be that rainfall-streamflow hydrological response 
time and physical characteristics differ significantly be- 
tween urban and rural river basins as described as fol- 
lows: 

1) The API is not a good indicator to simulate daily 
streamflow for an urban river basin like the Humber 
River. As discussed above, the API takes into account 
several physical factors that affect streamflow, including 
previous soil moisture conditions of the watershed. The 
API is suitable to characterize the soil moisture condi- 
tions for rural river basins (e.g., Grand, Rideau, and Up- 
per Thames) but not for urban river basins with a con- 
crete waterway (e.g., Humber River).  

2) The serial correlation of daily streamflow volumes, 

presented by the AR1 in streamflow simulation models, 
varies among the river basins. From Table 3, the AR1s 
for Rideau and Humber Rivers are the largest (–0.96) and 
smallest (–0.11) of the selected river basins, respectively; 
the parameters for Grand and Upper Thames Rivers fall 
in the middle with the similar values (i.e., –0.77 and 
–0.73). 

3) The seasonal variation of daily mean streamflow 
(the polynomial function of Julian day), which is another 
 
Table 4. Streamflow simulation model R2s and root mean 
squared errors (RMSE), using a leave-one-year-out cross- 
validation scheme, for the selected river basins (overall 
daily mean streamflow volume and standard deviation are 
listed for reference). 

River Basin Grand Humber Rideau Upper Thames

Model R2 0.68 - 0.71 0.61 - 0.62 0.95 - 0.95 0.71 - 0.74

RMSE (m3·s–1) 7.71 - 8.03 0.74 - 0.76 2.85 - 2.95 2.40 - 2.56

Daily mean 
(Std Dev) (m3·s–1)

8.94 (16.06) 0.78 (1.39) 6.12 (13.57) 2.61 (5.06)

Note: Overall daily mean streamflow volume and standard deviation were 
calculated for the period April-November 1958-2002 in Grand and Upper 
Thames Rivers, April-November 1967-2002 in Humber River, and April- 
November 1970-2002 in Rideau River. 
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Figure 4. Relationships between streamflow observations and model validations using a leave-one-year-out cross-validation 
scheme in the selected river basins (solid line represents a regression line; dashed line is a perfect fit. Grand and Upper 
Thames Rivers: 1958-2002; Humber River: 1967-2002; Rideau River: 1970-2002). 
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important predictor to simulate daily streamflow volumes, 
differs between the river basins. The stronger the sea- 
sonal variation is, the more the predictor contributes to 
streamflow simulation. As shown in Figure 3, the model 
R2 of a fourth-order polynomial function of Julian day is 
0.91 for Rideau River and 0.33 for Humber River, which 
is the largest and smallest model R2 of the selected river 
basins. The model R2s for Grand and Upper Thames 
Rivers are 0.88 and 0.87, respectively. 

4) An additional possible reason for the weakest daily 
streamflow simulation model in the Humber River Basin 
might be that the daily streamflow volume observed at 
the station Black Creek near Scarlett Road of Humber 
River is usually quite small. From Table 1 it is seen that 
overall daily mean streamflow volume during the entire 
study time period in the Grand, Rideau, and Upper 
Thames Rivers is 11.5, 7.8, and 3.3 times as high as that 
in the Humber River. The statistical methods used in the 
study could be restricted when the daily streamflow vol- 
ume is very low. 

5) The last possible reason for the weakest daily 
streamflow simulation model in the Humber River Basin 
might be limitation of streamflow data. The streamflow 
data used in the study are daily mean flows which are 
averaged over a 24-hour period (i.e., 00:00-23:00 LST), 
and are currently available from the Environment Can- 
ada’s National Water Data Archive. For rapidly rainfall- 
streamflow responding urban watersheds (e.g., the Black 
Creek tributary of the Humber River), daily mean stream- 
flow data are limited in their usefulness for studying  
more detailed information on the simulation of the high- 
streamflow events. If the short-duration (less than one 
day) streamflow data were available, the streamflow sim- 
ulation models for the Humber River Basin could possi- 
bly be improved by using streamflow information at a 
shorter time step. 

6. Conclusions and Recommendation 

The purpose of this study was to collectively apply both 
conceptual and statistical modeling theories to develop 
daily streamflow simulation models for four selected 
river basins in the Province of Ontario, Canada. The 
simulation models demonstrated significant skill in the 
discrimination and prediction of daily streamflow vol- 
umes as well as occurrence of high-/low-streamflow 
events. A formal model result verification process has 
been built into the exercise, using a leave-one-year-out 
cross scheme. The results have shown that there are sig- 
nificant correlations between daily streamflow observa- 
tions and model validations, with model R2s of 0.68 - 
0.71, 0.61 - 0.62, 0.71 - 0.74, and 0.95 for Grand, Hum- 
ber, Upper Thames, and Rideau River Basins, respec- 
tively. As a result, a general conclusion from this study is 

that the methods used in the analysis are suitable to be 
used for projection or downscaling of changes in fre- 
quency of future daily high-/low-streamflow events at a 
local scale, which is the major objective of a companion 
paper (Part II: future projection, Cheng et al. [8]). To 
achieve this, the research work should include the fol- 
lowing three aspects. First, the downscaled future daily 
rainfall data at a river-basin local scale are required, 
which have been derived by Cheng et al. [9,10]. Second, 
the statistical downscaling method developed by Cheng 
et al. [31] will be adapted to downscale future GCM 
simulations to the selected meteorological stations for 
weather variables that were used in the daily streamflow 
simulation modeling. Third, future daily streamflow 
volumes can be projected by applying daily streamflow 
simulation models developed in the current study with 
downscaled future climate information.  

In this study, the streamflow simulation models are 
river-basin-specific since the predictors were selected 
and constructed based on characteristics/relationships 
specific to the selected river basins. Therefore, to apply 
these models at other locations, they have to be recreated 
each time using locally measured data. The methods of 
streamflow simulation modeling, including predictor 
selection/construction processing, can be adopted to any 
other river basin influenced by a variety of topographic 
and other factors to build a new streamflow simulation 
model.  
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