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ABSTRACT 

A method allowing a desirable matrix spectrum to be constructed as an alternative to the method using matrix transfor-
mation to the Frobenius form is stated. It can be applied to implement control algorithms for technical systems without 
executing the variables transformation procedures that are needed for deriving a Frobenius matrix. The method can be 
used for simulation of systems with different spectrums for choosing an alternative that satisfies to the distinct demands. 
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1. Introduction 

A number of mathematical problems deal with changes 
of a matrix spectrum [1,2]. It can be changed by various 
methods, for example, in computing problems, a multi-
plication to other matrix is used. In control problems, to 
change a spectrum, a matrix is added with some other 
matrix derivated by a feedback, which forms a linear 
function of variables. This approach is known as modal 
control [3,4] or spectrum control [5]. 

To solve the above problems and to obtain a matrix 
with required eigenvalues a matrix is reduced to the Fro-
benius form. This transformation called here Frobenius, 
has a clear foundation and it is widely applied as theo-
retical tool. However, an attempt to use this approach for 
practical control problems with implementation of con-
trol algorithms by concrete technical devices has shown 
that such method is of limited application. 

The matter is that in technical systems so-called physi-
cal variables are used. These latter characterize energy 
storage units, in particular, a velocity of a moving mass, 
a solenoid coil current, a voltage of a capacitor and simi-
lar. The values of physical variables are gained from sen-
sors. In order to obtain a Frobenius matrix it is necessary 
to transform physical variables of feedback loop. In this 
case the transformation is double, because just a combi-
nation of physical variables must goes to the input. To 
execute such transformations it is required an additional 
either hardware expenditures or time delays in program 
implementation. 

In this paper, the method of obtaining a desirable spec-
trum without resort to a Frobenius matrix is stated. It also 
can be used for calculating the feedback coefficients of a 

control system for the purpose to derive a desirable spec-
trum. It enables one to solve the control problems by 
simulating a system behavior with different spectrums 
for searching a comprehensible alternative. Among them 
the most demanded for practical applications it is possi-
ble to consider the spectrum correction problem, when it 
is required to determine parameters of a feedback for 
altering a part of a spectrum. 

2. Description of the Method 

2.1. Informative Side 

The Frobenius transformation is based on the relationship 
between eigenvalues and coefficients of a characteristic 
polynomial of a matrix in which a row is formed from 
these coefficients. The additive action of the feedback 
confirming an operation of summing the elements of a 
row with the elements of the feedback changes a row and 
a spectrum as well. The feedback elements are computed 
evidently as the differences between elements of a Fro-
benius matrix row and the coefficients of a polynomial of 
a matrix having a given spectrum. 

The presented method is based on a relation between 
elements and eigenvalues of a matrix. For identity of 
system with the numbers that do not belong to a matrix 
spectrum, some of the elements are replaced by the un-
knowns. Solving a system of equations for unknowns one 
gives a desired spectrum of a matrix. 

2.2. Purpose Statement 

Let  ,i jA a  be a given real k by k matrix, where i, j 
 1, k . A matrix spectrum σ(А) contains a real set 
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 i  ,  u  , where  1 l  ，

2, , kc b c

2 2, , k

 is the given set 
of l real numbers, and k ≥ l ≥ 1. 

A matrix having a spectrum that in full or in part coin-
cides with Λ, obtained by replacing some of its elements 
we denote by Аx. For two alternatives of the spectrum 
setting we have: 

1) l < k is a part of a spectrum, 
2) l = k is whole spectrum. 
The goal is to find the replaced elements. 

2.3. The Non-Frobenius Transformation of a 
Matrix Spectrum 

For the matrix А we write the equalities 

1 1b c 2 kb  ,

,

          (1) 

where bi is the sum of all main minors of i order, and ci 
are the coefficients of a characteristic polynomial. 

Definition 1. Changeover the element аi,j in matrix A 
by the unknown elements xi,j is called the replacement, xi,j 
is the replaced element, the matrix having l replaced 
elements is called the replaced matrix and it is denoted 
by Аx. 

Definition 2. The non-Frobenius transformation of a 
matrix spectrum, further the spectral transformation, is 
called the substitution of any its l elements by the result 
of a solution of the system (1) for the replaced matrix 

1 1 kg d g dd g  

0,

       (2) 

concerning replaced elements, where gi has the same 
sense as coefficient bi, the coefficient di is derivated from 
l numbers of the set Λ and from (k − l) unknowns of a 
spectrum. 

For l < k the equalities (2) become a system of equa-
tions for l replaced elements and (k − l) unknowns of a 
spectrum. A solution of this system enables one to spec-
ify them in the form of a function of the remaining ele-
ments of the matrix A and the elements of the set Λ. 

Definition 3. The spectral transformation for l < k is 
called the incomplete one. 

An example of the incomplete spectral transformation 
for l < k is resulted in Appendix A. Further the case with 
l = k is observed as more demanded for practical applica-
tions. In this case the spectral transformation enables one 
to change certain eigenvalues, while the remaining part 
of a spectrum is unchanged, otherwise, such transforma-
tion control over a spectrum. 

Let’s collect the elements xi,j into the vector x. Gener-
ally, the equalities (2) represent a system of equations for 
the vector x 

 F X                  (3) 

where F is a nonlinear vector function of k size. The type 
of the system (3) depends on allocation of the elements 
of vector x in the replaced matrix. If they allocate in dif-

ferent rows and columns, as it is shown in an example for 
replaced matrix 

11 12 1

1 1,2 1,

1 2

...

,
...

...

k

x
i i i k

k k kk

a x a

A
x a a

a x x
 

 
 
   
 
  


        (4) 

the system is reduced to a solution of the equation of a 
degree from 2-nd to k-th, thus a degree of the equation is 
equal to a maximum number of the replaced elements in 
the addends of the last row of the system (3). 

Definition 4. The Equation (3) is called the system of 
spectral transformation of i-th order, where i is a maxi-
mum number of replaced elements in the addends of the 
last row. 

Definition 5. The system of spectral transformation of 
the first order is called the linear, and the transformation 
is called the linear spectral transformation (LST). 

Definition 6. The system of spectral transformation 
above the first order is called the nonlinear, and trans-
formation is called nonlinear spectral transformation (NST). 

Theorem. If solution of the system (3) exists than 
 xA   . 
Proof. With substitution of solution of the Equation (3) 

into the matrix Аx the coefficients of its characteristic 
polynomial become equal to values of combinations of 
numbers of the given set Λ spotted by a right side of the 
system (2), which left side is identical. This completes 
the proof. 

Further we consider that replaced elements make a 
row or column in replaced matrix. The LST is illustrated 
by numerical examples in Appendices A, B, and C. 

2.4. The Row LST 

For replacing row i of the matrix A the replaced vector х 
is denoted by ni. The replaced matrix takes the form 

11 12 1

1,1 1,2 1,

1 2

1,1 1,2 1,

1 2

...

...

... .

...

...

k

i i i k

in i i ik

i i i k

k k kk

a a a

a a a

A n n n

a a a

a a a

  

  

 
                           
 
 

  
 
 
                          
 
  

         (5) 

The equalities (2) for the matrix (5) in view of linear-
ity of minors by each row vector of the matrix [6] be-
come the LST system 

, ,i k i i n,A n d a              (6) 

where Аi,k is a matrix, , and аi,n is a vector.  1

T

kd d d  
Definition 7. The matrix Аi,k is called the LST matrix 
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by the row i, and the condition 

,det 0,i kA               (7) 

is called the condition of existence of the LST matrix A 
by the row i. 

If the condition (7) is satisfied than  ,i nA   , i.e. 
the replaced matrix (5) with the solution of system (6) 

 1
,i i k i nn A d a  ,             (8) 

acquires a spectrum that is equal to the given set Λ. The 
fulfillment of (7) for  1,i k  enables one to find k 
vectors of ni. 

Definition 8. The matrix N involving the all rows  
of (8) is called the summary matrix of rows of the LST, 
the matrix G = N − A is called the summary matrix of the 
complements of rows of the LST. 

T
in

Spectrums of all matrixes derivated by replacement of 
an arbitrary row of the matrix A by the row of the matrix 
N, and also by addition of an arbitrary row of the matrix 
A with row having the same number of the matrix G are 
equal. 

2.5. The Column LST 

Let the elements of the vector x replace the column 
number j in the matrix A. This vector is denoted by mj. 
The replaced matrix has the form 

11 1, 1 1, 1, 1 1

,

1 , 1 , , 1

... ...

.

... ...

j j j k

m i

k k j k j k j k

a a m a a

A

a a m a a

 

 




                                         

 k






,

  (9) 

For the matrix (9) we construct the LST system 

, ,k j j m jA m d a             (10) 

where Аk,j is a matrix, and аm,j is a vector. 
Definition 9. The matrix Аk,j is called the LST matrix 

by the column j, and the condition 

,det 0,k jA                   (11) 

is called the condition of existence of the LST matrix A 
by the column j. 

If the condition (11) is satisfied than  ,m jA   , i.e. 
the replaced matrix (9) with the solution of system (10) 

 1
, ,j k j m jm A d a             (12) 

acquires a spectrum that is equal to the given set Λ. The 
fulfillment of (11) for  1,j k  enables one to find k 
vectors of mj. 

Definition 10. The matrix M involving the all columns 
T
jm  of (12) is called the summary matrix of columns of 

the LST, the matrix H = M − A is called the summary 
matrix of the complements of columns of the LST. 

Spectrums of all matrixes derivated by replacement of 
an arbitrary column of the matrix A by a column with the 
same number of the matrix M, and also by addition of 
arbitrary column of the matrix A by the column with the 
same number of the matrix Н are equal. 

2.6. Remarks 

In spite of formal equivalence of row and column alter-
natives of the LST, their practical significance is not 
equal. The matter is that control systems have the single 
input into which the linear combination of all variables 
arrives that corresponds to additive action of row vector. 
Therefore the row alternative of the LST has a greater 
potential for applications in solutions of control prob-
lems. 

3. Conclusion 

In this paper, we proposed a new spectrum-transforma- 
tion method, which enables a desirable matrix spectrum 
to be obtained without recourse to deriving a Frobenius 
matrix. Because of this the method was called the non- 
Frobenius transformation. The linear spectral transforma-
tion was described in detail and illustrated by the exam-
ples of spectrum transformation for matrices of the 2nd, 
3rd, and 4th order. Finally, in Appendix D, we show how 
the LST can be used for solving a modal control problem 
in terms of changing matrix eigenvalues for system with 
unique control input. 
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Appendix A 

Case k = 2. Let’s set up the system 

11 22 1 11 22 12 21 2, .a a c a a a a c          (13) 

We illustrate incomplete LST for l = 1. Denoting the 
unknown eigenvalue by ω11, from (13) we obtain the 
system 

11 22 11 11 22 12 21 11, .x a x a a a       

.

 

We rewrite this system in the normal form 

11 11 22 22 11 11 12 21,x a a x a a          (14) 

For λ  а22, the solution of (14) is given by 

   
   

11 22 12 21 22

11 22 22 12 21 22

,

,

x a a a a

a a a a a

  

 

     
      

    (15) 

By replacing other elements, we get the solutions in a 
similar way: 

   
   

 

 

22 11 12 21 11

22 11 11 12 21 11

12 11 22 11 22 21

12 11 22

21 11 22 11 22 12

21 12

,

,

,

,

,

.

x a a a a

a a a a a

x a a a a a

a a

x a a a a a

  

  

 

 

 

 

     
     
    
  

     








n

 

For а11 = 3, а12 = 4, а21 = 7, а22 = 6, Σ = {–1, 10}, and 
λ = 2, from (15), we obtain: 

11 11 12 12

21 21 22 22

9, 13, 0.571, 7,

1, 7, 30, 31.

x x

x x

 
 

   
   

    (16) 

So, the required eigenvalue for incomplete LST de-
pends on choosing the replaced element. 

Now we explain how to determine whole spectrum. In 
row LST for the replaced matrices (5) 

11 12 11 12
1, 2,

21 22 21 22

,n n

n n a a
A A

a a n n

  
   
  

     (17) 

the systems (2) are given by 

11 22 1 11 22 1

11 22 12 21 2 11 22 12 21 2

, ,

, ,

n a d a n d

n a n a d a n a n d

   
   

   (18) 

where d1 = λ1 + λ2, d2 = λ1λ2. 
The systems (18) expressed in the form (6) are 

1, 1 1, 2, 2 2,, ,k n kA n d a A n d a         (19) 

where      22
1, 1,

22 21

1 0
, ,

0k n

a
A a

a a

   
       

11
2, 2,

12 11

0 1
, and .

0k n

a
A a

a a

   
       

 

If the condition (7) −а21  0 and а12  0 is satisfied for 
each system, then these systems have the solutions 

   
   

1
1 11 12 1, 1,

1
2 21 22 2, 2,

,

.

T

k n

T

k n

n n n A d a

n n n A d a





  

  
      (20) 

For replaced matrices (17) whose solutions are (20) 
the following conditions satisfy 

    1, 2, 1 2,n nA A .          (21) 

Iterating the LST for the matrices with replaced col-
umns 

11 12 11 12
,1 ,2

21 22 21 22

, ,n n

m a a m
A A

m a a m

  
 


   
   

m

    (22) 

we write the systems (2) as 

11 22 1 11 22 1

11 22 12 21 2 11 22 21 12 2

, ,

, .

m a d a m d

m a a m d a m a m d

   
   

  (23) 

In the form (10) the systems (23) are 

,1 1 ,1 ,2 2 ,2, ,k m kA m d a A m d a         (24) 

where      22
,1 ,1

22 12

1 0
, ,

0k m

a
A a

a a

   
       

11
,2 ,2

21 11

0 1
, and .

0k m

a
A a

a a

   
       

 

Under conditions а21  0 and а12  0 the systems (24) 
have the solutions 

   
   

1
1 11 21 ,1 ,1

1
2 12 22 ,2 ,2

,

.

T

k m

T

k m

m m m A d a

m m m A d a





  

  
      (25) 

With solutions (25) the replaced matrices (22) gain the 
required spectrum 

    ,1 ,2 1 2,n nA A .           (26) 

Using the numerical data from example, we generate a 
spectrum that is different from Σ = {−1, 10} by the 
number λ2 = 1. We calculate 

1 1 2 2 1 2

1 2

1, 22

2, 11

,1 1, ,2 2,

0, 1,

[ ] [0 1] ,

[ 0] [6 0] ,

[ 0] [3 0] ,

, .

T T

T T
n

T T
n

m n m n

d d

d d d

a a

a a

a a a a

        

  

 

 

 

 

Using the expressions (20) and (25), we find the re-
placement vectors 

   
  

1 11 12

2 21 22

6 5 ,

4.25 3 ,

T T

T T

n n n

n n n

   

    
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   
  

1 11 21

2 12 22

6 8.75 ,

1.143 3 .

T T

T T

m m m

m m m

   

   

n

 

The replacement matrices (17) and (22) gain the fol-
lowing spectrum 

     
   
1, 2, ,1

,2 1, 1

n n

n

A A A

A

  



 

  
 

that is different from spectrum of the matrix А by a sin-
gle number. 

Appendix B 

Case k = 3. From the equalities (1) 

11 22 33 1

11 22 12 21 11 33 13 31 22 33 23 32 2

11 22 33 12 23 31 13 21 32 12 21 33 11 23 32

13 22 31 3

,

,

,

a a a c

a a a a a a a a a a a a c

a a a a a a a a a a a a a a a

a a a c

  

     
   

 

 

we set up the LST systems (6) and (10) 

, , ,, ,i k i i n k j j m jA n d a A m d a    ,      (27) 

where 

   
   
  
 

1 11 12 13 2 21 22 23

3 31 32 33 1 11 21 31

2 12 22 32 3 13 23 33

1 2 3 1 1 2 3

2 1 2 1 3 2 3 3 1 2 3

 ?

 ?

, ,

, ,

, ,

Т Т

Т Т

T T

T

n n n n n n n n

n n n n m m m m

m m m m m m m m

d d d d d

d d

  
        

 

 

 

   

   

  

1, 22 33 21 31

22 33 23 32 23 31 21 33 21 32 22 31

1 0 0

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

22 33

1, 22 33 23 32 ,

0
n

a a

a a a a a

 
   
  

 

2, 12 11 33 32

13 32 12 33 11 33 13 31 12 31 11 32

0 1 0

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

11 33

2, 11 33 13 31 ,

0
n

a a

a a a a a

 
   
  

 

3, 13 23 11 22

12 23 13 22 13 21 11 23 11 22 12 21

0 0 1

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

11 22

3, 11 22 12 21 ,

0
n

a a

a a a a a

 
   
  

 

,1 22 33 12 13

22 33 23 32 13 32 12 33 12 23 13 22

1 0 0

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

,1 1, ,m na a  

,2 21 11 33 23

23 31 21 33 11 33 13 31 13 21 11 23

0 1 0

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

,2 2, ,m na a  

,3 31 32 11 22

21 32 22 31 12 31 11 32 11 22 12 21

0 0 1

,kA a a a a

a a a a a a a a a a a a

 
     
    

 

and nm aa ,33,  . 

If both (7) and (11) conditions satisfy for all i and j, 
then the solutions of the systems (7) are 

  
 
  
 

1 1
1 1, 1, 2 2, 2,

1
3 3, 3,

1 1
1 ,1 ,1 2 ,2 ,2

1
3 ,3 ,3

, ,

,

, ,

.

k n k n

k n

k m k m

k m

n A d a n A d a

n A d a

m A d a m A d a

m A d a

 



 



   

 

   

 




 

After calculating the eigenvalues of the replaced ma-
trices 

11 12 13 11 12 13

1, 21 22 23 2, 21 22 23

31 32 33 31 32 33

11 12 13 11 12 13

3, 21 22 23 ,1 21 22 23

31 32 33 31 32 33

11 12 13

,2 21 22 23

31 3

, ,

, ,

n n

n m

m

n n n a a a

A a a a A n n n

a a a a a a

a a a m a a

A a a a A m a a

n n n m a a

a m a

A a m a

a m

   
    
   
      
   
    
   
     


11 12 13

,3 21 22 23

2 33 31 32 33

, m

a a m

A a a m

a a a



m

   
   
   
      

 (28) 

one obtains the required set Λ: 

         
   
1, 2, 3, ,1 ,2

,3 1 2 3, , .

n n n m m

m

A A A A A

A

    

   

   

 



,

 

We write the summary matrices of rows and the com-
plements of rows 

11 12 13

21 22 23

31 32 33

,

n n n

N n n n G N A

n n n

 
    
  

      (29) 
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and also the summary matrices of columns and the com-
plements of columns 

11 12 13

21 22 23

31 32 33

, .

m m m

M m m m H M A

m m m

 
   
  


















n

n

n

a

    (30) 

Let’s observe matrices for which LST by different 
rows and columns exists, Λ = {1, 0, −1}. 

1) LST exists by all rows and columns. For the matrix 

1 2 3

4 5 6 ,

7 8 9

A

 
   
  

 

from (27), we find 

1 2 30, 1, 0,d d d     

1, 1,

2, 2,

3, 3,

1 0 0 14

14 4 7 , 3 ,

3 6 3 0

0 1 0 10

2 10 8 , 12 ,

6 12 6 0

0 0 1 6

3 6 6 , 3 ,

3 6 3 0

k n

k n

k n

A a

A a

A a

  
        
     
  
        
    
  
        
     

 

,1 ,1 1,

,2 ,2 2,

,3 ,3 3,

1 0 0

14 2 3 ,

3 6 3

0 1 0

4 10 6 , ,

6 12 6

0 0 1

7 8 6 , .

3 6 3

k m

k m

k m

A a

A a a

A a

 
     
   
 
     
  
 
     
   

a

    (31) 

The matrices (31) are nonsingular; therefore all of 
systems (27) have the solutions 

   
   
   
   
   
   

1
1 1, 1,

1
2 2, 2,

1
3 3, 3,

1
1 ,1 ,1

1
2 ,2 ,2

1
3 ,3 ,3

14 16.444 18.889 ,

8.167 10 11.833 ,

3.333 4.667 6 ,

14 30 46 ,

4.5 10 3.636 ,

1.273 15.5 6 .

T

k n

T

k n

T

k n

T

k m

T

k m

T

k m

n A d a

n A d a

n A d a

m A d a

m A d a

m A d a













     

     

     

     

     

     

 

Calculating the eigenvalues of the replaced matrices 
one gives the required set: 

   
   
   
   
   
   

14
1,

15
2,

15
3,

14
,1

14
,2

15
,3

1, 1, 1.516 10 ,

1, 8.847 10 , 1 ,

1, 2.044 10 , 1 ,

1, 1, 5.437 10 ,

1, 1, 2.421 10 ,

1, 2.8763 10 , 1 .

n

n

n

m

m

m

A

A

A

A

A

A

























  

   

  

  

  

   

 

The summary matrices of rows and the complements 
of rows (29) are 

14 16.444 18.889

8.167 10 11.833 ,

3.333 4.667 6

15 18.444 21.889

12.167 15 17.833 ,

10.333 12.667 15

N

G

   
     
    

   
     
    

 

and the summary matrices of columns and the comple-
ments of columns (30) are 

14 4.5 1.273

30 10 3.636 ,

46 15.5 6

15 6.5 4.273

14 15 9.636 .

53 23.5 15

M

H

   
     
    
   
     
    

 

2) LST exists by certain rows and columns. 
2.1) LST by three columns and two rows. 
For the matrix 

  1 2 3

0 1 0

2 2 2 , 6, 0, 1 , 1, 0, 0,

3 5 3

A d

 
  d d        
  

(32) 

1, 1,

2, 2,

3, 3,

,1 ,1 1,

1 0 0 5

5 2 3 , 4

4 0 4 0

0 1 0 3

1 3 5 , 0 ,

3 0 3 0

0 0 1 2

0 2 2 , 2 ,

2 0 2 0

1 0 0

5 1 0 , ,

4 3 2

k n

k n

k n

k m

A a

A a

A a

A a

,

na

   
       
   
      
   
         
      
   
      
   
     
 
    
   


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,2 ,2 2,

,3 ,3 3,

0 1 0

2 3 2 , ,

0 0 0

0 0 1

3 5 2 , and

4 3 2

k m

k m

A a

.

n

n

a

A a a

 
     
  
 
     
  

 

The matrix Аk,2 is singular. The solutions of the sys-
tems (27) are 

  
 
 
 

1 2

3

1

3

6 8 6 , 2 4 2 ,

3 4 3 ,

6 34 63 ,

0.545 1.273 3 .

T T

T

T

T

n n

n

m

m

       

   

   

   







.

d 

.

n

n

n

a

a

 

Calculating the eigenvalues of the replaced matrices 
one gives the required set: 

  


   
  
   
   

15 7 15
1,

7

8 8
2,

8 8
3,

8 8
,1

8 8
,3

3.125 10 1.142 10 , 3.125 10

1.142 10 , 1 ,

1, 2.944 10 , 2.944 10 ,

1, 4.133 10 , 4.133 10 ,

3.88 10 , 3.88 10 , 1 ,

1, 3.269 10 , 3.269 10 .

n

n

n

m

m

A i

i

A

A

A

A i i











 



 

 

 

 

      

  

   

    

    

    

 

The summary matrices of rows and the complements 
of rows (29) are 

6 8 6 6 9 6

2 4 2 , 4 6 4

3 4 3 6 9 6

N G

        
             
           

 

2.2) LST by two columns and two rows. 
For the matrix 

1 2 3

1, 1,

2, 2,

3, 3,

0 1 0

1 2 2 , {3, 0, 1}, 0, 1, 0,

0 1 0

1 0 0 2

2 1 0 , 2 ,

2 0 1 0

0 1 0 0

1 3 2 , 0 ,

0 0 0 0

0 0 1 2

0 2 2 , 1 ,

2 0 1 0

k n

k n

k n

A d d

A a

A a

A a

 
        
  
   
         
      
   
         
      
   
         
      

 

,1 ,1 1,

,2 ,2 2,

,3 ,3 3,

1 0 0

2 1 0 , ,

2 0 2

0 1 0

1 3 2 , ,

0 0 0

0 0 1

0 1 2 , and

1 0 1

k m

k m

k m

A a

A a

A a a

 
    
  
 
     
  
 
    
  

 

The matrices А2,k and Аk,2 are singular. The solutions 
of the systems (27) are 

  
  

1 3

1 3

2 5 4 , 1 2 2 ,

2 5 2 , 2 4 2

T T

T T

n n

m m

       

       


 .

 

The eigenvalues of the replaced matrices have the re-
quired set: 

       
       

1, 3,

15
,1 ,3

1, 0, 1 , 1, 1, 0 ,

1, 2.148 10 , 1 , 1, 1, 0 .

n n

m m

A A

A A

 

 

   

    
 

2.3) We cite the matrices (without calculations), which 
suppose 

a) two LST: 

1 2

3 4

1 1 1 0 0 0

1 1 0 , 1 0 0 ,

0 0 1 0 1 0

1 1 0 1 1 1

1 1 0 , 1 1 1 ,

1 1 1 0 0 1

A A

A A

   
    
   
      
   
       
      

 

А1 for row 3 and column 2, А2 for row 1 and column 3, 
А3 for rows 1 and 2, and А4 for columns 1 and 2. 

b) single LST: 

5 6

1 0 1 0 1 1

1 1 1 , 0 1 0 ,

0 0 0 0 0 0

A A

   
    
   
      

 

А5 for row 3, and А6 for column 1. 
c) the following matrices do not have the LST: 

7 8

1 0 0 0 0 1

0 1 0 , 0 1 0 ,

0 0 1 1 0 0

A A

   
    
   
      

 

9 10

0 1 1 0 1 0

0 1 1 , 1 0 0 .

0 0 0 0 0 0

A A

   
    
   
      
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Appendix C 

Case k = 4. Passing over the equalities (1), we write the 
LST system (6) by first row at once 

1, 1, .k i nA n c a              (33) 

where       21 21 31 41
1,

31 32 33 34

41 42 43 44

1 0 0 0

,k

r a a a
A

r r r r

r r r r

 
   
 
 
 



,

 
 

 

1 11 12 13 14

1, 21 31 41

1 2 3 4

1 1 2 3 4

2 1 2 1 3 1 4 2 3 2 4 3 4

3 1 2 3 1 3 4 1 3 4 2 3 4

4 1 2 3 4 1 22 33 23 32

2 22 44 24 42 3 33 44 34 43

4 21 33 2

,

0 ,

,

,

,

,

, ,

,

T

T

n

T

n n n n n

a r r r

c c c c c

c

c

c

c d a a a a

d a a a a d a a a a

d a a a

   
           
           
   







   

     

   

  

   

 

 

3 31 5 21 44 24 41

6 21 32 22 31 7 31 44 34 41

8 21 42 22 41 9 31 43 33 41

10 32 44 34 42 11 32 43 33 42

12 31 42 32 41 21 22 33 44

31 1 2 3

32 4 5 33 6 7 34 8

,

,

,

,

,

,

, ,

a d a a a a

d a a a a d a a a a

d a a a a d a a a a

d a a a a d a a a a

d a a a a r a a a

r d d d

r d d r d d r d

 

   

   

   

    
  

      9

41 22 3 23 10 24 11

42 21 3 23 7 24 9

43 21 10 22 7 24 12

43 21 11 22 9 23 12

,

,

,

,

and .

d

r a d a d a d

r a d a d a d

r a d a d a d

r a d a d a d



  

   

  

   

,

,

,

,

,

 

For the replaced matrix 

11 12 13 14

21 22 23 24
1,

31 32 33 34

41 42 43 44

,n

n n n n

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

       (34) 

the condition σ(А1,n) = Λ satisfies. 
We consider the matrix 

 

1 0 0 1

1 1 0 0
, 1, 1, 1, 2 .

0 0 1 1

1 0 1 0

A

 
 
    
 
 
 

 

We set up the set Λ = {1, 2, 3, 4} with two numbers 
from Σ. Omitting the intermediate calculations, we find 
the elements of matrices and vectors of the system (33) 

 1,

1 0 0 0

2 1 0 1
, 10 35 50 24

0 1 1 2

1 1 1 1

T

kA c

 
    
  
 
  

 

 1, 2 0 1 0 .
T

na    

With replacement vector  
  1

1 1, 1, 8 0 13 19
T

k nn A c a   

8 0 13 19

 , the matrix (34) 

1,

2 1 0 1

0 1 1 2

1 1 1 1

nA

 
   
  
 
  

          (35) 

gains a spectrum with the required set  
   1, 1, 2, 3, 4nA  . 
All calculations were yielded in Mathcad. 

Appendix D 

LST Application to the Modal Control Problem 

Here, we compare the stated method to the known alter-
native of modal control. First of all, we recall that in ac-
cordance with up-to-date concepts of modal control, 
change the matrix eigenvalues independently of each other 
can be implemented only by separate action on the con-
trol input associated with a given eigenvalue. Thus, to 
implement a modal control, a system should have the 
number of inputs that is equal to the system order. This 
demand, as it is cited in a number of sources, for exam-
ple, in [7], is seldom fulfilled, that is a significant con-
straint of the up-to-date method of modal control. The 
vast majority of multivariable control systems have a 
unique control input. 

The stated transformation method allows eigenvalues 
to be changed independently by action to a unique input. 
It is possible to call this alternative method as a one-input 
modal control. 

To compare these approaches, the simplified block 
diagram taken from [7] is shown in Figure 1. The func-
tions of the blocks are clear from the scheme. The basic  
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Figure 1. Block diagram of system with modal control. 
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n

relationships given below were taken from [7]. 
The system is described by the following difference 

equation 

1 ,n nx Ax Bu               (36) 

where xn, un, А, and В are k-size state vector, control 
vector, system matrix, and input matrix, respectively, n = 
0, 1, 2, ··· 

A transformation with the help of a nonsingular matrix 
T 

,t n nx Tx                (37) 

gives Equation (36) in the form 

, 1 , , ,t n t n t t nx x B u             (38) 

where Λ = ТАТ–1, ut,n = Вtun, and Вt = ТВ, with a diago-
nal matrix. 

Constructing the control in the form of a feedback on a 
vector of variables with a diagonal matrix 

, ,t n t t nu K x  ,               (39) 

performed by the modal analyzer, one leads to the ho-
mogeneous equation 

 , 1 ,t n t t nx K x              (40) 

with a diagonal matrix. This enables one to control each 
of eigenvalues by means of changing a one element of 
the matrix (39). 

A modal synthesizer rebuilds the real control vector 
according to the Equations (38) and (39) 

1 1 1
, , .n t t n t nu B u B T u     

The method offered here, as well as the Frobenius 
transformation, allows a separate eigenvalue to be con-
trolled by changing not a single but all of k elements in 
row or column, and also if they are arbitrarily selected. 

As it was noted, practical interest is the case of change in 
row elements. This case belongs to the class of the most 
widespread control systems with a unique control input. 

The block diagram of a modal control system with a 
unique input shown in Figure 2 does not include blocks 
providing a transformation of variables. Here, the modal 
controller represents a set of two-input products, each of 
which performs multiplication of a state variable by a 
feedback coefficient. The sum of multiplication results 
goes to the input. 

In this case, Equation (36) takes the form 

1 ,n n i nx Ax b u               (41) 

where bi is a vector with all zero elements except i-th 
element that is a one. This element defines the input 
number. 

The feedback 
nx , where K is a vector of coef-

ficients, gives the equation in the form of (40) 

T
nu K 

 1 .T
n i nx A b K x             (42) 

The row KT is calculated as the i-th row of a summary 
matrix G of the row supplements of the LST. As a result, 
we obtain a matrix in (42) with a desirable spectrum. 
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Figure 2. Block diagram of system with one-input modal 
control. 

 


