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ABSTRACT 

The characterization of energy dissipation or damping in rotor dynamic model is of fundamental importance. Noise and 
vibration are not only uncomfortable to the users, but also may lead to fatigue, fracture and even failure. During the 
design process of asymmetric damped systems, it is often required to make changes in the design variables such that the 
design is optimal. This paper is aimed at developing computationally efficient numerical methods for parametric sensi-
tivity analysis. The algebraic method considered here computes the eigenvector sensitivity by assembling the deriva-
tives of eigenproblems and the additional constraints into an algebraic equation. The coefficient matrix may be 
ill-conditioned since the elements of it are not all of the same order of magnitude. In this study, a new algebraic method 
is presented to compute the eigensolution variability of asymmetric damped systems. Some weight constants are intro-
duced such that the proposed method is well-conditioned. The method is very compact and highly efficient, and the 
numerical stability is also demonstrated. Moreover, several special cases can be presented based on the similar idea of 
the proposed method. Finally, two numerical examples show the validity of the proposed method. 
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1. Introduction 

Eigensolution sensitivities have become an integral part 
of many engineering design methodologies including 
structural design optimization, reliability, dynamic model 
updating, structural health monitoring and many other 
applications. Although calculating eigenvalue sensitivity 
can be obtain in a straightforward way, computing ei- 
genvector derivatives resides several challenges, such as 
the singularity problem and asymmetric damped systems. 
Eigensensitivity analysis has received much attention 
over the past four decades. Many methods are restricted 
to the systems with symmetric matrices. However, a num- 
ber of engineering structures have asymmetric system ma- 
trices, for example, the study of rotor dynamic model, the 
behavior of structure in fluid and the aircraft flutter.  

The modal method approximates the derivative of each 
eigenvector by expressing it as a linear combination of 
all the eigenvectors so that the eigenvector derivative 
could be carried out by calculating the linear combina- 
tion coefficients. In 1968, Fox and Kapoor [1] first de- 
rived the expressions of the first-order derivatives of ei- 
gensolutions for undamped symmetric systems. Many 
authors [2-5] have extended Fox and Kapoor’s method to 
the more general asymmetric conservative systems. Ad- 
hikari and Friswell [6] extended the modal method to the 
first-order and second-order derivatives of the eigen- 

solutions of asymmetric damped systems. To reduce the 
number of eigenvectors needed to compute the derivative 
of each eigenvector, Zeng [7] presented a modified mo- 
dal method for the complex eigenvectors in symmetric 
damped systems. Later, Moon et al. [8] extended the 
modified modal method to general asymmetric damped 
systems. Wang [9] derived a modified modal method by 
using a residual static mode to approximate the contribu- 
tion of unavailable high order modes.   

Nelson [10] presented another efficient method to 
simplify the computation of the derivatives of eigenvec- 
tors for undamped systems. The main idea of Nelson’s 
method is to express the derivative of each eigenvector as 
a particular solution and a homogeneous solution. In 
contrast to the modal method, Nelson’s method requires 
only the interest eigenvector. Sutter et al. [11] pointed 
out Nelson’s method is more efficient than the modal 
method for the reason that the modal method needs all or 
most of the eigenvectors to find the derivative of each 
eigenvector. Later, Friswell and Adhikari [12] extended 
Nelson’s method to first-order eigenvector derivatives 
for symmetric and asymmetric damped systems. Re- 
cently, Guedria et al. [13] extended Nelson’s method to 
the second-order eigenvectors derivatives for symmetric 
and asymmetric damped systems.  

Rudisill and Chu [14] investigated an algebraic me- 
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thod computed the eigensolution derivatives by solving a 
linear system of algebraic equations, but the coefficient 
matrix of the algebraic equation is asymmetric matrix. 
Lee et al. [15,16] developed the algebraic method with a 
symmetric coefficient matrix for first-order and second- 
order equations of motion, respectively. Guedria et al. 
[17] extended the algebraic method to compute the de- 
rivatives of eigensolutions for general asymmetric damped 
systems. It has demonstrated that this method is compu- 
tationally more efficient than Nelson’s method [13] and 
the modal method [6]. Later, Chouchane et al. [18] ex- 
tended their method to the second-order derivatives of 
eigensolutions and pointed out their method can be ex- 
tended to compute the higher order eigensolution deriva- 
tives. Recently, Xu et al. [19] and Li et al. [20] adopted 
new normalizations and developed efficient algebraic 
methods for the computation of eigensolution derivatives 
for asymmetric damped systems. However, solutions of 
the eigenvector derivatives computed by Xu’s method 
and Li’s method are different from that computed by the 
traditionally existing methods due to the new normalize- 
tions. In contrast to Xu’s method and Li’s method, the 
eigenvector sensitivities computed by Guedria’s method 
are identity with those determined by Nelson’s method 
[13]. However, the algorithm of Guedria’s method is 
lengthy and complicated. In addition, the algebraic 
method [14-19] is proposed by assembling the deriva- 
tives of eigenproblems and the additional constraints into 
an algebraic equation. As a result, the coefficient matrix 
of the algebraic method may be ill-conditioned since the 
elements in the coefficient matrix may be not all of the 
same order of magnitude. One challenge frequently come 
up is whether or not to have other method is compact, 
efficient, and well-conditioned. 

In this study, an equivalent form is proposed for the 
supplementary constraint, from which an efficient alge- 
braic method is proposed to compute the derivatives of 
eigenvalues and associated eigenvectors of asymmetric 
damped systems. To reduce the condition number of the 
coefficient matrix, some weight constants are introduced. 
This method is simple, compact and numerically stable. 
Moreover, several special cases can be presented based 
on the similar idea of the proposed method.  

The second section of this paper introduces basic the- 
ory of asymmetric damped systems. The third section 
proposes a sensitivity analysis method of asymmetric 
damped systems. The fourth section extends the pro- 
posed method to some special cases. And the next sec- 
tion presents two numerical examples to illustrate the 
validity of the proposed method.  

2. Basic Theory of Asymmetric Damped 
Systems 

The second-order equation of motion describing the free 
vibration of a linear, damped discrete system with N 

DOF can be expressed as 

      0Mq t Cq t Kq t             (1) 

where M, C and K are, respectively, the mass, damping 
and stiffness matrices, t denotes time. Here the system 
matrices are asymmetric matrices and the mass matrix M 
is assumed to be a nonsingular matrix such that M–1 ex-
ists. q(t) represents the vector of generalized coordinates 
and has the exponential form 

  tq t e                 (2) 

Combining 

    0Mq t Mq t    

and Equation (1) can easily obtain the equation of motion 
of 2N-space asymmetric damped systems 

       A t x t B t x t              (3) 

where 

0
 and 

0 0

K C M q
A B x

M M q

    
      




     
，


  (4) 

The right and left eigenproblem of a 2N-space asym-
metric damped system can be represented, respectively, 
as follows: 

Ax Bx                 (5) 

T TA y B y               (6) 

where x and y are the right and left eigenvectors of 
2N-space asymmetric damped systems. 

For underdamped systems, the eigenvalues associated 
with Equations (5) and (6) appear in complex conjugate 
pairs 

1 2 1 2
H H H

N N y      ， ， ， ， ，  

here i  is the ith eigenvalue and  *
H

 denotes com-
plex conjugate. 

As the mass matrix is nonsingular, the right and left 
eigenvectors used to be normalized as the following 
form: 

, , 1, ,T
j i ijy Bx i j N               (7) 

where ij  is the Kronecker delta, ix  and i  are the 
right and left eigenvectors corresponding to complex 
eigenvalue

y

i . 
Substituting Equation (2) into Equation (1), the right 

eigenproblem of an N-space asymmetric damped system 
can be obtained 

 2 0i i iM C K                (8) 

and the associated left eigenproblem is 

 2 0
T

i i iM C K               (9) 
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The eigenvectors between 2N-space asymmetric sys-
tems and N-space asymmetric systems satisfy 

,i
i i

i i i i

x y
  i

 
  

   
  





            (10) 

Substituting Equation (10) into Equation (7), the nor-
malization condition of an N space system can be ob-
tained as following form: 

 2 1T
i i iM C     

It should be emphasized that the normalization condi- 
tion expressed as Equation (11) is not sufficient to ensure 
uniqueness of eigenvectors for N-space systems, because 
when multiplying the left eigenvectors by any scalar and 
dividing the right eigenvectors by the same scalar, Equa- 
tion (11) is also satisfied. Hence, an additional normali- 
zation condition should be imposed. In this paper,  •i e

 
denotes the eth component of the ith eigenvector. Many 
authors [6,13,17-21] adopted the additional normaliza- 
tion condition as follow 

   
i i

i n
  i n

              (12) 

which consists in setting one component in each pair left 
and right eigenvectors to be equal. That is to say, for the 
ith eigenvector pair, the eigenvectors are normalized so 
that the nith components are equal. The nith component is 
usually selected such that the product of the absolute 
values of the corresponding components in the eigen- 
vectors is the largest. Thus  

       
1,...,

max
i i

i i i in n kk N
   




k
      (13) 

3. Design Sensitivity Analysis Method 

In this preceding section, an efficient algebraic method is 
presented to compute eigensensitivity. The eigensolu- 
tions of asymmetric damped systems are supposed to be 
known. The system matrices are assumed to depend con- 
tinuously on the real design parameter p and their deriva- 
tives are known. For convenience, the following notation 
is adopted in this paper:  

   
,

•
•

p p





. 

3.1. The Singularity Problem 

The differentiation of Equation (8) with respect to the 
design parameter p yields 

   



2
, ,

2
, , ,

2

                                0

i i i p i i i p

i p i p p i

M C K M C

M C K

     

  

   

    
(14) 

Premultiplying each side of the above equation by i  

and utilizing the normalization condition (11) and Equa- 
tion (9), the eigenvalue derivatives can be obtained [12] 

 2
, , ,

T
i p i i p i p p iM C K,              (15) 

The derivative of eigenvalue given in Equation (15) 
only requires the corresponding eigenvalue and its asso- 
ciated left and right eigenvectors as well as the deriva- 
tives of system matrices. However, the derivatives of the 
right eigenvectors cannot be found directly utilizing 
Equation (14), because the coefficient matrix of the right 
eigenvector sensitivity is singular. The singularity is due 
to the fact that the rank of the matrix of order N is (N – 1) 
when the eigenvalues are distinct.  

In a similar way, differentiating Equation (9) with re-
spect to parameter p, the left eigenvectors derivatives 
satisfy 

   

 

2
, ,

2
, , ,

2

                                 0

T T

i i i p i p i i

T

i p i p p i

M C K M C

M C K

     

  

   

   
 

(16) 

For the same reason explained above, the derivatives 
of the left eigenvectors cannot be found directly using the 
above equation. Therefore, two additional constraints 
presented in the next subsection, should be imposed to 
uniquely determine the derivatives of the right and left 
eigenvectors. 

3.2. Two Additional Constraints 

To overcome the singularity problem, the existing meth- 
ods usually use an additional constraint derived from the 
normalization condition by differentiating Equation (11) 
with respect to parameter p yields  

   
 

, ,

, , ,

   2 2

2( ) 2

T T
i p i i i i i p

T T
i i i p i i p p i

M C M C

M M C

     

     

  

   
   (17) 

Note that the first right term of the above equation is a 
scalar, so we can obtain 

   , ,2 2
TT T

i p i i i i i pM C M C          (18) 

Hence, Equation (17) can be rewritten as 

   
 

, ,

, , ,

2 2

2( ) 2

TT T
i i i p i i i p

T T
i i i p i i p p i

M C M C

M M C

     

     

  

   
  (19) 

However, this above additional equation is not enough 
to uniquely determine the derivatives of the left and right 
eigenvectors. Therefore, a supplementary constraint 
should be imposed. Differentiating the new normalize- 
tion condition expressed by Equation (12) with respect to 
the design parameter p, a new supplementary constraint 
can be obtain in the following form  
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,  
 

2Max Element

Max Element 2

i i

T
i i

M C K

M

 


 

 
  

,  T T
i i p i i pT T               (20) 

with 

 0 0 1 0 0
T

iT            (21) 
and select the non-zero constant α by 

i  is a (N × 1) transform vector and the nith compo-
nent of it associated with the ith left or right eigenvector 
is equal to 1. This expression means that the nith compo-
nent of the ith right and left eigenvector derivatives are 
imposed to be equal. 

T
  2Max Element i iM C K    

h

 

Substituting these weight constants into the above 
equation lead to a numerically well-conditioned system.  

The Equations (26) constitute a linear system to obtain 
the eigensolution derivatives, and the system has the form 3.3. The Proposed Method 

i i iG                (27) In this subsection, a new method is proposed to compute 
simultaneously the derivatives of each eigenvalue and its 
associated left and right eigenvectors. 

Rearranging Equations (14), (16), (19) and (20), re-
spectively, as the follows forms: 

   
 

2
, ,

2
, , ,

   2i i i p i p i

i p i p p i

M C K M C

M C K

i    

  

   

   



,

   (22) 

with Gi a (2N + 2) × (2N + 2) coefficient matrix, i  a 
(2N + 2) × 1 sensitivity vector and hi a (2N + 2) × 1 
vector, which depend on eigensolutions and the deriva- 
tives of system matrices. The eigensolution sensitivities 
can be uniquely determined since the coefficient matrix 
Gi has a rank (2N + 2), as demonstrated in the following 
section. 

The proposed method can be summarized as follows 
   

 
2

,

2
, , ,

   2
TT

i p i i i i i p

T

i p i p p i

M C M C K

M C K

    

  

   

   



, i

 (23) 
Step 1: Compute Gi and hi. 
Step 2: Solve i i iG

 

   
, ,

, ,

2 2( )

2 2

T T
i i i p i i i p

TT T
i i i p i i p p

M C M

M C M C

     

    

 

    

h   and obtain the eigensolution 
sensitivity. 

Note that the algorithm of the proposed method con- 
tains only two steps, so it is very simple and compact. 





 (24) 

3.4. Numerical Stability 

, ,  0T T
i i p i i pT T               (25) In order to show that the coefficient matrix Gi of Equa- 

tion (27) is nonsingular, consider a (2N + 2) × 1 vector, d 
and use the fact that the equation Gid = 0 has the unique 
solution d = 0. 

Rewriting the above four equations in the above alge-
braic matrix form (22)-(25). 
α, β are weight constants. Because the equation is as- 

sembled by using the derivatives of eigenproblems and 
the additional constraints, the elements in the coefficient 
matrix may be not all of the same order of magnitude, as 
a result, the equation will has a large conditional number. 
To reduce the condition number, we select the non-zero 
constant β by  

Assume Gid = 0 with  Td     , i.e., 

   2 2 0i i i i iM C K M C T             (29) 

   2 2 2
TT T T

i i i i i iM C M M C      0       

(30) 

 

     

     

   

 
 

 

22
, , ,

,

22
, , , ,

,
, ,

0 2

0 2

22 2 2 0 0
0

0 0 0

i p i p p ii i i i iN N i p
TT T

i p i p i p p ii i i i iN N

T Ti pT T T
i i p p ii i i i i i

T T
i i

M C KM C K M C T

M C KM C K M C T

M CM C M C M

T T

       
      


        
 





         
                         









 
 

     

     

   

2

2

0 2

0 2

2 2 2 0 0

0 0

i i i i iN N

T T

i i i i iN N
i

TT T T
i i i i i i

T T
i i

     (26)

M C K M C T

M C K M C TG

M C M C M

T T

    

    

     
 





   
 
    
 

  
  

                  (28)
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0T T

i iT T               (31) 

   22
TT

i i i i iM C T M C K           0  (32) 

Premultiplying Equation (29) by T
i  and premulti-

plying Equation (32) by T
i , utilizing Equations (8), (9) 

and (11), thus 

0T T
i iT   



           (33) 

0T T
i iT              (34) 

Combining the above two equations, one can ob-
tain 0  =，  since 0T T T T

i i i iT T   . Substituting 
0  , 0 =  into Equations (29) and (32), one can 

obtain 

 2 0i iM C K             (35) 

 2 0
T

i iM C K            (36) 

Comparing the above two equations with Equations (8) 
and (9), it is clear that i  and i  are particular solu-
tions of Equations (35) and (36), respectively. Thus, so-
lutions of the above two equations can be, respectively, 
expressed as 

i                  (37) 

ˆ
i                  (38) 

where  and ̂  are constant coefficients. Substituting 
the above two equations and 0   into Equations (30) 
and (31), respectively, and utilizing the additional nor-
malization (11), one can obtain 

ˆ=0               (39) 

ˆ=0               (40) 

Combining the above two equations, one can obtain 
ˆ 0  =， . Due to the equation Gid = 0 has the unique 

solution d = 0, therefore, Gi is always a full rank matrix 
and the numerical stability of the proposed method can 
be guaranteed. As a consequence, the derivatives of ei- 
gensolutions can be uniquely determined utilizing Equa- 
tion (27). 

4. Special Cases 

The proposed method can be extended to apply in several 
special cases. The following particular cases are consid-  

ered: asymmetric undamped systems, symmetric damped 
systems and symmetric undamped systems. The deriva- 
tives of eigensolutions for the particular cases can be 
found by utilizing the similar procedure above. 

4.1. The Asymmetric Undamped System 

For asymmetric undamped systems, damp matrix is re- 
moved. The normalization condition (11) is reduced to 

1 2T
i iM i    

Considering the consistent normalization with tradi-
tional modal analysis for undamped systems, 

1T
i iM    

is adopted as the normalization condition. With the simi-
lar idea of the proposed method, the algebraic system (26) 
can be simplified in the following form (41). 

4.2. The Symmetric Damped System 

For symmetric damped systems, the system matrices are 
all symmetric. The relation between the left and right 
eigenvectors and the derivatives of the right and left ei-
genvector are equal. Thus the normalization condition 
(11) can be simplified as 

 2 1T
i i iM C     

The new supplementary constraint expressed in Equa-
tion (20) will be ignored since it is always satisfied. 
Based on Equation (15), the eigenvalue sensitivity can be 
simplified as follow 

 2
, , ,

T
i p i i p i p p iM C K,             (43) 

And, the algebraic system (26) can be reduced to the 
above form (43). 

To reduce the condition number, selecting the non- 
zero constant   by 

 
  

2Max Element

Max Element 2

i i

i i

M C K
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 


 

 



 

In the special case, when 1  , the above equation is 
identical with that developed in [16], and Equation (43) 
may be considered as an development of the algebraic 
method [16]. 
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4.3. The Symmetric Undamped System 

Assume the system matrices are all symmetric, and the 
damping matrix equals a zero matrix. Considering tradi- 
tional mass normalization  

1T
i iM    

The algebraic system (26) can be then reduced to the 
following form: 

 22
, ,,

1
, ,

20 0.5

i p p ii pi i
T T

i i pi i p i

M KM K M

M M

   
     



                





(44) 

where λi is the ith undamped natural frequency. Similarly, 
selecting the non-zero constant   by finding the abso-
lute largest element of matrix 2

i M K  and dividing 
the largest element of iM . The above equation is 
similar with that developed in [15], and Equation (44) 
may be considered as a development of the algebraic 
method [15]. 

5. Numerical Examples 

The validity of the proposed method will be demon- 
strated by the following two examples. The first example 
is a rotor dynamic model, which is used as an example of 
an asymmetric damped system. The second example is 
used to show the condition number of the improved al- 
gebraic method is remarkably reduced.  

5.1. Example 1 

To illustrate the application and efficiency of the pro- 
posed method, a rotor dynamic model, shown in Figure 
1, is considered. The rotor dynamic model is an asym- 
metric damped system, which consists of a flexible shaft 
supported by two bearings and two rigid disks rigidly  

fixed to the shaft. 
The shaft has a diameter d = 0.2 m, a length L = 5.0 m, 

a Young’s module E = 2.1 × 1011 N/m2, a density ρ = 
7850 kg/m3 and a Poisson’s ratio μ = 0.3. The disk1, 
fixed at L1 = 2.0 m from the left side of the shaft, has a 
1.0 m external diameter and a 0.04 m thickness and the 
disk 2, fixed at L1 = 1.5 m from the right side of the shaft, 
has a 2.0 m external diameter and a 0.06 m thickness. 
The two bearings are identical and modeled using springs 
and dashpots with coefficients shown in Figure 1. The 
spring stiffness coefficients and the damping coefficients 
have the following values: 

Kxx1 = Kxx2 = 5.2 × 107, Kyy1 = Kyy2 = 3.2 × 107 N/m and 
Cxx1 = Cyy1 = Cxx2 = Cyy2 = 1000 Ns/m. 

Bearing coefficients have been chosen such that the 
typical values of stiffness coefficients are used, with a 
slightly higher rigidity in the vertical direction [18], and 
moderate damping coefficients given in [6] are assumed. 
The rotor dynamic model is modeled using the finite 
element method. The rotor dynamic model is discretized 
into 40 shaft elements utilizing Timoshenko beam ele-
ments in which the gyroscopic effects are included. The 
coupling stiffness and damping coefficients of two bear-
ing are assumed to be negligible. Each of the 40 elements 
has a length 0.125m and the system has 41 nodes. Each 
node has four degrees of freedom, the transverse dis-
placements and the rotations in both the XZ plane and 
YZ plane. Hence, the model has 164 degrees of freedom, 
which are ordered as follows: 

 1 1 1 1 41 41 41 41x y x yx y x y     

The two bearings are located at nodes 1 and 41, re-
spectively. The disk1 is fixed at the 17th node and the 
disk 2 is fixed at the 29th node. The rotor dynamic model 
example is therefore a damped asymmetric model due tothe 
gyroscopic effects and the damping of the bearing dashpots. 

 

 

Figure 1. The geometric dimension and bearing model of the rotor dynamic model. 
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The Campbell diagram shown in Figure 2 depicts the 

change in the damped natural frequency with rotor speed. 
The system is numerically stable since the real parts of 
all eigenvalues are negative. The gyroscopic effects are 
significant leading to a five first critical speeds at 516, 
540, 1620, 2268 and 2786 rpm, respectively. To illustrate 
the computation of the eigensolution derivatives using 
the proposed method, the operating speed of rotor dy- 
namic model is chosen to be 2000 rpm. This speed is 
positioned between the third and the fourth critical 
speeds. In order to illustrate the computation of the ei- 
gensolution derivatives, the density of material has been 
chosen as a design parameter p. To compare solutions of 
the eigensolution sensitivities, eigensensitivities have 
been computed by Guedria’s method and the proposed 
method, respectively. Table 1 shows the first five eigen- 
values and their derivatives. Tables 2 and 3 show some 
components of the first right and left eigenvectors, re-
spectively. It has been checked that the eigenvector de-
rivatives computed by the proposed method is the same 
results as that computed by Guedria’s method.  

To illustrate the efficiency of the proposed method, the 
computational times of the eigensolution derivatives 
computed by the proposed method were compared with 
that obtained by Guedria’s method. Figure 3 shows the 
computational times of Guedria’s method and the pro- 
posed method with respect to the number of the com- 
puted eigensolution derivatives. The computation of the 
eigensolution derivatives have been repeated 10 times 
and the minimum and maximum times of the computa- 
tion were removed, the average computational times are 
found to be 19.45 s for Guedria’s method and 14.38 s for 
the proposed method. To compute the derivative of each 
eigenpair, Guedria’s method needs multiply the reduced 
matrix of dimension ((2N +1) × 2N) for four times and 
requires solving a (2N + 1) linear equation, however, the 
proposed algorithm only needs solve a (2N + 2) algebraic 
equation.  

A comparison of flop count is carried out next between 
Guedria’s method and the proposed method. The flop 
count is considered based on [20,22]. Let A and B be 
complex matrices of dimensions (m × n) and (n × p), 
respectively, the flop count of the product of A and B is 
(8 mnp - O(mp)). The Doolittle’s method computed a LU 
factorization Q = LU, costs 2n3 + O(n2) flops. Suppose 
that the first q eigensolution sensitivities. Here, the flop 
count for computing the eigensolutions and the deriva-
tives of the system matrices is not considered. The total 
number of flops to implement the proposed method is 
[16N3 + O(N2)]q. And it is [16N3 + 128N3  + O(N2)]q 
for Guedria’s method (  is sparsity parameter [21] 
which is unity for a full matrix). Therefore, the computa- 
tional effort is reduced remarkably in contrast to Guedria’s 
method. In this special case, the computational time is  




Table 1. The first five eigenvalues and their derivatives. 

Eigenvalues derivatives 

–2.7669e–3 + 5.0419e+1i 

–5.9938e–3 + 5.8804e+1i 

–1.2214e–1 + 1.6069e+2i 

–1.7648e–1 + 2.3545e+2i 

–3.0383e–1 + 3.0373e+2i 

2.3343e–7 – 2.8683e–3i 

9.1121e–7 – 3.9281e–3i 

1.1640e–5 – 7.3002e–3i 

2.4792e–5 – 1.6025e–2i 

2.9273e–5 – 1.6954e–2i 

 
Table 2. The first right eigenvector and its first order de-
rivatives. 

DOF eigenvector Eigenvector derivative 

1 –5.7440e–5– 5.7361e–5i 2.2923e–9 + 2.2821e–9i 

2 –5.5494e–4 – 5.5526e–4i 2.1710e–8 + 2.1717e–8i 

3 –1.2691e–4 – 1.2688e–4i 5.0103e–9 + 5.0010e–9i 

4 –5.5352e–4 – 5.5384e–4i 2.1654e–8 + 2.1661e–8i 

5 –1.9603e–4 – 1.9603e–4i 7.7141e–9 + 7.7057e–9i 

      

160 6.4036e–4 – 6.4040e–4i –1.5105e–8 + 1.5102e–8i 

161 –1.8394e–4 + 1.8431e–4i 1.0945e–9 – 1.1110e–9i 

162 6.4505e–4 – 6.4510e–4i –1.5071e–8 + 1.5067e–8i 

163 –1.0299e–4 + 1.0336e–4i –7.8702e–10 + 7.7009e–10i

164 6.4662e–4 – 6.4666e–4i –1.5060e–8 + 1.5056e–8i 

 
Table 3. The first left eigenvector and its first order deriva-
tives. 

DOF Eigenvector Eigenvector derivative 

1 5.7440e–5 + 5.7361e–5i –2.2923e–9 – 2.2821e–9i 

2 5.5494e–4 + 5.5526e–4i –2.1710e–8 – 2.1717e–8i 

3 1.2691e–4 + 1.2688e–4i –5.0103e–9 – 5.0010e–9i 

4 5.5352e–4 + 5.5384e–4i –2.1654e–8 – 2.1661e–8i 

5 1.9603e–4 + 1.9603e–4i –7.7141e–9 – 7.7057e–9i 

      

160 6.4036e–4 – 6.4040e–4i –1.5105e–8 + 1.5102e–8i 

161 –1.8394e–4 + 1.8431e–4i 1.0945e–9 – 1.1110e–9i 

162 6.4505e–4 – 6.4510e–4i –1.5071e–8 + 1.5067e–8i 

163 –1.0299e–4 + 1.0336e–4i –7.8702e–10 + 7.7009e–10i 

164 6.4662e–4 – 6.4666e–4i –1.5060e–8 + 1.5056e–8i 

 
reduced by about 26.1% in comparison with those 
elapsed by Guedria’s method. It has demonstrated that 
Guedria’s method is computationally more efficient than  
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Figure 2. The Campbell diagram of the rotor dynamic 
model. 

 

 

Figure 3. Comparison of CPU time. 
 
Nelson’s method [12] and the modal method [6]. In this 
sense, it may be concluded that the proposed method is 
also computationally more efficient than both Nelson’s 
method and the modal method. Hence the proposed 
method gives exact eigensensitivity results and requires a 
lower computational cost. 

5.2. Example 2 

To illustrate the proposed method is well-conditioned, 
consider a 2-DOF mass-spring system. Assume the sys-
tem matrices have the following form 

1

1

1

2

1

2

0
,

0

,

0

0

m
M

m

k k k
K

k k k

c
C

c

 
  
 

  
    
 

  
 

 

Suppose m1 = m2 = 1 kg, k1 = k2 = 10,000 N/m, c1 = c2 = 
5.0 Ns/m. The stiffness k was chosen as the design pa-
rameter p, and the eigensolution derivatives were con-
sidered at k0 = 10,000 N/m. The system has two conju-
gate eigenvalues: –2.5 ± 99.969i and –2.5 ± 173.19i. The 
eigenvalue –2.5 + 31.524i was considered in this exam-
ple. In this special case, the non-zero constant   is set 
to 1000.0 + 7.07i, the condition number of coefficient 
matrix is 7.07, and the condition number of the similar 
coefficient matrix in [16] is 1414.4. Therefore, the condi-
tion number is remarkably reduced, and the proposed 
method is numerically well-conditioned. 

6. Conclusion 

An improved algebraic method is presented for comput- 
ing eigensolution derivatives of asymmetric damped sys- 
tems with distinct eigenvalues. The method maintains 
N-space formulation without using 2N-space equations, 
and the proposed method is well-conditioned since ele- 
ments of the coefficient matrix are all of the same order 
of magnitude. Several special cases can be presented 
based on the similar idea of the proposed method. This 
proposed method may be inserted easily into a comer- 
cial FEM code since it is very compact, numerically sta- 
ble, and easy to be implemented on computers. When 
applying on a 164-DOF rotor dynamic model example, 
the computational time is reduced by about 26.1% in 
comparison with those elapsed by Guedria’s method [17]. 
And a two 2-DOF mass-spring system shows the condi- 
tion number of the proposed method is reduced.  
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