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ABSTRACT 

This work presents an approximate analytical study of the problem of dynamic wrinkling of a thin metal sheet under a 
specified time varying tension. The problem is investigated in the framework of the dynamic stability of a nonlinear 
plate model on elastic foundation which namely takes into account the nonlinear mechanics of mid-plane stretching and 
the dependence of the membrane force on this mechanics. The plate is assumed to be a wide rectangular slab, hinged at 
two opposite ends and free at the long ends, which can be deformed in a cylindrical shape so that the governing in-plane 
bending equation of motion takes the same form as that of a beam (e.g. lateral strip) element. An approximate analytical 
analysis of the beam wrinkling behavior under sinusoidal parametric excitation is carried out by using the assumed sin-
gle mode wrinkling motion to reduce the beam field nonlinear partial differential equation to that of a single degree of 
freedom non-linear oscillator. A first order stability analysis of an approximate analytical solution obtained using the 
Multi-Time-Scales (MMS) method is used to derive a criterion defining critical driving frequency in terms of system 
parameters for the initiation of wrinkling motion in the thin metal sheet. Results obtained using this criterion is pre-
sented for selected values of system parameters. 
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1. Introduction 

Thin elastic sheets with dimensions ranging on length 
scale from meters to nanometers are encountered in a 
wide variety of industrial applications such as manufac- 
turing of automotive, electric home appliance, aircraft, 
thin film depository micro and nano devices etc. In prac- 
tice, a thin sheet may be subjected to various types of 
controlled and uncontrolled in-plane and out-of-plane 
static and dynamic mechanical and thermal loadings 
during handling, forming and shaping processes and as- 
sembly operations. Due to their relatively low flexural 
stiffness, thin sheets are known to have a tendency to 
buckle and develop out-of-plane displacement, called 
wrinkles, despite in some cases a relatively small amount 
of in-plane compression. The wrinkles are usually along 
the perpendicular direction to the compressive stress and 
represent local instabilities that remove the compressive 
stress. In some cases a limited amount of wrinkling can 
be tolerated, but there are many cases where wrinkles are 
unacceptable visual and functional defects. For example, 
the defect or failure of a thin sheet metal due to wrinkling 
is of major concern in various traditional metal forming, 
coating and finishing processes and in the handling, 
transportation and assembly operations of the finished  

parts. The wrinkling (or buckling) of a sheet adversely 
affects its final appearance and functionality. It can play 
a critical role in implementing certain forming and shap- 
ing processes and assembly operations under various 
static and dynamic loads. And it may also be the most 
prevalent material instability that places a serious obsta- 
cle to the efforts of improving productivity and quality of 
products and in bringing the economic cost down to a 
compatible level. On the other hand, controlled wrinkling 
formation has been considered as a means of creating 
ordered patterns used in the development of micro/nano 
devices for micro/nano fluidic applications. Because of 
the increasing demands for high precision and low cost 
structures at the macro as well as at micro scales which 
are free of complex wrinkling patterns, and the interest in 
the development of controlled wrinkled micro/nano- 
structures, the problem of elastic/plastic instability in dif- 
ferent metal sheet manufacturing processes and mi- 
cro/nanostructures recently has been the subject of many 
theoretical, numerical and experimental investigations. 
There is no intention here to present a literature review 
on wrinkling and buckling, examples of relevant publica- 
tions are found in references. 

Wrinkling is a general phenomenon generally defined 
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as an elastic/plastic compressive instability (e.g. buckling 
mechanism, similar to buckling of an elastic column un- 
der compression) typically associated with short wave- 
length deformation patterns (modes), (e.g. mode wave- 
length is large compared to a sheet element length but 
small compared to its radii of curvature), whereas overall 
buckling is essentially a special case of wrinkling in 
which the half wavelength of the buckling mode is of 
comparable to that of the sheet element length [1,2]. For 
example consider a thin sheet, film or web which is es- 
sentially under in plane loading. If one of the in-plane 
principal stress is tensile and the other is compressive 
with magnitude greater than a critical value (e.g. a value 
at which flexural stiffness becomes zero), then the sheet 
metal wrinkles as stated by Wadee and Hunt in [3]. 

The wrinkling of a sheet metal element may be af- 
fected, to various degrees, by a number of factors such as 
material properties, geometry of the element, material 
anisotropy, static and time varying contact loads. In addi- 
tion, this instability behavior may exhibit a wide varia- 
tion for a small deviation in any of these or other factors. 
Therefore a unified theory of wrinkling behavior that 
takes into account the various and complex factors which 
may affect an elastic/plastic process is difficult to define. 
Consequently various researchers have used different 
theoretical and numerical (e.g. finite element) analysis 
methods to carry out studies on wrinkling behavior and 
formation tendencies in structural elements of specific 
geometry under specific loading conditions. This led to a 
number of different theories on the underlying wrinkling 
mechanisms and critical values (e.g. criteria) at impend- 
ing wrinkling. In most of the studies concerned with thin 
sheet metals or skins of composite sandwich panels, the 
analyses were based on a 2-D (plane stress or plane strain) 
formulas, and were carried out, as indicated above, on a 
case by case for different processes under certain simpli- 
fying assumptions concerning the effect of a selected set 
of system and/or process parameters. 

It is noted that wrinkling can be broadly classified, for 
the purpose of this study, into static and dynamic [4,5]. A 
static wrinkling is the wrinkling which takes place under 
static loading conditions, whereas dynamic wrinkling is 
that which is induced by time varying (dynamic) loads 
only such as free or forced vibrations. 

Studies and models of various aspects of static wrin- 
kling (critical condition at the onset of wrinkling, shape 
and size of wrinkles) of thin sheet metal and faces of 
sandwich plates, panels and beams elements are found, 
for example, in [4-8]. Several of the developed static 
wrinkling analyses were based on the functional and bi- 
furcation criteria proposed by Hutchinson in [9], where 
various authors used different plastic deformation theo- 
ries and yield criteria [1,10-15]. The occurrence of wrin- 
kling was usually presented in the form of a wrinkling 

limit curve (WLC) in principal stress space. A simplified 
kinematics (e.g. strain) based approach and a simplified 
elasticity (e.g. stress) based approach, where the onset of 
wrinkling is predicted by the solution of an eigenvalue 
problem were also used by several authors [16-19]. A 
strain energy based approach was used in [18-20] to 
analyze wrinkling behavior of anisotropic sandwich pan- 
els, sandwich columns, and thin-walled tube with large 
diameter in an NC bending process, respectively. The 
critical conditions at the onset of wrinkling were deter- 
mined by equating the total strain Es associated with an 
assumed deflection (e.g. wrinkling pattern) to the work 
W done by forces needed for stable deformation. That is, 
the equilibrium state is considered to be stable if W > Es, 
unstable if W < Es and critical if W = Es. 

Wrinkling behavior in sheet metal forming has also 
been studied using finite-element analysis in conjunction 
with the bifurcation algorithms widely used in buckling 
problems [2,13,14,21-26]. The various wrinkling analy- 
ses using the finite element method can be classified into 
the two types [23]. The bifurcation analysis [21] of per- 
fect structure and the non-bifurcation analysis employing 
an assumed initial imperfection in the mesh [13]. It is 
argued that in a non-bifurcation analysis the introduction 
of initial imperfections or artifact, sometimes, gives more 
accurate results than the bifurcation analysis since in 
practice all real structures have inherent imperfections, 
such as material non-uniformity, geometric unevenness 
or undulations [23]. 

In recent years, the increasing demands for cost effec- 
tive, and high quality products at high productivity rate 
manufacturing processes has led to several papers on the 
subject of wrinkling of sheet metal and sandwich panels 
under dynamic loadings, e.g. [4,5,27,28]. In most cases 
these studies are based on simplified linear or non-linear 
membrane, thin plate or beam models. External (direct), 
parametric or a combination of direct and parametric 
excitations were considered, where the parametric exci- 
tation generally arise, (e.g. in the case of a beam and a 
thin plate) by considering the dependence of the axial 
(e.g. membrane) on the geometric non-linearity which 
couples the axial displacement with the bending deflec- 
tion, and/or assuming this force to be an arbitrary time 
dependent action. In most cases a straightforward elas- 
tic/plastic instability (e.g. wrinkling) analysis was used 
where the onset of this instability was assumed to take 
place at the system resonance response. 

The present work aims at presenting an approximate 
analytical study of the tendency of a thin metal sheet to 
wrinkle under a specified time varying tension (e.g. 
membrane action). Namely, the effect of a dynamic pa- 
rametric excitation that develops from a time varying 
tension frequently found in various metal sheets forming 
and handling operations will be investigated. The tension 
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(the membrane action) will be considered to be a biased 
sinusoidal time function. The problem will be investi- 
gated in the framework of the stability of vibrations of 
the nonlinear plate model on elastic foundation which 
namely takes into account the nonlinear mechanics of 
mid-plane stretching and the dependence of the mem- 
brane force on this mechanics. The plate geometry and 
boundary conditions of the plate will be taken as those 
that allow the continuous plate model to be reduced to a 
discrete single degree of freedom nonlinear oscillator 
similar to that one obtains for the in-plane vibration of a 
beam element. To this end, the plate will be assumed to 
be a wide rectangular slab with two opposite free edges 
while the other two opposite edges are simply supported 
and thus the plate (slab) deflected surface can take a cy- 
lindrical shape with cylinder axis parallel to the plate 
length [29]. That is, the plate transverse defection is as- 
sumed to be independent of the lateral spatial coordinate 
and thus the governing equation of motion for the plate 
in-plane bending vibration takes the same form as that of 
a beam (e.g. lateral strip) element [29]. In the present 
work the beam model (e.g. thin sheet) will be assumed to 
be resting on a linear Winkler elastic foundation. It is 
known that a beam resting on an elastic foundation espe- 
cially that with an initial geometric unevenness, can ex- 
hibit primary and secondary mode dynamic buckling 
(elastic/plastic instabilities) and complicated defection 
shapes with localized undulations due to frequency veer- 
ing [30-32]. An approximate analytical analysis of the 
beam deflection behavior under sinusoidal parametric 
excitation will be carried out by using the assumed single 
mode method whereby the beam field nonlinear partial 
differential equation is reduced to that of a single degree 
of freedom non-linear oscillator. The focus will be on the 
effect of system parameters such as modulus of elasticity, 
plate thickness, magnitude and frequency of externally 
applied tension on the onset of dynamic wrinkling and 
the wavelength of the developed wrinkles due to the pa- 
rametric dynamic stresses. The critical conditions for the 
initiation of wrinkles are, as in [4] considered to be those 
required for the onset of unstable parametric vibration of 
a single-degree-of-freedom nonlinear oscillator repre- 
senting a single mode reduced beam model. A first order 
stability analysis of an approximate first order analytical 
solution for the parametric response of this oscillator 
obtained, as in [33], using Multi-Time-Scales (MMS) 
method [34], is used to derive an expression defining 
critical driving frequency in terms of system parameters 
for the onset of wrinkles in the cylindrically deformable 
thin metal sheet. 

2. Physical System and Model Formulation 

Analysis of the wrinkling behavior of the plate shown in 
Figure 1(a) is carried out with the aid of the reduced 

beam model shown in Figure 1(b). The plate is assumed 
to be a wide rectangular metal sheet of length L (along x 
coordinate), large width (along y coordinate), small and 
uniform thickness h, ( h L� ), resting on a complaint 
linear elastic, Winkler type, foundation of stiffness Kf. It 
has Young’s modulus E, mass density ρ, points along 
both of its edges parallel to the y-axis, and free at all 
points on the two other edges parallel to the longitudinal 
x-axis. It is assumed that the two lateral boundaries along 
the y coordinate are subjected to an applied in-plane 
tension N(t) = N0 + Ntsin(Ωt), where N0 is the spatially 
averaged steady tension, Nt is the amplitude of a 
sinusoidal varying, with frequency Ω, tension. The plate 
is assumed to have a flat rest configuration, and its 
transverse deflection to be confined to the x-z plane and 
independent of the lateral spatial coordinate y. Based on 
these assumptions, the behavior of the plate deflection 
may be analyzed with the aid of the beam model (e.g. a 
longitudinal strip element of the plate) shown in Figure 
1(b). This beam Equation of motion taking into account 
the mid-plane stretching and neglecting axial and rotary 
inertias, may be described by the following partial 
differential equation [4,29] 

2 4 2

2 4 2
0f

w w w
h D N K w

t x x
   

   
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,     (1) 

where N is the in -plane membrane (axial) force per unit 
width, positive when it produces tension, given by 
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Figure 1. System under consideration. (a) A thin plat on 
winkler foundation hinged at the two opposite sides and 
free at the other two sides; (b) The corresponding beam 
model. 
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is the plate flexural rigidity, and μ is Poisson’s ratio of 
the plate material. Equation (1) is, for the present system, 
supplemented with the following boundary conditions: 

W = 0, 
2

2
0

w

x





 at x = 0 and x= L   (3) 

Note that the above model assumes the beam total 
deflection is within beam material elastic range. Also as 
a result of neglecting the axial inertia (e.g. due to static 
condensation of the axial motion) it is assumed that the 
effects on the beam deflection of geometric nonlinearity 
due to mid-plane stretching dominates overt those of 
nonlinear curvature and inertial nonlinearities. Thus the 
longitudinal motion becomes the slave of the lateral 
bending motion whereby the axial force N which gives 
rise to the nonlinear term in partial differential Equation 
(1) becomes a nonlinear function of the time variable 
only and is independent of the independent spatial 
variable x. In other words, the static version of Equation 
(1), obtained by omitting the leading inertia term in this 
Equation and the time varying part of the applied axial 
force Ntsin(Ωt), is a an ordinary linear differential Equation 
with constant coefficients where N is unknown constant, 
as given by Equation (2) after omitting the time varying 
part in this Equation, dependent on the actual unknown 
deflection w. Because of the dependence of the constant 
coefficient N on the unknown deflection w a solution to 
the linear static version of Equation (1) can only be 
obtained approximately using, for example, an iterative 
procedure. It is noted that by assuming a harmonic in 
time variation for the beam deflection in Equation (1), 
one obtains an equivalent linear differential in space 
Equation with constant coefficients one of which is 
dependent on the unknown beam deflection, similar to 
the corresponding static version, which can only be 
solved approximately, using an iterative procedure, for 
the mode shape deflections and corresponding natural 
frequencies. Such procedure will in the present case 
results in prohibitively complicated implicit frequency- 
mode shape Equations that deny reasonably elaborate 
numerical solution. In the present work an approximate 
solution to Equation (1) will be obtained using the assumed 
linear mode method for the wrinkling motion, which 
despite its known inherent limitations may lead to useful 
information about the beam dynamic wrinkling behavior. 

3. Dynamic Wrinkling Analysis 

The stability of the beam system described by Equation 

(1) against a dynamic wrinkling pattern may be examined 
by determining the conditions leading to unstable 
vibration amplitude of the associated discrete temporal 
problem [4]. Accordingly, inserting into Equations (1) 
and (2) a wrinkling pattern of the form 

   sin
x

w x v t
l

 
 


 ,        (4) 

where l L n  is unknown wrinkle length, n is unknown 
wave number, L is the beam (e.g. plate) length, and v is a 
time varying amplitude. Substituting for Equation (4) 
into Equations (1) and (2) leads to the following para- 
metrically excited Duffing type oscillator: 
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Next, the following dimensionless variables and para- 
meters are introduced: 
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then, Equation (5) takes the following dimensionless 
form: 

  2 3
0 0sin 0q t q   q     ,    (7) 

where    4 22
0 0 ,  2

tN   , and K N     
 4

0 4   . The general class of the nonlinear para- 
metrically excited oscillator in Equation (7), as well as its 
linear version (e.g. the case when α0 = 0), which are 
found in many practical applications, do not admit a 
closed form solution. Descriptions of the behavior of this 
type of oscillators, as well as that of its linear version, are 
found in many periodical references and several non- 
linear text books [33,34]. These descriptions were ob- 
tained using the nonlinear theory approximate analytical 
methods such as the perturbation Linstedt-Poincare, 
Multi-Time Scales, Harmonic Balance, Light-Hill expan- 
sion as well as numerical and Floquet theory stability 
analysis. These studies indicate that the nonlinear oscil- 
lator in Equation (7), as well as its linear version can, 
depending on range of system parameters, exhibit in 
addition to the trivial solution various types of dynamic 
response behaviors such as stable or unstable periodic, 
and non periodic responses, which may bifurcate from 
the trivial solutions of the linear version. The description 
of the behavior of this type of oscillators is usually 
presented in the form of stability boundary curves 
separating regions of stable and unstable solutions in the 
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parameter Ω-δ space. The analysis of the linear version of 
Equation (7) provides the instability boundaries that 
separates stable from unstable trivial solutions. Then 
analysis of the nonlinear form of the system examines the 
limit cycles and nontrivial periodic and aperiodic 
solutions which may bifurcate from the trivial solutions. 
It is noted that the instability curves divide the Ω-δ 
parameter space into a number of stability-instability 
regions emanating from different and widely spaced 
points on the Ω axis. From practical point of view the 
principal (i.e. the first) of these regions is the most 
important one because it is not significantly affected by 
damping and it corresponds to the lowest and broadest 
range of the driving frequencies. For frequencies below 
this range the trivial solution remains stable, while for a 
driving frequency above the critical value corresponding 
to the boundary of the principal instability region is 
expected to develop [33,34]. Obviously wrinkling vi- 
brations may also develop as the frequency is increased 
and enters higher regions of instabilities, but as indicated 
above the primary instability is usually the most dan- 
gerous one; therefore the focus of this work will be on 
this region. 

4. Dynamic Wrinkling Instability Regions 

The focus of the present analysis, as indicated above, is 
to determine an approximate solution to the primary 
region instability curves of the wrinkling vibrations of 
the parametrically excited beam system described by 
Equation (7). Such an approximate solution may be 
obtained using one of the well known approximate 
methods such as Harmonic Balance (HB) or the Multi- 
Time-Scales (MMS) described in [34]. In this work an 
approximate expression for the critical forcing frequency 
for onset of wrinkling is derived following closely a first 
order MMS solution and stability analysis presented in 
[33]. 

Multi-Time Scales (MMS) Solution 

In obtaining an approximate solution to Equation (7), or 
its linear version, using the MMS solution one assumes a 
power series expansion for the parameter δ of the form 

2
1 2      ,           (8) 

where ε is a positive small ( ) gauge parameter, used 
only for bookkeeping . Then following the standard steps 
of the MMS analysis one rescales the nonlinear and the 
forcing terms ( as well as damping if present) in Equation 
(7) so that they appear at the same of order of ε. Next one 
lets Ω = 2ω0 + εσ, where σ is frequency detuning 
parameter, and assumes a power series solution of the 
form of 

1�

     0 1 0 0 1 1 0 1, , , , , ,q T T q T T q T T   

where Tp = εpt, p = 0, 1, … Are independent time scales 
variables. Upon making the above substitutions into 
Equation (7), and equating independently in the resulting 
Equation the coefficients of different powers of ε to zero 
one obtains a hierarchy set of linear partial differential 
Equations which are then solved sequentially for q0, 
q1, … Solving a desired number of these linear Equations, 
and imposing the periodicity condition by eliminating 
secular ( resonance producing) terms which arise in the 
forcing terms of these Equations, leads to, respectively, 
the following zero order, (e.g. on the T1 time scale), 
solution and steady state frequency relation, for more 
details see references [33,34] 
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C  is the complex conjugate of C, a is the steady state 
amplitude, and a(T1, T2, ···) and (T1, T2, ···) denote a 
slowly varying amplitude and phase, respectively, for 
which the steady state solutions a , (Equation (11)), and  
provide the amplitude , and phase of a periodic solution 
to Equation (7). Note that Equation (11) shows that the 
trivial solution (a = 0) is always a solution, while the 
nontrivial solutions can be expressed as 
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provided that a is real, e.g. 
0

1
0

2




  . 

The stability of the above nontrivial solutions can be also 
be determined by examining the eigenvalues of the 
linearized amplitude and phase modulation Equations 
about the corresponding steady state values. In general 
the results of stability analysis are presented in the 
excitation amplitude δ-detuning parameter σ plane. The 
primary stability region typically shows three distinct 
types of behavior as illustrated in Figure 2, found in 
[33,34]. In region I only stable trivial solutions exist and 
the system response, regardless of starting conditions, 
decays to zero. In region II, the trivial solution is unstable 
and co-exits with a stable nontrivial limit cycle solution; 
thus for all starting conditions the steady state solution is 
a limit cycle. In Region III, the trivial solution becomes 
stable and co-exists with two nontrivial stable periodic 
solutions. In this case, depending on the starting conditions, 
the steady state solution may decay to zero or settles into 
one of the periodic attractors whose amplitude is 
determined by Equation (13). It is noted that a more   ,   (9) 
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Figure 2. Stability regions of periodic solutions of Equation 
(7) [43]. 
 
detailed bifurcation analyses may reveal other bifurcation 
scenarios which, for the sake of simplicity, are not 
explored. Also an exact analytical solution to region III 
transition curves in the form δ(Ω) or Ω(δ) is not feasible; 
these transition curves are usually determined numerically 
using Floquet theory or Light-Hill expansion [34]. 

Based on the above description of stability charac- 
teristics of the response of the oscillator in Equation (7), 
the critical conditions for the onset of wrinkles of 
waveform described by Equation (4) are taken to be as 
those corresponding to the transition curves of the 
principal instability region III which, to first order 
approximation [33,34], and after substituting for the 
definition of the relevant system parameters given in 
section (3), leads to the critical driving frequency Ωc 
expression: 
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For a driving frequency above Ωc the wrinkling 
vibrations that are expected to develop correspond to the 
smaller of the two squared frequency values in Equation 
(14). The wavelength of the wrinkle l, obtained by 
minimizing the smaller squared frequency in Equation 
(14) with respect to l, is given by Birman [4] 

2
t

D
l

N
  ,            (15) 

5. Results and Discussion 

The present study of the stability of a thin sheet metal 
stability against the buildup of wrinkling vibrations is 
based on the approximate critical frequency criterion 
presented in Equation (14). It is noted that , as can be 
seen from Equation (5), for the present hinged-hinged 
and initially flat beam model there is no possibility of 
frequency curve veering (e.g. two frequencies, e.g. 
lowest two eigenvalues, become nearly equal) and mode 
localization; that is, the linear natural frequencies which 
are given by 
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remain well separated as the system parameters are 
varied over their range. Also, the linear natural frequency 
expression above shows that when the applied axial force 
is tensile, e.g. N0 > 0, static buckling of the beam is not 
possible. It to be noted however that these behaviors of 
the present hinged-hinged beam resting on a Winkler 
foundation and free of externally applied lateral loads are 
not shared with other cases when this beam it not initially 
flat and/or has different end supports and/or an external 
lateral load. In such cases, i.e. when the beam is hinged 
at one or both ends to a torsional spring with or without 
an external lateral load and initial imperfection (e.g. not 
initially flat), it is possible, depending of the system 
parameters, for the beam to posses frequency curve 
veering, and mode localization even when the axial force 
is a tensile type, as stated in [30-32]. 

It is to be noted that when the amplitude of time 
varying part of the applied axial Nt is not zero, Equation 
(14) yields two values for the critical driving frequency 
Ω. As indicated in the previous section, the smaller of 
these two frequency values, termed Ωc, obtained by 
selecting the negative sign of the last term in the 
numerator of this Equation , is the more important one. 
Figures 3-10 display examples of obtained results using 
Equation (14) for the variation of Ωc with selected 
system parameters. These results are for an aluminum 
alloy plate having mass density ρ = 2700 (kg/m3), 
Young’s modulus E = 61 (Gpa), Poisson’s ratio μ = 0.25 
yield stress σy = 90 (Mpa), and ultimate tensile strength 
σμ = 190 (Mpa). For given plate thickness h, length L and 
number of wrinkles n, Equation (15) is used to calculate 
the required dynamic axial force amplitude Nt where the 
wrinkle length l is calculated using the relation L= nl. 
This was done in order to obtain an integer number of 
wrinkles so that the assumed wrinkle waveform in 
Equation (1) satisfies the prescribed boundary in Equa- 
tion (3). It is noted that the present results in Figures 
3-10 are for the case where the total normal stress σ does 
not exceed the material yield strength σy, where the 
normal stress is obtained using the relation 

2 4

0

1
2t f

l
N N D K

h l




                    
   (18) 

From the sample results presented in Figures 3-10 one 
can see that for the present system increasing system 
stiffness, e.g., increasing plate thickness, foundation 
stiffness, plate material modulus of elasticity and the 
static axial tensile force tends to increase the plate 
stability against the buildup of wrinkling vibrations. 
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Figure 3. Critical driving frequency Ωc versus foun dation stiffness Kf for different number of wrinkles n. Plate thickness h = 
0.24 mm, static tension N0 = 50 N. 
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Figure 4. Same as Figure 3 except h = 0.23 mm. 
 
While, on the other hand, this stability decreases by 
increasing the dynamic axial tensile force and the 
number of wrinkles above some critical values of the 
system parameters. For example, comparing Figures 3 
and 4 it can be seen that as the plate thickness is changed 
from h = 0.24 mm Figure 3 to h = 0.23 mm Figure 4 
while keeping values of other system parameters 
constants, the wrinkles number n , ( n L l , l = wrinkle 
half wavelength, L = beam length), passes through a 
critical value nc, 70 < nc < 100, where all wrinkles of 

length shorter than cL n  become unstable for values of 
foundation stiffness Kf below a critical value  
(  N/m2 for the case in Figure 4). However, 
as Kf is increased above this critical value, the critical 
frequency Ωc tends to increase but remains well below its 
value for n < nc. Comparing Figures 5 and 6 to Figures 
3 and 4 it can be seen that decreasing the plate thickness 
h and/or axial tension N0 tends to decrease the value of 
the critical wrinkles number nc. These trends are 
illustrated further in Figures 7-9, which show critical  
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Figure 5. Same as Figure 3, except h = 0.22 mm. 
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Figure 6. Same as Figure 5 except static tension N0 = 200 N. 
 
values of thickness h and static axial tension N0 below 
which the beam (e.g. plate) becomes unstable against the 
buildup of wrinkling vibrations of any length at any 
parametric excitation frequency Ω. Finally, Figure 10 
indicates that for given system parameters, the critical 
frequency Ωc tends to increase with number of wrinkles n 
up to a maximum value of n (e.g. optimum beam length 
against build up of unstable wrinkling motions) then 
tends to decrease as n is further increased until it reaches 

zero, beyond which the plate becomes unstable against 
the buildup of wrinkling motion of any length at any 
driving frequency. 

As indicated above, the present results which are based 
on using a simplified model, approximate first order 
analytical solution and first order stability analysis. 
Obviously a more rigorous stability analysis and other 
boundary conditions should be considered before one can 
make more reliable and general conclusions about the  
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Figure 7. Critical frequency Ωc versus plate thickness h for different values of number of wrinkles n. Kf = 103 N/m2, N0 = 30 
N. 
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Figure 8. Critical frequency Ωc versus static axial lada N0 for different values of wrinkles number n. Kf = 103 N/m2, h = 0.22 
mm. 
 
wrinkling behavior of a thin metal sheet. 

6. Conclusion 

The present work has shown that it is possible, depend- 
ing on system parameters, to initiate wrinkling motion in 
a thin, cylindrically deformable plate, hinged at two op- 
posite ends, free of supports at the other two ends, resting  

on a Winkler foundation and subjected to a time varying 
tension force if the plate is driven by this force into a 
parametric resonance. The present results are based on a 
first order approximate stability analysis of Mathieu- 
Duffing type nonlinear oscillator in Equation (7). Obvi- 
ously a more rigorous study investigates a higher order 
stability analysis of this equation, a wider range of sys-  
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Figure 9. Same as Figure 8 except h = 0.26 mm. 
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Figure 10. Variation of critical frequency Ωc with number of wrinkles n. h = 0.23 mm, N0 = 50 N. 
 
tem parameters and other more complicated boundary 
conditions. For the present initially flat configuration, 
hinged-free-hinged-free boundary conditions and para-
metric loading conditions, frequency curve veering and 
mode localization are not likely to occur. It is known that 
at a frequency veering a continuous system can undergo 
complicated dynamics and mode localization that can 
initiate complicated patterns of wrinkles. To the author 
knowledge studies on the effect of frequency veering on 
the wrinkling behavior of continuous structures are not 
found in the open literature. 
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