
Intelligent Information Management, 2012, 4, 231-237
http://dx.doi.org/10.4236/iim.2012.45034 Published Online September 2012 (http://www.SciRP.org/journal/iim)

A Critical Analysis and Treatment of Important UML
Diagrams Enhancing Modeling Power

Fahad Alhumaidan
College of Computer Sciences and IT, King Faisal University, Hofuf, KSA

Email: falhumaidan@kfu.edu.sa

Received May 10, 2012; revised June 13, 2012; accepted July 1, 2012

ABSTRACT

Requirements analysis and design specification are serious issues in systems development because of the semantics in-
volved in transformation of real world problems to computer software systems. Although unified modeling language
(UML) is now accepted as a de facto standard for design and specification of object oriented systems but its structures
have various disadvantages. For example, it lacks of defining semantics of the systems to be developed. Formal meth-
ods are proved powerful, particularly, at requirement specification and design level. To address and realize the benefits
of UML and formal methods our project on “formalization of UML diagrams using Z notation” is under progress. This
paper is continuation of the same project in which some important diagrams namely use case, class and sequence dia-
grams are selected for critical analysis. Merits and demerits of the diagrams are addressed after a brief introduction.
Applications of the diagrams are observed reducing complexity and proposing a good design of a system. Finally, a
treatment to link diagrams with appropriate approaches is suggested to enhance modeling power of UML for facilitating
the systems development.

Keywords: UML; Critical Analysis; Use Cases; Sequence Diagrams; Class Diagrams

1. Introduction

Requirements analysis and design specification in soft-
ware engineering are challenging tasks because trans-
formation of real world problems into verifiable com-
puter models has made it a hard issue [1]. The emergence
of the Unified Modeling Language (UML) has raised
some interesting issues because it has incorporated a
number of object oriented analysis and design techniques
into a single modeling language. Because of an obvious
usage and tool support of UML modeling techniques, it
plays an important role in design and implementation
phases in the construction of software systems. However
some weaknesses existing in UML notations have invited
software engineers to find other approaches considering
compatibility and integration issues with UML models for
the complete and consistent, modeling, design and deve-
lopment [2].

The UML is a collection of diagrams for specifying
various aspects such as requirements and design of soft-
ware systems. It is a standard set of notations for visual-
izing and constructing artifacts of software systems as
well as for business modeling and other non-software
systems [3]. UML has become a de facto standard for de-
sign and development of object oriented (OO) systems
despite the fact that its semantics is semi-formal which
allows ambiguities in design of a system [4]. Some of the

issues in modeling using UML, being hybrid and visual
language in nature, are summarized below:
 As most of the UML structures are based on graphical

notations and hence are prone to causing errors;
 The hidden semantics under the UML diagrams allow

ambiguities at design level of computer software sys-
tems;

 We know the same system can be described and mo-
deled by multiple UML notations producing an in-
consistent or ambiguous model;

 Any model described using UML diagrams may have
multiple interpretations and, hence, the recipients of
the design may not be able to really understand what
has been put in the diagrams.

Much of the UML structures are based on graphical
notations having informal or semi-formal definitions
which are prone to cause errors [2] as mentioned above.
Modeling power of UML can be enhanced by linking it
with formal methods and defining semantic rules in a
formal way for the diagrams used in design of a system
[5]. There is a need of linking and formalizing UML dia-
grams to other useful approaches to get full benefit at
design level capturing complete functionality of the sys-
tem to be developed. This is one of the objectives of this
research. This work is part of our ongoing project on
integration of UML and Z notation [6]. The integration

Copyright © 2012 SciRes. IIM

F. ALHUMAIDAN 232

of formal notations and UML diagrams will result an ap-
proach for complete, consistent and correct modeling of
complex systems.

There exists a few work formalizing UML and formal
methods presented in the next section in which mostly it
is focused on syntax of the diagrams. In our project, in-
stead of defining only syntactical mapping between UML
and Z we have focused to propose and develop a con-
ceptual model by capturing its semantics hidden under
the diagrams. In this paper, in continuation to our pre-
vious work, three important diagrams namely use cases,
class diagrams and sequence diagrams are considered.
An introduction to each diagram is presented. Then ad-
vantages, applications and role of diagrams in software
engineering are discussed. The weaknesses of the dia-
grams are identified. Finally, a treatment is suggested to
link UML with other appropriate approaches. The major
objectives of this research are:
 Identifying weakness existing in UML and hidden

semantics under the diagrams;
 Listing benefits of formal techniques for software en-

gineering, particularly, at requirements analysis and
design specification of systems;

 Proposing an integration of UML and formal appro-
aches to be useful in modeling of complex software
systems;

 Investigating and providing syntactical and seman-
tics-based relationships between most commonly used
UML diagrams and Z notation;

 Analyzing and proving correctness of the proposed
models of integration;

 Finally, developing an approach to provide an autom-
ated tool support to transform UML models to Z spe-
cification.

Rest of the paper is organized as follows: in Section 2,
related work is discussed. A critical analysis, significance
and limitations of the UML diagrams are provided in
Sections 3 and 4. Proposed treatment is suggested in Sec-
tion 5. Finally, conclusion and future work are discussed
in Section 6.

2. Related Work

Although there exits a lot of work [7-11] on integration
of approaches but there does not exists much work on
linking UML diagrams with formal approaches. This is
because the hidden semantics under the UML diagrams
cannot be transformed easily into formal notations. It is
mentioned that only closely related work is discussed in
this section. For example, [12] has developed Alloy Con-
straint Analyzer tool supporting the description of a sys-
tem whose state space involves relational structures
which are complex in nature. By the tool it is possible to
analyze and develop a model by investigating the cons-
equences of given constraints by an incremental app-

roach. An approach is demonstrated using XML which is
in fact a transformation tool to analyze visualize Timed
Communicating Object Z (TCOZ) models into various
UML diagrams animating specification with a multipar-
adigm programming language as discussed in [13]. It is
described a way of creating tables and SQL code for Z
specifications according to UML diagrams in [14]. A
case study is discussed by a formal verification method
for Cooperative Composition Modeling Language (CCML)
in [15]. In [16], semantic translation from statechart dia-
grams to Object-Z specifications is presented. Informa-
tion is captured using sequence and use case diagrams as
a functional model by taking a case study.

In another work, a relationship is investigated between
Petri-nets and Z notation in [17]. A method for transla-
ting and verifying UML sequence diagrams to Petri nets
for deadlock, safety and liveness properties by model
checking is presented in [18]. An integration of B and
UML is presented in [19]. It is investigated the reliability
issues using fuzzy logic and petri-nets in [20]. The mathe-
matical induction technique is used to prove correctness
of recursive programs in [21]. Formalization of the UML
is proposed by focusing on basic constructs of class
structures by taking simple case studies in [22]. A tool is
developed in [1] which takes UML class diagram in the
form of petal files, ASCII format files generated by Ra-
tional Rose, and evaluates it automatically and produces
a list of comments. Activity model is proposed by ontol-
ogy based formal method in [23]. In [24], a mathematical
extension to the OCL language is presented to manipu-
late some mathematical concepts including functions and
relations. A comparison of UML, state-charts, Z notation,
petri nets and fuzzy logic is presented by taking a simple
case study on commerce system as discussed in [25].
Some other relevant work is listed in [26-30].

3. An Overview of UML

An introduction and critical analysis to UML diagrams
and notations is presented in this section. Merits and de-
merits of UML are listed. The reasoning of linking and
formalizing UML is provided.

UML has various benefits for modeling of complex
systems. For example, UML is a semi-formal language in
which each element of the language is strongly defined
[31]. That is you are confident when modeling a particu-
lar facet of a system in a sense that it will not mislead to
an incorrect design. UML is a concise and easy to under-
stand designing language [32]. The entire language is
made up of simple and straightforward concepts and no-
tations. It is comprehensive language and describes all
important aspect of a system. Although UML is not a for-
mal language but it has enough expressive power to han-
dle massive and complex systems [33]. It is the result of
best practices in modeling of complex systems using ob-

Copyright © 2012 SciRes. IIM

F. ALHUMAIDAN 233

ject-oriented concepts and has proved to be a successful
modeling practice. UML has become a de facto stan-
dard for modeling of systems using object oriented tech-
nology [34]. Further discussion about UML analysis can
be found in [35-41].

Despite the above benefits, UML lacks with some im-
portant concepts and for a moment cannot be used for the
complete and consistent design and specification of a
system [2]. For example, UML lacks formal semantics.
Meanings are hidden under diagrams which create am-
biguities at the implementations level. That is why inte-
gration of UML with other appropriate approaches is
required for the complete and consistent modeling.

4. Critical Analysis of Some Diagrams

First of all, an introduction to each diagram is given then
its benefits and limitations are analyzed. Finally impro-
vements are suggested to enhance or link it with other
modeling approaches. A critical analysis of the following
diagrams is presented in this section.

4.1. Use Case Diagram

Use case diagram is one of the UML diagrams that is
used to represent the functionality of the system. It shows
the functionality that the system will provide and the
users who will communicate with the system to use that
functionality [42]. The use case was developed by Jacob-
son et al. [43]. The use case diagram includes the nota-
tions such as actors, use cases, communication associa-
tion and the system or subsystem boundary. The use case
diagrams provide interactions between roles known as
actors and system to achieve a certain goal. Human or
external system both are assumed as actors in definition
of use case diagrams. Use cases define function nality of
the system from a users’ perspective and are used to do-
cument the system scope. Usually, use cases are used at a
higher level in systems engineering as compared to their
use in software engineering. A critical analysis of using
use cases is presented after an introduction given below.

4.1.1. Benefits
The role of use cases is required and observed at the
analysis phase of modeling and system designing and it
provides obvious benefits at this part of modeling the
systems. As we know complexity is one of the major iss-
ues in systems analysis and design. An important benefit
of using use cases is that it helps managing complexity of
systems. This is because it emphases on specific usage
by starting from a very simple viewpoint by focusing on
the users of the systems. The use cases provide a basic
framework from requirements analysis to test cases gen-
eration which is another important benefit of it. Further,
use cases facilitate to designers to specify and achieve

the final goals in the system development.

4.1.2. Weaknesses
Despite the benefits of use cases there are some draw-
backs for modeling systems using use cases. For example,
motivations and experience of users are not considered in
use cases. The usefulness and usability are important
variables in software engineering which are not consid-
ered. There is no systematic and well-organized mecha-
nism to address the non-functional requirements in use
case diagram. On the other side the non-functional re-
quirements are important in quality issues and play a
crucial role to the success of a software system. Use cases
consider requirements separately and there is no proce-
dure to define interaction between the requirements. Also
The use case diagram notations are not enough to de-
scribe the system functionality but it is supported with
use case description which is a brief or detailed one.
Time is another issue for using use cases because prepa-
ration of the whole system requires much time using such
diagrams however it depends on the size of the system.
Finally use cases are considered very ambiguous which do
not capture fully the system. As a consequence developing
automated computer tools which can transform use cases
to other diagrams, for example class and sequence dia-
grams, is a challenge in systems and software engineering.

4.1.3. Improvement
To capture the syntax and semantics of use case diagrams,
it is suggested to transform the diagrams by semi-auto-
mated way. In this way, the actor-actor and actor-system
and system-system relationships can be described to iden-
tify the statics and dynamics of the system.

4.2. Class Diagram

Class diagram is a structure diagram that is used to show
the classes and their association with each other. The
class diagram includes the notations such as classes, at-
tributes, operations and associations [42]. Classes in UML
diagrams are used to capture the information about the
system to be developed. A class is an artifact in UML
diagrams which can create any number of objects that
share the attributes, operations, relationships among the
objects, and some other semantics in the diagrams. Ab-
stract classes cannot have objects and are useful to define
a common interface. However, a subclass of an abstract
class can have instances. A class in UML consists of
three compartments which contain class name, attributes
and operations.

4.2.1. Benefits
Classes in UML are the most important building blocks
for object oriented systems modeling and design. Attri-
butes visibility in class diagrams can be public, package,

Copyright © 2012 SciRes. IIM

F. ALHUMAIDAN 234

protected or private which is an excellent modeling prac-
tice because in this way protecting security of data is
guaranteed if required.

Multiplicity in the relationships among class diagrams
is an important concept which is required in many appli-
cations, for example, from family relations to relational
databases. Four main kinds of relationships, namely, as-
sociation, generalization, aggregation and composition
exist among classes. Association relationship is used in
order to capture the relations among the objects of the
classes. In this relationship it is specified how objects are
connected to each other. A relation is a link relating one
set to another with information needed to be related.
There are various kind of association relationships, namely,
many to many, many to one, one to many and one to one.
For example in class-teacher relationship, as one teacher
can teach many classes and one class can be taught by
many teachers that is why we can describe this relation
as many to many. In another example of student super-
visor, if we suppose that one student can be supervised
by only one supervisor and one supervisor can supervise
many students it will be a many to one relationship. If we
change student-supervisor to supervisor-student it will
become one to many relationship. If we take an example
of a society where a man can marry to one women and
vice-versa, it will be the case of one to one relationship.

4.2.2. Weaknesses
Although relationships among class diagrams are impor-
tant but it is difficult to implement specially for generat-
ing class diagrams to specification for the next phase. In
case of multiplicity relationship, if an intersection of two
objects exists and a new object is introduced then the
multiplicity relationship will be changed by changing de-
sign of the system. Class diagrams are generally used to
catch the static aspects of a system and their use is com-
mon in software development. However, sometimes it is
required for designers to analyze static as well as dy-
namic of the system.

4.2.3. Improvement
The relationships in class diagrams play a fundamental
key role in the design of a system. Further, some impor-
tant relationships do not exist in the diagrams. For exam-
ple, symmetry, asymmetry, transitivity and equivalence
are relations which are very much needed in modeling of
any type of a system but these relations are not directly
defined in the class diagrams. Such kind of relationships
must be specified to enrich the UML class diagrams. As
we know many to many, many to one, one to many and
one to one relationships are usually represented by * ···*,
* ··· 1, 1 ··· * and 1 ··· 1 notations respectively which do
not provide a sufficient information in the semantics of

the diagrams. If we extend the class diagrams by the
propositional and predicate logic at such places, it will
provide a good treatment for the UML class diagrams.

4.3. Sequence Diagram

Sequence diagram is an interaction (behavior) diagram
that shows the interaction between objects that are ar-
ranged in a time sequence [42]. An introduction, benefits,
weaknesses and suggested improvements of the sequence
diagrams are discussed in the following subsections.
 It shows the interaction between objects in which they

are modeled by their roles and communicate by mes-
sage passing;

 The sequence diagram includes notations such as the
diagram name and frame, objects (lifelines), messages,
activation and time axis.

Sequence diagrams capture and model messages with-
in the system for both analysis and design purposes in
dynamic modeling by focusing on identification of be-
havior. In particular, sequence diagram represents the
flow of events, messages and interactions between the
objects of a system in two dimensions. Objects interaction
and time make the two dimensional model in the dia-
grams. Objects interaction is displayed in horizontal line
and time is represented in the vertical line of the diagram.
It is a good modeling and designing tool because it pro-
vides a dynamic view of system showing behavior which
is not possible to extract from statics of the system.

These diagrams are useful for modeling complex inter-
actions between components and are, particularly, requ-
ired for representing parallelism of interaction. The UML
sequence diagrams are used to refine the details under
use cases. When use cases are combined with the corre-
sponding sequence diagrams the expected behavior of the
system can easily be visualized.

4.3.1. Benefits
The sequence diagrams help to discover architectural view
and understand logic statement of the system at early
stages in the design process. After having a separate set
of sequence diagrams, the timing option gives us consis-
tent implementation by integrating the diagrams. The se-
quence diagrams are valuable because it helps the de-
signers to reason about details of a system. For example,
objects, object states, object interaction, sequence order,
responsibilities, functionalities and timings issues can be
easily addressed. The analysis using sequence diagrams
serves as a good starting point for the design. Further, it
is easy to enhance or modify the system after the new
requirements have added. Sequence diagrams also facili-
tate the documentation at various levels of abstraction
which is usually not easy when it is required to create
from the static part of the system.

Copyright © 2012 SciRes. IIM

F. ALHUMAIDAN 235

4.3.2. Weaknesses
Each scenario is described separately in sequence dia-
grams which must be combined after the detailed design
of the system. It means integration of scenarios is one of
the critical issues in using sequence diagrams. Further,
sequence diagrams require objects as input and states of
the objects as output, hence; well-defined model of the
class diagrams is required in addition to relationships
among the objects. On the other hand some of the opera-
tions are identified in use case realization when defining
the sequence diagrams. That means interdependency am-
ong class diagram, use cases and sequence diagram mod-
els exist which must be defined clearly reducing number
of cycles which require complete definition of the sequ-
ence diagram.

4.3.3. Improvement
Sequence diagrams consist of set of objects and inter-
action among the objects in terms of messages. This logic
in sequence diagrams defines a language accepted by the
diagrams. In this way, the sequence diagrams can be
modeled using language theory by designing grammar
which can be used to reduce complexity of the system.
Further, it will help in integration of scenarios by using
rules which already exist in the language theory.

5. Proposed Theory

Currently, there does not exist any approach which can be
used for complete design and modeling of a complete
system, hence, integration of approaches has become a
well-researched area. Further, it needs an integrated tool
support for the complete and consistent development of
software systems.

UML has become a de facto standard for design of
object oriented systems; however, it has some disadvan-
tages and limitation as discussed before for some of the
UML diagrams. Therefore, it needs to define a relation-
ship between UML diagrams and some other techniques.
Some important fundamentals diagrams use cases, class
diagrams and sequence diagrams were selected here for
the critical analysis. The syntactic and semantics issues
of these diagrams are analyzed and an approach will be
established to be useful for correct and complete model-
ing of the systems. Formal methods are useful throughout
the life cycle of software development but are not suffi-
cient in complete modeling of a system. Therefore an
integration of formal approaches and UML notations will
facilitate the software development process which is
proposed in this paper.

The overall process of linking UML and new ap-
proaches capturing syntax and hidden semantics of the
diagrams is shown in Figure 1. It is mentioned that after
integration the proposed theory will be applied to some
real World problems proving usefulness and effective-

ness of the approach to be developed.

6. Conclusions and Future Work

Unified Modeling Language (UML) is used at initial pha-
ses of software development because of having a rea-
sonable support of diagrams and notations but has not
proved sufficient for the complete modeling of functional
and non-functional requirements of a system. Based on
our experience of applying UML, some weaknesses in the
diagrams are identified in this paper and a treatment is
presented. For example, most of the UML structures are
based on graphical notations and are prone to causing
errors. The hidden semantics under the diagrams allow
ambiguities at design level and multiple notations produce
inconsistent and ambiguous models. Further, the models
described using UML diagrams may have multiple inter-
pretations and the recipients of the design may not be able
to understand what has been put in the diagrams. There
exists some well-established approaches, for example for-
mal methods, which can capture the semantics hidden un-
der the UML diagrams.

Formal methods are useful at all stages of software
development because of having rigorous mathematical
and computer tools support. However, at the current

Figure 1. Proposed Treatment of UML Diagrams.

Copyright © 2012 SciRes. IIM

F. ALHUMAIDAN 236

stage of development, formal methods are not sufficient in
complete modeling of a system. In this way, UML and
formal methods are both useful for design and specific-
ation of software systems but an integration of these
approaches will facilitate the software development proc-
ess which is proposed in this paper.

Based on the identification of limitations, weaknesses
and critical analysis of UML diagrams, an integrated
approach will be proposed and developed for modeling
of complex systems in our future work.

7. Acknowledgements

I would like to thank Deanship of Scientific Research,
King Faisal University (KFU), providing funds for con-
ducting this research. I would like to acknowledge the
Software Engineering Research Group at College of Co-
mputer Sciences and Information Technology, KFU, for
their valuable comments to improve quality of the rese-
arch.

REFERENCES
[1] N. H. Ali, Z. Shukur and S. Idris, “A Design of an As-

sessment System for UML Class Diagram,” International
Conference on Computational Science and Applications,
Kuala Lampur, 26-29 August 2007, pp. 539-546.
doi:10.1109/ICCSA.2007. 31

[2] A. M. Mostafa, A. I. Manal, E. B. Hatem and E. M. Saad,
“Toward a Formalization of UML2.0 Meta-Model Using
Z Specifications,” Proceedings of 8th ACIS International
Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing,
Qingdao, 30 July-1 August 2007, pp. 694-701.
doi:10.1109/SNPD. 2007.508

[3] K. E. Hamdy, M. A. Elsoud and A. M. El-Halawany,
“UML-Web Engineering Framework for Modeling Web
Application,” Journal of Software Engineering, Vol. 5,
No. 2, 2011, pp. 49-63. doi:10.3923/jse.2011.49.63

[4] X. He, “Formalizing UML Class Diagrams: A Hierarchi-
cal Predicate Transition Net Approach,” Proceedings of
Twenty-Fourth Annual International Computer Software
and Applications Conference, Taipei, 25-27 October 2000,
pp. 217-222. doi:10.1109/CMPSAC.2000. 884721

[5] M. Shroff and R. B. France, “Towards Formalization of
UML Class Structures in Z,” 21st International Confe-
rence on Computer Software and Applications, Washing-
ton DC, 11-15 August 1997, pp. 646-651.

[6] N. A. Zafar and F. Alhumaidan, “Transformation of Class
Diagrams into Formal Specification,” International Jour-
nal Computer Science and Network Security, Vol. 11, No.
5, 2011, pp. 289-295.

[7] B. Akbarpour, S. Tahar and A. Dekdouk, “Formalization
of Cadence SPW Fixed-Point Arithmetic in HOL,” For-
mal Methods in System Design, Vol. 27, 2005, pp. 173-
200.

[8] H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti, “State/

Event-Based Software Model Checking,” Proceedings of
4th International Conference on Integrated Formal Meth-
ods, Canterbury, 4-7 April 2004, pp. 128-147.

[9] J. Derrick and G. Smith, “Structural Refinement of Object-
Z/CSP Specification,” Proceedings of 2nd International
Conference on Integrated Formal Methods, Dagstuhl
Castle, 1-3 November 2000, pp. 194-213.

[10] O. Hasan and S. Tahar, “Verification of Probabilistic Pro-
perties in the HOL Theorem Prover,” Proceedings of the
6th International Conference of Integrated Formal Meth-
ods, Oxford, 2-5 July 2007, pp. 333-352.

[11] T. B. Raymond, “Integrating Formal Methods by Uni-
fying Abstractions,” Springer, Berlin, 2004, pp. 441-460.

[12] D. Jackson, I. Schechter and I. Shlyakhter, “Alcoa: The
Alloy Constraint Analyzer,” Proceedings of International
Conference on Software Engineering, Limerick, 4-11 June
2000, pp. 730-733. doi:10.1109/ICSE. 2000.870482

[13] J. Sun, J. S. Dong, J. Liu and H. Wang, “A XML/XSL
Approach to Visualize and Animate TCOZ,” Proceedings
of 8th Asia-Pacific Software Engineering Conference,
Macao, 4-7 December 2001, pp. 453-460.
doi:10.1109/APSEC.2001.991514

[14] A. Moeini and R. O. Mesbah, “Specification and Develop-
ment of Database Applications Based on Z and SQL,”
Proceedings of International Conference on Information
Management and Engineering, Kuala Lumpur, 3-5 April
2009, pp. 399-405. doi:10.1109/ICIME.2009.143

[15] X. G. Zhang and H. Liu, “Formal Verification for CCML
Based Web Service Composition,” Information Techno-
logy Journal, Vol. 10, No. 9, 2011, pp. 1692-1700.
doi:10.3923/ itj.2011.1692.1700

[16] S.-K. Kim and D. Carrington, “An Integrated Framework
with UML and Object-Z for Developing a Precise and
Understandable Specification: The Light Control Case
Study,” Proceedings of 7th Asia-Pacific Software Engi-
neering Conference (APSEC), 5-8 December 2000, pp.
240-248. doi:10.1109/APSEC.2000.896705

[17] M. Heiner, and M. Heisel, “Modeling Safety Critical Sys-
tems with Z and Petri-Nets,” Proceedings of International
Conference on Computer Safety, Reliability and Security,
Toulouse, 27-29 September 1999, pp. 361-374.

[18] E. Cunha, M. Custodio, H. Rocha and R. Barreto, “For-
mal Verification of UML Sequence Diagrams in the Em-
bedded Systems Context,” Brazilian Symposium on Com-
puting System Engineering (SBESC), 2011, pp. 39-45.

[19] H. Leading and J. Souquieres, “Integration of UML and B
Specification Techniques: Systematic Transformation from
OCL Expressions into B,” Proceedings of 9th Asia-Pa-
cific Software Engineering Conference, Gold Coast, 4-6
December 2002, p. 495.

[20] Z. Shi, “Intelligent Target Fusion Recognition Based on
Fuzzy Petri Nets,” Information Technology Journal, Vol.
11, No. 4, 2012, pp. 500-503.
doi:10.3923/itj.2012.500.503

[21] C. Yong, “Application of Wu’s Method to Proving Total
Correctness of Recursive Program,” Information Techn-
ology Journal, Vol. 9, No. 7, 2010, pp. 1431-1439.
doi:10.3923/ itj.2010.1431.1439

Copyright © 2012 SciRes. IIM

http://dx.doi.org/10.1109/ICCSA.2007.31
http://dx.doi.org/10.1109/SNPD.2007.508
http://dx.doi.org/10.3923/jse.2011.49.63
http://dx.doi.org/10.1109/CMPSAC.2000.884721
http://dx.doi.org/10.1109/ICSE.2000.870482
http://dx.doi.org/10.1109/APSEC.2001.991514
http://dx.doi.org/10.1109/ICIME.2009.143
http://dx.doi.org/10.3923/itj.2011.1692.1700
http://dx.doi.org/10.1109/APSEC.2000.896705
http://dx.doi.org/10.3923/itj.2012.500.503
http://dx.doi.org/10.3923/itj.2010.1431.1439

F. ALHUMAIDAN

Copyright © 2012 SciRes. IIM

237

[22] Z. M. Ma, “Fuzzy Conceptual Information Modeling in
UML Data Model,” International Symposium on Com-
puter Science and Computational Technology, Shanghai,
20-22 December 2008, pp. 331-334.
doi:10.1109/ ISCSCT.2008.353

[23] Z. X. Wang, H. He, L. Chen and Y. Zhang, “Ontology
Based Semantics Checking for UML Activity Model,”
Information Technology Journal, Vol. 11, No. 3, 2012, pp.
301-306. doi:10.3923/itj. 2012.301.306

[24] M. T. Bhiri, K. Mourad, M. Graiet and P. Aniorte, “UML/
OCL and Refinement,” 18th IEEE International Confe-
rence and Workshops on Engineering of Computer-Based
Systems, Las Vegas, 27-29 April 2011, pp. 14-158.

[25] S. A. Ehikioya and B. Ola, “A Comparison of Formalisms
for Electronic Commerce Systems,” Proceedings of Inter-
national Conference on Computational Cybernetics, Vienna,
30 August-1 September 2004, pp. 253-258.
doi:10.1109/ICCCYB. 2004.1437721

[26] W. S. Changchien, J. J. Shen and T. Y. Lin, “A Prelimi-
nary Correctness Evaluation Model of Object-Oriented
Software Based on UML,” Journal of Applied Sciences,
Vol. 2, No. 3, 2002, pp. 356-365.
doi:10.3923/jas.2002.356.365.

[27] Z. Derakhshandeh, B. T. Ladani and N. Nematbakhsh,
“Modeling and Combining Access Control Policies Using
Constrained Policy Graph (CPG),” Journal of Applied
Sciences, Vol. 8, No. 20, 2008, pp. 3561-3571.
doi:10.3923/jas.2008.3561.3571

[28] C. Liu and X. M. Dong, “An Improved Quasi-Static
Scheduling Algorithm for Mixed Data-Control Embedded
Software,” Journal of Applied Sciences, Vol. 6, No. 7,
2006, pp. 1571-1575.

[29] S. Sengupta and S. Bhattacharya, “Formalization of UML
Diagrams and Consistency Verification: A Z Notation
Based Approach,” Proceedings of India Software Engi-
neering Conference, Hyderabad, 19-22 February 2008, pp.
151-152. doi:10.1145/ 1342211.1342248

[30] X. Than, H. Miao and L. Liu, “Formalizing Semantics of
UML Statecharts with Z,” Proceedings of 4th Internatio-
nal Conference on Computer & Information Technology,
Wuhan, 14-16 September 2004, pp. 1116-1121.
doi:10.1109/ CIT.2004.1357344

[31] R. Borges and A. Mota, “Integrating UML and Formal
Methods,” Electronic Notes in Theoretical Computer Sci-
ence, Vol. 184, 2003, pp. 97-112.
doi:10.1016/j.entcs.2007.03.017

[32] H. Podeswa, “UML for IT Business Analyst,” 2nd Edi-
tion, Course Technology, 2009.

[33] A. Dennis, B. H. Wixom and D. Tegarden, “Systems Ana-
lysis and Design with UML,” 3rd Edition, Wiley, Ho-
boken, 2005.

[34] R. Miles, and K. Hamilton, “Learning UML 2.0,” O’Reil-
ly Media, 2006.

[35] S. Zarina, N. Alias, M. M. Halip and B. Idrus, “Formal
Specification and Validation of Selective Acknowledge-
ment Protocol Using Z/EVES Theorem Prover,” Journal
of Applied Sciences, Vol. 6, No. 8, 2006, pp. 1712-1719.
doi:10.3923/jas.2006.1712.1719

[36] J. M. Wing, “A Specifier, Introduction to Formal Me-
thods,” Computer Journal, Vol. 23, No. 9, 1990, pp. 8-24.
doi:0.1109/2.58215.

[37] F. Gervais, M. Frappier and R. Laleau, “Synthesizing B
Specifications from EB3 Attribute Definitions,” Proceed-
ings of 5th International Conference on Integrated For-
mal Methods, Eindhoven, 29 November-2 December
2005, pp. 207-226.

[38] A. Hall, “Correctness by Construction: Integrating For-
mality into a Commercial Development Process,” Pro-
ceedings of International Symposium of Formal Methods
Europe, Copenhagen, 22-24 July 2002, pp. 139-157.

[39] M. Brendan and J. S. Dong, “Blending Object-Z and Ti-
med CSP: An Introduction to TCOZ,” Proceedings of In-
ternational Conference on Software Engineering, Kyoto,
19-25 April 1998, pp. 95-104.
doi:10.1109/ICSE.1998.671106.

[40] M. Bo, W. Huang and J. Qin, “Automatic Verification of
Security Properties of Remote Internet Voting Protocol in
Symbolic Model,” Information Technology Journal, Vol.
9, No. 8, 2010, pp. 1521-1556.
doi:10.3923/itj.2010. 1521.1556.

[41] K. Araki, A. Galloway and K. Taguchi, “Using a Process
Algebra to Control B Operations,” Proceedings of 1st In-
ternational Conference on Integrated Formal Methods,
London, 26-28 October 1999, pp. 437-456.

[42] S. Bennett, S. McRobb and R. Farmer, “Object-Oriented
Systems Analysis and Design Using UML,” 4th Edition,
McGraw-Hill, New York, 2011

[43] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaad,
“Object-Oriented Software Engineering: A Use Case Dri-
ven Approach,” Addison-Wesley, Wokingham, 1992.

http://dx.doi.org/10.1109/ISCSCT.2008.353
http://dx.doi.org/10.3923/itj.2012.301.306
http://dx.doi.org/10.1109/ICCCYB.2004.1437721
http://dx.doi.org/10.3923/jas.2002.356.365
http://dx.doi.org/10.3923/jas.2008.3561.3571
http://dx.doi.org/10.1145/1342211.1342248
http://dx.doi.org/10.1109/CIT.2004.1357344
http://dx.doi.org/10.1016/j.entcs.2007.03.017
http://dx.doi.org/10.3923/jas.2006.1712.1719
http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.1109/ICSE.1998.671106
http://dx.doi.org/10.3923/itj.2010.1521.1556

