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ABSTRACT 

Land cover changes (LCC) are an important component of Global Change. LCC can be described not only by its occur-
rence, but also by the land cover replacement, causal agent and change duration or recuperation. Nowadays, remote 
sensing offers the opportunity to assemble reliable time series, however this fails to make a characterization of LCC 
since the series represents dynamics due to the combination of several processes occurring simultaneously. In this arti-
cle we proposed an approach to the study of LCC using wavelet transform (WT) and MODIS vegetation time series. 
Through this work we have demonstrated the capacity of this tool in order to recognize and characterize four different 
LLC documented in scientific publications, presenting the results divided in frequency scales as interannual, seasonal 
and rapid changes. The information decomposed in frequency allows the interpretation of each involved process with-
out the interference of others. The uses of WT in an image time series give us the possibility of joining temporal and 
spatial dimension in a single raster. Layers generated with WT might be used to pattern recognition in LCC and to im-
prove an image classification. 
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1. Introduction 

All Earth’s ecosystems are in a continuous state of 
change. Transitions from one state to another are origi-
nated by natural and/or anthropogenic causes and occurs 
at several scales of time and space [1-3]. Vegetation transi- 
tions are usually catalogued as vegetation phenology when 
they are driven by the photosynthetic activity through 
seasons [4], or Land Cover Change (LCC) when the 
variation of the vegetation is slight or abrupt [1,3]. LCC 
can be described not only by its occurrence but also by 
the land cover replacement (e.g. forest to bare land: de-
forestation, forest to agriculture: agriculturization, grass- 
land to forest: afforestation); causal agent (e.g. cropping, 
harvesting, natural fires, floodings); and change duration 
or recuperation. In every case, LCC monitoring is impor- 
tant to understand the vegetation dynamics [4], and, in con- 
sequence, to establish relations between policy decisions, 
regulatory actions or subsequent land use activities [2]. 

Remote sensing (RS) offers a unique opportunity to 
collect valuable information to study and understand 
LCC [1]. Satellite sensor platforms have shown the abil-
ity to cover large geographic regions [2], providing mul-
tispectral data, with a revisit time ranged from minutes to 

months, at different spatial resolutions, and available on 
line for free. According to these intrinsic characteristics, 
RS have shown its capacity to detect LCC and assemble 
reliable time series [5-7]. Despite the achievement of 
regular data, characterizing LCC using RS data is still 
complex because of the combination of several processes 
occurring at the same time: seasonal changes, abrupt 
changes, climate alterations and acquisition errors [8]. 
The Normalized Difference Vegetation Index (NDVI), 
calculated from near infrared and red reflectances, was 
described firstly by Rouse et al. [9] and is widely the 
most used vegetation index. This index is generally rec-
ognized as a good indicator of vegetation activity [6, 
10-12] and has been related with several biophysical 
variables such as: fraction of absorbed photosynthetically 
active radiation [13,14], leaf area index [14,15], primary 
production [16,17], among others. Also, NDVI is espe-
cially useful in multi temporal datasets because they 
permit to describe vegetation phenology [5,12,18,19]. 

In order to detect the occurrence of LCC and to char-
acterize their dynamics, the methodology applied must 
indentify variability with one temporal scale, while iden-
tifying changes with another scale. This means that the 
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methodology must separate changes in ecosystems into 
three frequency components: seasonal changes (e.g. suc-
cession, seasonal precipitation), gradual changes (e.g. 
interannual temperatures tendencies, land degradation) 
and abrupt changes (e.g. fire events, flooding, farming) 
[7]. Signal digital processing offers a wide variety of 
procedures to detect changes in remotely sensed time 
series and in monitor vegetation dynamics. The tech-
niques more commonly used are statistical approaches 
such as principal component analysis [6,11], curve fitting 
[4,5,20], frequency transformation techniques such as 
Fourier [12,21], and most recently, Wavelet transform 
(WT) which has been successfully used to characterize 
vegetation dynamics [3,22] and expansion-intensification 
of agriculture [23]. 

Wavelet transform (WT) is a powerful mathematical 
tool that has been used since the beginning of the 1980s, 
but still does not have the diffusion of its precursor: the 
Fourier transform [24]. The principal advantage of WT is 
that it has not an unique basis, it is based on a family of 
functions [25]. As a result, WT has the capacity to disag-
gregate a signal into its component frequencies (gradual 
change, seasonal change, etc.), and afterwards describes 
how each component evolves without interference from 
the others [26]. Thus, this kind of decomposition intro-
duces the possibility of studying time and frequency do-
mains simultaneously [3,22,27]. 

The objective of this article is to investigate the poten-
tial of time series analysis based on wavelet transform 
to characterize different LCC at several frequency scales 
(interannual changes, seasonal changes and rapid changes). 
We have developed an algorithm capable of applying this 
transformation to data obtained from MODIS sensor 
products, allowing us to evaluate a complementary ap- 
proach to four case studies. These cases were taken from 
recent publications and they encompass diverse LCC 
such as fire events, inundations, farming and urbaniza-
tion from different locations of the globe. 

2. Materials and Methods  
2.1. Study Sites 

In order to embrace different LCC around the globe, we  

have selected four papers published in the recent years, 
where localization, region description and vegetation 
dynamics studies were well documented and published 
(Table 1). 

The four cases encompass: 1) a seasonal inundation in 
the Mekong Delta where the Tonle Sap Lake increases its 
area 3 - 6 times in wet seasons [28]; 2) a fire event oc- 
curred in August 2006 in the northwest of Spain where 
almost 930 km2 were burned [29]; 3) a deforestation 
process n Chaco, Argentina, related to soybean and 
planted pasture expansion [30]; and 4) a rural to urban 
conversion in Xi’an region, China [31]. For more details 
of the studied regions, the mentioned article in each case 
is recommended (Table 1). 

2.2. Satellite Data 

In this study, the NDVI time-series have been obtained 
from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). MODIS product, MOD13, provides a 16 
day NDVI composite, minimizing errors from cloudy 
days, viewing geometry and atmospheric aerosol pres-
ence [19]. Two sources of this product have been used: 
MODIS Global Subset page (http://daac.ornl.gov/MO- 
DIS/modis.shtml) to obtain single pixel ASCII time se-
ries; and MODIS WIST (https://wist.echo.nasa.gov/api/) 
to download complete images in HDF format to obtain 
time series images (Table 2). In all cases, time-series 
started on the 18th of February of 2000 and ended on the 
26th of June of 2010, spanning 239 measures. We also 
used two high resolution images from LANDSAT-TM 
corresponding to the 10th of February of 2001 and the 
16th of February of 2009. These LANDSAT-TM images 
were downloaded from INPE website (http://www.inpe. 
br/). 

2.3. Wavelet Transform Concepts 

Due to the complex mathematical description of WT, a 
brief explanation is presented. For further theory and 
formulae, these publications are recommended: [3,25-27, 
32]. The WT is a mathematical tool which decomposes a 
signal using a family of functions based in a mother 

 
Table 1. Used articles which determine the study regions. 

LCC Type Study Site Article Title Author 

Seasonal Inundation Cambodia & Vietnam 
Detecting temporal changes in the extent of annual flooding 
within the Cambodia and the Vietnamese Mekong Delta from 
MODIS time-series imagery. 

Sakamoto et al., 2007 [28] 

Fire Spain 
Modis reflectance and active fire data for burn mapping and 
assessment. 

Merino de Miguel et al., 2006 [29]

Farming Argentina 
A scalable approach to mapping annual land cover at 250 m 
using MODIS time series data: A case study in the Dry Chaco 
ecoregion of South America. 

Clark et al., 2010 [30] 

Urbanization China 
Modelling the response of surface water quality to the 
urbanization in Xi’an, China. 

He et al., 2008 [31] 
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Table 2. Description of the MODIS product acquired for each location. 

Study Location Source Data Type Pixel Size (meters) 

Cambodia Modis Global Subsets Time-series 250 

Spain Modis Global Subsets Time-series 250 

Argentina I Modis Global Subsets Time-series 250 

Argentina II Modis Wist HDF Raster 250 

China Modis Global Subsets Time-series 250 

 
wavelet [32]: 
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where ,a b  is the family of functions based in dila-
tions and shifts of a mother wavelet ;  is a coef-
ficient that regulates the dilation and  adjusts the lo-
cation. Once the mother wavelet is chosen the WT cal-
culate wavelets coefficients using the following expres-
sion: 

 W a b 


            (2) 

where the wavelet coefficients of a function  f t
W

 are 
represented by . For each scale  and dilation b  a 
coefficient is calculated. In those cases where the spectral 
information of 

a

f  is similar to the wavelet the coeffi-
cient will have higher values [3]. 

2.3.1. Discrete Wavelet Transform  
Discrete wavelet transform (DWT) is a computing effi-
cient implementation of the WT, where scales are based 
on powers of two (2n). DWT splits a signal into details 
(D) and approximations (A), using a high frequency pass 
(HP) and a low pass (LP) frequency pass filters, respec-
tively. Afterwards DWT coefficients are obtained apply-
ing a down-sampling with a 2:1 relation to D and A 
(Figure 1). 

High-pass transfer function is determined by the 
mother wavelet function ψ, which has to satisfy the ad-
missibility condition and has unitary energy [27]. The 
low-pass filter is determined by a so called scaling func-
tion φ, which is related to some mother wavelets. The 
selection of a mother wavelet is a difficult task because 
none of these wavelets has all its properties optimized 
[26]. Meyer orthogonal discrete wavelet (Figure 2) has 
been chosen due to its infinitely regularity, its symmetry, 
and because its mother wavelet permits an exact recon-
struction of the original function [33].  

2.3.2. Multi-Resolution Analysis 
The idea of a multi-resolution analysis (MRA) is the it-
erative application of the DWT to decompose a signal 

into several frequencies scales. If we apply the DWT 
“m” times, the signal f is decomposed into “m + 1” DWT 
coefficients. After these coefficients are produced, a re-
construction of each frequency scale is made, using 
up-sampling factors with a 1:2 relation and two recon-
struction filters HP’ and LP’ (Figure 3). These recon-
struction filters are those which assemble, together with 
decomposition filters (HP and LP), a quadrature mirror 
filters system [33]. 

2.4. NDVI Time-Series Processing 

Two types of time-series processing have been made: the 
 

 

Figure 1. Scheme of a discrete wavelet transform. f is the 
input signal, HP is the high pass filter, LP is the low-pass 
filter, A the approximation, D is the detail, cA and cD are 
the DWT coefficient. 
 

 
(a) 

 
(b) 

Figure 2. Wavelets waveforms. (a) Meyer mother wavelet 
 and (b) its associated scaling function  . 
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Figure 3. Scheme of wavelet multi-resolution analysis. (a) 
Decomposition of signal f in three levels (m = 3) producing 
four scales of WDT coefficients (cD1, cD2, cD3, cA3); (b) 
Scheme to obtain frequency components, where r1 represent 
the most rapid changes and s3 represent the slowest changes. 
HP and LP are the forward high pass and low pass filters, 
respectively, and HP’ and LP’ are the reconstruction filters. 
 
analysis of two related series per study site and the study 
of image-time series of a region.  

In the first case, two time-series of NDVI from all the 
locations described previously were processed via DWT. 
The first signal corresponded to a pixel where a LLC 
occurs and the second one corresponds to a pixel located 
nearby of the first one which will provide a control signal. 
Both signals were decomposed in five levels (m = 4) 
using the Meyer mother wavelet, where each component 
meaning is described in Table 3. 

In the second case, the images acquired were also at-
tacked by the DWT using five levels and the Meyer 
mother wavelet. In this topic it is necessary to explain 
that this study did not perform a bi-dimensional WT. 
This research decomposed the image time series into five 
image time series where each one will represent varia-
tions at a different frequency scale. As a full representa-
tion of image time series will require a video to appreci-
ate the decomposition, we used the time series quadratic 
sum of some frequency scales to represent the changes. 
The quadratic sum of a signal can be understood as an 
indicator of changes, where bigger changes are repre-
sented by higher values. 

3. Results and Discussion  

3.1. Single Point Analysis 

3.1.1. Seasonal Inundation Analysis in Cambodia &  
Vietnam 

Contrast between dry land and floodable land was already  

Table 3. Frequency scale description of each signal obtained 
by MRA, using MOD13 sampling time (T = 16) and the 
Meyer wavelet, where p is period. 

Signal Scale p (days) p/2 (days) Represent 

f
 

1 24 12 Original function 

r1
 2 48 24 Rapid changes 

r2 4 96 48 Rapid changes 

r3
 8 193 96 Rapid seasonal changes

r4
 16 386 193 Slow seasonal changes

s4
 >32 >772 >386 Interannual changes 

 
noticeable in the original time-series f, remaining almost 
constant in the first one and showing cycles in the other 
(Figures 4(a) and (b)). The NDVIs4 decomposition, which 
represents the inter-annual changes, showed a mean ± std 
NDVI value of 0.79 ± 0.021 in the dry land and 0.47 ± 
0.078 in the floodable land, implicating a lower photo-
synthetic activity due to the presence of water in the 
floodable period. The NDVIr4 reconstruction, which re- 
presents slow seasonal changes, had an almost constant 
value in the dry land and a sinusoidal-like dynamic in the 
floodable area. This behavior is associated to seasonal 
variation of NDVI due to inundation, with higher peaks 
in the first semester and lower values in the second se- 
mester, in concordance with the flooding beginning in 
May-June described by Sakamoto et al. [28]. Finally, the 
sum of NDVIr1, NDVIr2, and NDVIr3 represented all 
rapid changes plus rapid seasonal changes in both signals. 
It was possible to identify that floodable land has more 
variability than dryland, because of the occurrence of rapid 
changes originated by the dryland-wetland transition. These 
variations changed every year and can be related to rain- 
fall variability. 

3.1.2. Fire Event Analysis in Spain 
Original time series f showed a sudden variation of the 
NDVI in the year 2006 (Figures 5(a) and (b)) in concor- 
dance with a fire event occurred in Galicia in August 
[29]. Interannual level NDVIs4 illustrates the effect of 
fire in the location showing a decrease between 2006 and 
2007, and vegetation regrowth starting in 2007 and fin-
ishing in 2009. Observing the mid-term changes in 
NDVIr3+4 it is possible to find a discontinuity in the sea-
sonal cycle during 2006 and 2007, denoted by the de-
crease of higher peaks in the second semester. It is also 
noticeable the temporal location of the fire-event given 
by the rapid changes, described in the high frequency 
scale reconstruction (NDVIr2+1). Other rapids changes 
showed in NDVIr1+2 are provoked by spurious image 
cquisition and intraweek changes. a  
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(a)                                                   (b) 

Figure 4. Wavelet decomposition of 2000-2010 NDVI time series of dry land (column a) and seasonal floodable land (column 
b). NDVIf is the original time series, NDVIs4 is the interannual component, NDVIr4 is the slow seasonal component, and 
NDVIr1+2+3 is the rapid changes component plus rapid seasonal changes. 
 

 
(a)                                                   (b) 

Figure 5. Wavelet decomposition of 2000-2010 NDVI time series of control site (column a) and fire event location (column b). 
NDVIf is the original time series, NDVIs4 is the interannual component, NDVIr4+3 is the seasonal component, and NDVIr1+2 is 
the rapid changes component. 
 
3.1.3. Farming Analysis in Argentina 
Differences between the control signal and the farming 
signal appear since 2005 (Figures 6(a) and (b)). Clark et 
al. [30] declares that the area was characterized by a rapid 
deforestation related to soybean and planted pasture ex-
pansion between 2002 and 2006. The interannual com-
ponent NDVIs4 of the agriculturized area showed a de-
crease of NDVI in 2005, from a mean value of 0.68 to 
0.53, meanwhile the control signal remained almost con-
stant. The NDVIr3+4 signal also shows an increment in 
the peak to peak amplitude due to the replacement of the 
deciduous forest by crops, meanwhile the maximum am-

plitude before 2005 was of 0.33, the maximum amplitude 
after the faming increase to 0.64. In this component it is 
easy to identify the peaks and the date where they took 
place, telling us that the forest was replaced by a summer 
crop. Most rapid changes NDVIr1+2 also increased after 
2005 due to the irregular curves of crops alternation. 

3.1.4. Urbanization Analysis in China 
Both original signals do not showed discrepancy until 
2004 (Figures 7(a) and (b)) where the original time-series 
fluctuated from bimodal curves to a sudden decrease in 
2004. The NDVIs4 reconstruction showed the interannual    
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(a)                                                   (b) 

Figure 6. Wavelet decomposition of 2000-2010 NDVI time series of control site (column a) and agriculturized land (column b). 
NDVIf is the original time series, NDVIs4 is the interannual component, NDVIr4+3 is the seasonal component, and NDVIr1+2 is 
the rapid changes component. 
 

 
(a)                                                   (b) 

Figure 7. Wavelet decomposition of 2000-2010 NDVI time series of control site (column a) and urbanizated location (column 
b). NDVIf is the original time series, NDVIs4 is the inter-annual component, NDVIr4+3 is the seasonal component, and 
NDVIr1+2 represent the rapid changes. 
 
change from a mean value of 0.48 to 0.22, as a conse-
quence of the replacement of crops by urbanized struc-
tures. The sum NDVIr3+4 reconstructions and the sum 
NDVIr1+2 also expose a change during from 2004. In the 
seasonal component the NDVI goes from two crop culti-
vation per year to a single vegetation peak in August, and 
the reduction of seasonality is denoted by the decrease of 
the peak-to-peak magnitude. The rapid changes NDVIr1+2 
were also reduced as the urbanization reduced the most 
rapid changes in vegetation. 

3.2. Image Time Series Analysis 

In the frame of this research we also developed a scrpit to 

process time series analysis from raster data (Section 2.4). 
As a result, we generated images that joint spatial dimen-
sion with temporal analysis. In Figure 8 we represented 
the ratio between each pixel most rapid changes quad-
ratic sum and the quadratic sum of the original time se-
ries. As we have seen previously in item 3.1.3, agricul-
ture has an impact in rapid changes, therefore it was ex-
pected that the cultivated places would have a higher 
quadratic sum (i.e. the higher values in the image). A 
visual comparison between two high resolution images of 
the site (where the anthropic activity was noticeable and 
the energy image was achieved via WT) showed a good 
recognition of changes. These type of images can be used  
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(a)                        (b) 

 
(c) 

Figure 8. Image time series analysis using wavelets. (a) 
LANDSAT image of 2001-02-10 (Bands 3-4-5 as RGB); (b) 
LANDSAT image of 2009-02-16 (Bands 3-4-5 as RGB); (c) 
Energy of most rapid changes (r1) wavelet decomposition in 
pseudocolor. 
 
as input layers in a classification, because they resume 
both spatial and temporal information. 

4. Conclusions 

The study of land cover use and land cover changes, as 
part of global change, demands the integration of data 
sources, models and methodologies, and technologies 
which provide analyzed data according the necessities 
(e.g. monitoring, alarms, variability research). In re-
sponse to these requirements, we proposed an approach 
based in WT. Through this work we had demonstrated 
the capacity of this tool to study and characterize four 
different LLC and submitted the results separated in fre-
quency scales (interannual, seasonal and rapid changes). 
This disaggregated information allowed us to interpret 
each involved process without the interference of others. 
The use of WT in image time series gave us the possibil-
ity to characterize different change levels in spatial di-
mension. Layers generated with WT might be used to 
pattern recognition in LCC and to improve image classi-
fication.  

It must be said that in this article we worked using 
NDVI time series, but this tool can be applied to any 
time series (e.g. leave area index time series, surface 
temperature time series and others). The use of multiple 
nature time series might not only describe the LCC at 
any time scale but also determine its causes. 
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