Problem of Determining the Two-Dimensional Absorption Coefficient in a Hyperbolic-Type Equation

Durdimurat K. Durdiev
Bukhara State University, Bukhara, Uzbekistan
E-mail: durdiev65@mail.ru
Received March 25, 2010; revised May 16, 2010; accepted May 29, 2010

Abstract

The problem of determining the hyperbolic equation coefficient on two variables is considered. Some additional information is given by the trace of the direct problem solution on the hyperplane $x=0$. The theorems of local solvability and stability of the solution of the inverse problem are proved.

Keywords: Inverse Problem, Hyperbolic Equation, Delta Function, Local Solvability

1. Statement of the Problem and the Main Results

We consider the generalized Cauchy problem

$$
\begin{gather*}
u_{t t}-u_{x x}-b(x, t) u_{t}=\delta(x, t-s), \quad(x, t) \in R^{2}, s>0, \\
\left.u\right|_{t<0} \equiv 0 \tag{1}
\end{gather*}
$$

where $\delta(x, t)$ is the two-dimensional Dirac delta function, $b(x, t)$ is a continuous function, s is a problem parameter, and $u(x, t, s)$. We pose the inverse problem as follows: it is required to find absorption coefficient $b(x, t)$ if the values of the solution for are known, i.e., if the function

$$
\begin{equation*}
u(0, t, s)=f(t, s), t>0, s>0 . \tag{2}
\end{equation*}
$$

Definition. A function $b(x, t)$ such that the solution of problem (1) corresponding to this function satisfies relation (2) is called a solution of inverse problem (1), (2).

The inverse problem posed in this paper is two-dimensional. For the case where $b(x, t)=b(x)$ the solvability problems for different statements of problems close to (1), (2) were studied in [1] (Chapter 2) and [2] (Chapter 1). The solvability problems for multidimensional inverse problems were considered in [2] (Chapter 3), [3,4], where the local existence theorems were proved in the class of functions smooth one of the variables and analytic in the other variables. In [5], the problems of stability and global uniqueness were investigated for inverse problem of determining the nonstationary potential in hyperbolic-type equation. In this paper, we prove
the local solvability theorem and stability of the solution of the inverse problem (1), (2).

Let

$$
\begin{gathered}
Q_{T}:=\{(t, s) \mid 0 \leq s \leq t \leq T\}, \\
\Omega_{T}:=\{(x, t)|0 \leq|x| \leq t \leq T-|x|\}, T>0,
\end{gathered}
$$

$C_{t}^{1}\left(Q_{T}\right)$ is the class of function continuous in s, continuously differentiable in t, and defined on Q_{T}. We let B denote the set of function $b(x, t)$ such that

$$
b(x, t) \in C\left(\Omega_{T}\right), \quad b(-x, t)=b(x, t) .
$$

Theorem 1. If at a $T>0 \quad f(t, s) \in C^{1}\left(Q_{T}\right)$ and the condition

$$
\begin{equation*}
f(s+0, s)=\frac{1}{2} \tag{3}
\end{equation*}
$$

is met, then for all $T \in\left(0, T_{-} 0\right), T_{0}=(1 / 40) \alpha_{0}, \alpha_{0}=$ $4\left\|f_{t}^{\prime}(t, s)\right\|_{c\left(\varrho_{r}\right)}$ the solution to the inverse problems (1), (2) in the class of function $b(x, t) \in B$ exists and is unique.
Theorem 2. Let the conditions in Theorem 1 hold for the functions $f_{k}(t, s), k=1,2$, and let $b_{k}(x, t), k=1,2$, be the solutions to the inverse problems with the data $f_{k}(t, s), k=1,2$, respectively. Then the following estimate is valid for $T \in\left(0, T_{0}\right),\left(\left(T_{0}\right)\right.$ is defined in the same way as in proof of the Theorem 1)

$$
\begin{equation*}
\left\|b_{1}(x, t)-b_{2}(x, t)\right\|_{C\left(\Omega_{t}\right)} \leq \frac{4}{1-\rho}\left\|f_{1}(t, s)-f_{2}(t, s)\right\|_{C_{i}^{\prime}\left(Q_{t}\right)}, \tag{4}
\end{equation*}
$$

where $\rho=\frac{T}{T_{0}}$.

2. Construction of a System Integral Equations for Equivalent Inverse Problems

We represent the solution of problem (1) as

$$
\begin{equation*}
u(x, t, s)=\frac{1}{2} \theta(t-s-|x|)+v(x, t, s) . \tag{5}
\end{equation*}
$$

where $\theta(t)=1$ for $t \geq 0, \theta(t)=0$, for $t<0, v(x$, $t, s)$ is a some regular function.

We substitute the Expression (5) in (1), take into account that $\theta(t-s-|x|) / 2$ satisfies (in the generalized sense) the equation $u_{t t}-u_{x x}=\delta(x) \delta^{\prime}(t-s)$, and obtain the problem for the function v :

$$
\begin{align*}
v_{t t}-v_{x x}= & b(x, t)\left[\frac{1}{2} \delta(t-s-|x|)+v_{t}(x, t, s)\right], \\
& (x, t) \in R^{2}, \quad s>0, \tag{6}\\
\left.v\right|_{t, 0} \equiv & 0 .
\end{align*}
$$

It follows from the d'Alembert formula that the solution of problem (6) satisfies the integral equation

$$
\begin{align*}
v(x, t, s)= & \frac{1}{2} \iint_{\Delta(x, t)} b(\xi, \tau)\left[\frac{1}{2} \delta(\tau-s-|\xi|)+v_{t}(\xi, \tau, s)\right] . \\
& d \xi d \tau,(x, t) \in R^{2}, \quad s>0 \tag{7}
\end{align*}
$$

where $\Delta(x, t)=\{(\xi, \tau)|0 \leq \tau \leq t-|x-\xi|, x-t \leq \xi \leq x+t\}$. We use the properties of the δ - function and easily obtain the relation in a different form:

$$
\begin{align*}
v(x, t, s)= & \frac{1}{4} \int_{\frac{x+(t-s)}{2}}^{\frac{x-(t-s)}{2}} b(\xi, s+|\xi|) d \xi \\
& +\frac{1}{2} \iint_{Y(x, t, s)} b(\xi, \tau) v_{t}(\xi, \tau, s) d \tau d \xi \tag{8}\\
& t-s \geq|x|
\end{align*}
$$

where the domain $Y(x, t, s)$ is defined by

$$
\begin{aligned}
Y(x, t, s)= & \left\{(\xi, \tau)|\xi|+s \leq \tau \leq t-|x-\xi|, \frac{x-(t-s)}{2}\right. \\
& \left.\leq \xi \leq \frac{x+t-s}{2}, 0 \leq s \leq t, s=\text { const }\right\}
\end{aligned}
$$

By differentiating the equality (8), we obtain

$$
\begin{align*}
& v_{t}(x, t, s)=\frac{1}{8} {\left[b\left(\frac{x+t-s}{2}, \frac{x+t+s}{2}\right)\right.} \\
&\left.+b\left(\frac{x-t+s}{2}, \frac{-x+t+s}{2}\right)\right] \\
& \frac{1}{2} \int_{\frac{x-(t-s)}{2}}^{\frac{x+(t-s)}{2}} b(\xi, t-|x-\xi|) v_{t}(\xi, t-|x-\xi|, s) d \xi, t-s \geq|x| . \tag{9}
\end{align*}
$$

It is obvious that $f(t, s)=u(0, t, s)=\frac{1}{2}+v(0, t, s)$ for $t \geq 0$. Moreover, the function $f(t, s)$ be must satisfy the condition (9).

We set $x=0$ in the equality (9), use the fact that the function $b(x, t)$ is even in x, and obtain the relation

$$
\begin{aligned}
f_{t}(t, s)= & \frac{1}{4} b\left(\frac{t-s}{2}, \frac{t+s}{2}\right) \\
& +\int_{-\frac{t-s}{2}}^{\frac{t-s}{2}} b(\xi, t-\xi) v_{t}(\xi, t-\xi, s) d \xi \\
& (t, s) \in Q_{T}
\end{aligned}
$$

We rewrite this equality, replacing $(t-s) / 2$ with $|x|$ and $(t+s) / 2$ with t, and solve it for $b(x, t)$. We obtain

$$
\begin{align*}
b(x, t)= & 4 f_{t}^{\prime}(t+|x|, t-|x|)-4 \int_{-x \mid}^{|x|} b(\xi, t+|x|-\xi) . \tag{10}\\
& v_{t}(\xi, t+|x|-\xi, t-|x|) d \xi, \quad t \geq|x| .
\end{align*}
$$

Let

$$
Y_{T}=\{(x, t, s)| | x|+s \leq t \leq T-|x|, 0 \leq s \leq t \leq T\}
$$

The domain Y_{T} in the space of the variables x, t, and s is a pyramid with the base Ω_{t} and vertex $(0, T, T / 2)$. To find the value of the function b at (x, t), it is hence necessary to integrate $b(x, t)$ over the interval with the endpoints $(-|x|, t)$ and $(|x|, t)$ and to integrate the function $v_{t}(x, t, s)$ over the interval with the endpoints $(-|x|, t, t-|x|)$ and $(|x|, t, t-|x|)$, which belong to the domain Y_{T}.

One can rewrite the system of Equations (9) and (10) in the nonlinear operator form,

$$
\begin{equation*}
\psi=\mathrm{A} \psi \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
\psi=\left[\begin{array}{l}
\psi_{1}(x, t, s) \\
\psi_{2}(x, t)
\end{array}\right]= & {\left[v_{t}(x, t, s)-\frac{1}{8}\left[b\left(\frac{x+t-s}{2}, \frac{x+t+s}{2}\right)\right.\right.} \\
& \left.\left.+b\left(\frac{x-t+s}{2}, \frac{-x+t+s}{2}\right)\right]\right] \\
& b(x, t)
\end{aligned}
$$

The operator A is defined on the set of functions $\psi \in C\left[Y_{T}\right]$ and, according to (9), (10), has the form

$$
A=\left(A_{1}, A_{2}\right),
$$

where

$$
\begin{aligned}
& A_{1} \psi=\frac{1}{2} \int_{\frac{x-(t-s)}{2}}^{\frac{x+(t-s)}{2}} \psi_{2}(\xi, t-|x-\xi|)\left\{\psi_{1}(\xi, t-|x-\xi|)\right. \\
& +\frac{1}{8}\left[\psi_{2}\left(\frac{\xi+t-|x-\xi|-s}{2}, \frac{\xi+t-|x-\xi|+s}{2}\right)\right. \\
& \left.\left.+\psi_{2}\left(\frac{\xi-t+|x-\xi|+s}{2}, \frac{-\xi+t-|x-\xi|+s}{2}\right)\right]\right\} d \xi \\
& A_{2} \psi=4 f_{t}^{\prime}(t+|x|, t-|x|)-4 \int_{-|x|}^{|x|} \psi_{2}(\xi, t+|x|-\xi) \\
& \quad\left\{\psi_{1}(\xi, t+|x|-\xi, t-|x|)+\frac{1}{8}\left[\psi_{2}(|x|, t)\right.\right. \\
& \left.\left.\quad+\psi_{2}(\xi-|x|, t-\xi)\right]\right\} \mathrm{d} \xi
\end{aligned}
$$

At fulfillment of the condition (3) the inverse problem (1), (2) is equivalent to the operator Equation (11).

3. Proofs of the Theorems

Define

$$
\|\psi\|_{T}=\max \left(\left\|\psi_{1}\right\|_{C\left(Y_{T}\right)}, \quad\left\|\psi_{2}\right\|_{C\left(\Omega_{T}\right)}\right) .
$$

Let s be the set of $\psi \in C\left(Y_{T}\right)\left(\Omega_{T} \subset Y_{T}\right)$ that satisfy the following conditions:

$$
\left\|\psi-\psi^{0}\right\|_{T} \leq\left\|\psi^{0}\right\|_{T}
$$

where $\psi^{0}=\left(\psi_{01}, \psi_{02}\right)=\left(0,4 f_{t}^{\prime}(t+|x|, t-|x|)\right.$. It is obviously, that $\left\|\psi^{0}\right\|_{T} \leq 4\left\|f_{t}^{\prime}(t, s)\right\|_{C\left(Q_{T}\right)}=\alpha_{0}\left(Q_{T} \subset Y_{T}\right)$. Now we can show that if T is small enough, A is a contraction mapping operator in S. The local theorem of existence and uniqueness then follows immediately from the contraction mapping principle. First let us prove that A has the first property of a contraction mapping operator, i.e., if $\psi \in S$, then $A \psi \in S$ when T is small enough. Let
$\psi \in S$. It is then easy to see that

$$
\|\psi\|_{T} \leq\left\|\psi-\psi^{0}\right\|_{T}+\left\|\psi^{0}\right\|_{T} \leq 2 \alpha_{0} .
$$

Furthermore, one has

$$
\begin{aligned}
& \left|A_{1} \psi-\psi_{01}\right| \leq \frac{1}{2} \int_{\frac{x-(t+s)}{2}}^{\frac{x+(t+s)}{2}}\left|\psi_{2}(\xi, t-|x-\xi|)\right| \\
& \times\left\{|\psi(\xi, t-|x-\xi|, s)|+\frac{1}{8}\left[\left\lvert\, \psi_{2}\left(\frac{\xi+t-|x-\xi|-s}{2},\right.\right.\right.\right. \\
& \left.\frac{\xi+t-|x-\xi|+s}{2}\right)|+| \psi_{2}\left(\frac{\xi-t+|x-\xi|+s}{2}\right. \\
& \left.\left.\frac{-\xi+t-|x-\xi|+s}{2}\right) \mid\right\} d \xi \leq \frac{5 T}{8} \alpha_{0}\left\|\psi^{0}\right\|_{T}^{2} \\
& \left|A_{2} \psi-\psi_{02}\right| \leq 4 \int_{-|x|}^{|x|}\left|\psi_{2}(\xi \sigma, t+|x|-\xi)\right| \\
& \times\left\{\left|\psi_{1}(\xi, t+|x|-\xi, t-|x|)\right|+\frac{1}{8}\left[\left|\psi_{2}(|x|, t)\right|\right.\right. \\
& \left.\left.+\left|\psi_{2}(\xi-|x|, t-\xi)\right|\right]\right\} d \xi \leq 10 T \alpha_{0}\left\|\psi^{0}\right\|_{T}^{2}
\end{aligned}
$$

Therefore, if $T^{*}=1 / 10 \alpha_{0}$, then for $T \in\left(0, T_{0}\right)$ the operator A satisfies the condition $A \psi \in S$. Consider next the second property of contraction mapping operator for A i.e., if $\psi^{(1)} \in S, \quad \psi^{(2)} \in S$, then $\left\|A \psi^{(1)}-A \psi^{(1)}\right\|$ $\leq \rho\left\|\psi^{(1)}-\psi^{(1)}\right\|$ with $\rho<1$, when T is small enough. Let $\psi^{(1)} \in S, \psi^{(2)} \in S$. Then one has
$\left|A_{1} \psi^{(1)}-A_{1} \psi^{(2)}\right| \leq\left.\frac{1}{2}\right|_{\frac{x-(t+s)}{2}} ^{\frac{x+(t+s)}{2}\{ }\left\{\psi_{2}^{(1)}-\psi_{2}^{(2)}\right)(\xi, t-|x-\xi|)$
$\left\{\psi_{2}^{(1)}(\xi, t-|x-\xi|, s)+\frac{1}{8}\left[\psi^{(1)}\left(\frac{\xi+t-|x-\xi|-s}{2}\right.\right.\right.$,
$\left.\frac{\xi+t-|x-\xi|+s}{2}\right)+\psi^{(1)_{2}}\left(\frac{\xi-t+|x-\xi|+s}{2}\right.$,
$\left.\left.\left.\frac{-\xi+t-|x-\xi|+s}{2}\right)\right]\right\}+\psi_{2}{ }^{(2)}(\xi, t-|x-\xi|, s)$
$\times\left\{\left(\psi_{1}{ }^{(1)}-\psi_{1}{ }^{(2)}\right)(\xi, t-|x-\xi|, s)+\frac{1}{8}\left[\left(\psi_{2}{ }^{(1)}-\psi_{2}{ }^{(2)}\right)\right.\right.$
$\left(\frac{\xi+t-|x-\xi|-s}{2}, \frac{\xi+t-|x-\xi|+s}{2}\right)$

$$
\begin{aligned}
& +\left(\psi_{2}^{(1)}-\psi_{2}^{(2)}\right) \\
& \left.\left.\left(\frac{\xi-t+|x-\xi|+s}{2}, \frac{-\xi+t-|x-\xi|+s}{2}\right)\right]\right\} \\
& \left.d \xi\left|\leq \frac{5 T}{2} \alpha_{0}\right| \right\rvert\, \psi^{(1)}-\psi^{(2)} \|_{T}, \\
& \left|A_{2} \psi^{(1)}-A_{2} \psi^{(2)}\right| \leq 4 \mid \int_{-|x|}^{|x|}\left\{\left(\psi_{2}^{(1)}-\psi_{2}^{(2)}\right)\right. \\
& (\xi, t+|x|-\xi)\left\{\psi_{1}^{(1)}(\xi, t+|x|-\xi, t-|x|)\right. \\
& \left.+\frac{1}{8}\left[\psi_{2}^{(1)}(|x|, t)+\psi_{2}^{(1)}(\xi-|x|, t-\xi)\right]\right\} \\
& +\psi_{2}^{(2)}(\xi, t+|x|-\xi) \times\left\{\left(\psi_{1}^{(1)}-\psi_{1}^{(2)}\right)\right. \\
& (\xi, t+|x|-\xi, t-|x|)+\frac{1}{8}\left[\left(\psi_{2}^{(1)}-\psi_{2}^{(1)}\right)\right. \\
& \left.\left.\left.(|x|, t)+\left(\psi_{2}^{(1)}-\psi_{2}^{(1)}\right)(\xi-|x|, t-\xi)\right]\right\}\right\} \\
& d \xi \mid \leq 40 T \alpha_{0}\left\|\psi^{(1)}-\psi^{(2)}\right\|_{T} .
\end{aligned}
$$

It follows from the preceding estimates that if $T_{0}=1 / 40 \alpha_{0}$, then for $T \in\left(0, T_{0}\right)$ the operator A is a contraction operator with $\rho=T / T_{0}$ on the set S. Therefore, the Equation (11) has a unique solution which belongs to S according to the contraction mapping principle. The solution is the limit of the sequence $\psi^{[n]}$, $n=0,1,2, \ldots, \quad$ where $\psi^{[0]}=\psi(0), \quad \psi^{[n+1]}=A \psi^{[n]}$, and the series

$$
\psi^{[0]}+\sum_{n=0}^{\infty}\left(\psi^{[n+1]}-\psi^{[n]}\right)
$$

converges not slower than the series

$$
\left\|\psi^{[0]}\right\|_{T}+\sum_{n=0}^{\infty} \rho^{n}\left\|\psi^{[1]}-\psi^{[0]}\right\|_{T}
$$

We now prove Theorem 2. Since the conditions Theorem 1 hold, the solution belong to the set S and
$\left\|\psi_{i}\right\|_{T} \leq 2 \alpha_{0}, i=1,2$. Let $\psi^{(k)}, k=1,2 \quad$ be \quad vector functions which are the solution of the Equation (11) with the data $f_{k}(t, s), k=1,2$, respectively, i.e.,

$$
\psi^{(k)}=A \psi^{(k)}
$$

From the previous results in the proof of Theorem 1, it follows that

$$
\begin{aligned}
& \left|\psi_{1}^{(k)}-\psi_{2}^{(k)}(x, t, s)\right| \leq 4\left\|f_{1}(t, s)-f_{2}(t, s)\right\|_{C_{t}^{1}\left(Q_{T}\right)} \\
& +40 T \alpha_{0}\left\|\psi_{1}-\psi_{2}\right\|_{T}, k=1,2
\end{aligned}
$$

Therefore, one has

$$
\left\|\psi_{1}-\psi_{2}\right\|_{T} \leq 4\left\|f_{1}(t, s)-f_{2}(t, s)\right\|_{C_{t}^{1}}\left(Q_{T}\right)+\rho\left\|\psi_{1}-\psi_{2}\right\|_{T}
$$

The last inequality gives

$$
\begin{equation*}
\left\|\psi_{1}-\psi_{2}\right\|_{T} \leq \frac{4}{1-\rho}\left\|f_{1}(t, s)-f_{2}(t, s)\right\|_{C_{t}^{1}}\left(Q_{T}\right) \tag{12}
\end{equation*}
$$

The stability estimate (4) follows from the inequality (12).

4. References

[1] V. G. Romanov, "Inverse Problems of Mathematical Physics," in Russian, Publishing House "Nauka", Moscow, 1984.
[2] V. G. Romanov, "Stability in Inverse Problems," in Russian, Nauchnyi Mir, Moscow, 2005.
[3] D. K. Durdiev, "A Multidimensional Inverse Problem for an Equation with Memory," Siberian Mathematical Journal, Vol. 35, No. 3, 1994, pp. 514-521.
[4] D. K. Durdiev, "Some Multidimensional Inverse Problems of Memory Determination in Hyperbolic Equations," Journal of Mathematical Physics, Analysis, Geometry, Vol. 3, No. 4, 2007, pp. 411-423.
[5] D. K. Durdiev, "Problem of Determining the Nonstationary Potential in a Hyperbolic-Type Equation," Journal of Theoretical and Mathematical Physics, Vol. 2, No. 156, 2008, pp. 1154-1158.

