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Abstract

The problem of determining the hyperbolic equation coefficient on two variables is considered. Some addi-
tional information is given by the trace of the direct problem solution on the hyperplane x = 0. The theorems
of local solvability and stability of the solution of the inverse problem are proved.
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1. Statement of the Problem and the Main
Results

We consider the generalized Cauchy problem
u, —u, —b(x, u,=5(x,t—s), (x,t)eR*, s>0,

Co (M

ul,

where d(x,¢) is the two-dimensional Dirac delta func-
tion, bH(x,t) is a continuous function, s is a problem
parameter, and u(x,z,s). We pose the inverse problem

as follows: it is required to find absorption coefficient
b(x,t) if the values of the solution for are known, i.e., if

the function
u(0,t,s)= f(ts), t>0, s>0. 2

Definition. 4 function b(x,t) such that the solution of

problem (1) corresponding to this function satisfies rela-

tion (2) is called a solution of inverse problem (1), (2).
The inverse problem posed in this paper is two-dim-

ensional. For the case where b(x,t)=b(x) the solv-

ability problems for different statements of problems
close to (1), (2) were studied in [1] (Chapter 2) and [2]
(Chapter 1). The solvability problems for multidimen-
sional inverse problems were considered in [2] (Chapter
3), [3,4], where the local existence theorems were proved
in the class of functions smooth one of the variables and
analytic in the other variables. In [5], the problems of
stability and global uniqueness were investigated for
inverse problem of determining the nonstationary poten-
tial in hyperbolic-type equation. In this paper, we prove
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the local solvability theorem and stability of the solution
of the inverse problem (1), (2).
Let

O, ={(t,s)|0<s<t<T},
Q. ={(x,0)|0g x|<t<T—-|x|}, T>0,

C!(Q,) Is the class of function continuous in s, con-
tinuously differentiable in ¢, and defined on Q,. We
let B denote the set of function b(x,¢) such that

b(x,t)e C(Q,), b(—=x,t)=b(x,t).

Theorem 1. If at a T >0 f(t,5)eC'(Q,) and the

condition
f(s+0,s) =% (3)

is met, then for all T e(0,T_0), T,=(1/40)a,, a,=
4||f’(, s)" the solution to the inverse problems (1),
N lel(oS}

(2) in the class of function b(x,t)e B exists and is

unique.
Theorem 2. Let the conditions in Theorem 1 hold for
the functions f,(t,s), k=1,2, and let b (x,t), k=1,2,

be the solutions to the inverse problems with the data
f.(t,s), k=1,2, respectively. Then the following esti-

mate is valid for T e (0, T,), ((T,) is defined in the

same way as in proof of the Theorem 1)

4
|6 e, 1) =, (x,0)] SE" JACORYA ) FIREC)
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T
where p = e
0

2. Construction of a System Integral
Equations for Equivalent Inverse
Problems

We represent the solution of problem (1) as
1
u(x,t,s):EH(t—s—\x\)-l—v(x,t,s). (5)

where 6(1) =1 for >0, 6(t)=0, for t<0, v(x,
t,s) isa some regular function.

We substitute the Expression (5) in (1), take into ac-
count that  @(¢—s—|x|)/2 satisfies (in the generalized

sense) the equation u, —u_ =J(x)d'(t—s), and obtain

the problem for the function v:

Vi =V = b(x,t)BfS(l—S— | x[) +V,(x,t,S)}
(6)

It follows from the d’Alembert formula that the solu-
tion of problem (6) satisfies the integral equation

vt = [[ bED Bé(r—s—|:|)+vt(5,r,s)]

A(x,t)
dédr, (x,t)eR*, 5>0,
(7
where A(x,t) = {E&P0<r<t—fx—g x—r<E<x+e]

We use the properties of the ¢ - function and easily ob-
tain the relation in a different form:

o | pesHha

v(x,t,8) =

+% ” b(&, t)v,(E,1,5)dwde, ®)

Y(x,t,8)

t—s2|x

b

where the domain Y (x,¢,s) is defined by

x—(t-s)

Y(x,t,s)= {(g“,z') T

|§|+S$f$l—|x—§|,

xX+t—s
2

By differentiating the equality (8), we obtain

<¢E<

,OSSSt,Szconst}.
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v,(x,t,s)zl b x+t—s, X+t+s
8 2 2

X—t+s —x+it+s
+b ,
=525
x+(t—s)

[ t=|x=&w (& =[x =&, $)d&, t—s 2.

x—(t-s)
2

| —

(€)]
It is obvious that £(z,5)=u(0,t,5)= %+ v(0,1,s)

for ¢>0. Moreover, the function f(¢,5) be must sat-
isfy the condition (9).

We set x =0 in the equality (9), use the fact that the
function b(x,?) isevenin x,and obtain the relation

1 (t—s t+s
t,s)=—b| —,——
Si(t,s) 4(2 2)

~
|

s

+

—

b(f,t_gj)\/t(f,t_f,s)df,

=5

(,s) eQT-

We rewrite this equality, replacing (¢—s)/2 with
|x| and (£+s)/2 with¢, and solve it for b(x,t). We
obtain

I
b(x,t) =4, (t+| x|, t= | x ) =4[ b(&, 1 +[x] - ¢)- (10)
H

V(& t+| x| =C 1= [x)dS, t=]x].
Let
YT={(x,t,s)||x|+sStST—|x|,OSsSt£T}

The domain Yy, in the space of the variables x,f,
and s is a pyramid with the base €, and vertex
(0,7,T/2). To find the value of the function b at (x,?),
it is hence necessary to integrate b(x,#) over the inter-
val with the endpoints (—|x|,f) and (|x|,#) and to
integrate the function v, (x,z,s) over the interval with
lxlt,e=[x]) and (x[.t,0=|x]),
which belong to the domain Y .

the endpoints

One can rewrite the system of Equations (9) and (10)
in the nonlinear operator form,

v =Ay, (11)

where

AM



126 D.K. DURDIEV ET AL.

v (x,t,5) 1{(x+t—s x+t+sj
= =|v,(x,t,5) ——| b R
I//Z(xst) 8 2 2

X—t+s —x+t+s
+ b s
( 2 2 H

b(x,1)

The operator 4 is defined on the set of functions
yeClY,] and, according to (9), (10), has the form

A= (Als AZ))

where

x+(t-5)
2

Ay == [ w(&t-p—&)w (& —x=¢)

x—(t-s)
2

+l{l//2[§+t—|x—§|—s’§+t—|x—§|+sj
8 2 2

+w2£§‘f+|;—§|+s’—f+t—|2)6‘f|+sﬂ}d§,

I
Ay = 4f (t+x], t—x]) — 4 _[ w,(S,t +|x| =)

d
{uncrslil=g-la 5w o)

t—f)]}dg.

At fulfillment of the condition (3) the inverse problem
(1), (2) is equivalent to the operator Equation (11).

+y, (E-|x

3. Proofs of the Theorems

Define

H‘//HT = max(Hl/lch(Y,) ’ HV/ZHC(QT))'

Let s be the set of yeC(Y,)(Q,cY,) that satisfy

the following conditions:
v = vl <lv°l..

where " (o, 4ﬁ(t+|x\,t—|x|). It is obvi-

o =% (0, cY,) - Now we

can show that if 7 is small enough, 4 is a contraction
mapping operator in S . The local theorem of existence
and uniqueness then follows immediately from the con-
traction mapping principle. First let us prove that 4 has
the first property of a contraction mapping operator, i.e.,
if weS, then Ay €S when T is small enough. Let

= (‘//01’ '//02) =
ously,
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w € § . Itis then easy to see that

ll, <l -v°l, + v, <2a,.
Furthermore, one has
x+(t+s)
1 2
|A1V/_l//01|£_ V/z(f,t—|x—§|)
2 i)
()

2

x{\w(s,r—lx—f s)\%{%[%,
§+t—|x—§|+s} N %(é—t+|x—§|+s’

2 2
_§+t—|x—§|+sj}d§S£%

2 8

I
|A2‘//_W02| S4j ‘Wz (56,t+|x|—§)‘

|

AR I (A

1)
- )H} dE<10Ta, [

Therefore, if 7" =1/10¢,, then for T e (0,7;) the

operator A satisfies the condition Ay € S . Consider

A

next the second property of contraction mapping operator

for Aie,if y0)eS, yb es,then |4yl -4yl
< ply® =y 0| with p <1, when T is small enough.

Let " e§,p'? e5. Then one has

A — 4y <

l‘ J AR R

2] (i

2

V(e —|x—gs)+ { [§+t—|x—§|_s

2

§+t—|x—§|+sJ (f—t+|x—§|+s
+ M, s
2 2

_é+t_|x_§|+Sﬂ}+'/jz(2)(§’t_|x_§|’s)

Al = @)t~ e - glos)+ [(wz“ v.?)

§+t—|x—(§|—s §+t—|x—§|+s
2 ’ 2
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+ (l//z(l) - l//z(Z) )

f—t+|x—§|+s —§+t—|x—§|+s
2 ' 2

V)

_,®
o

5T
dé|< %

I

‘I‘ { ( w, _,/,2<2>)

(&t +ld=¢) { w(Er+x-£1-I)

A0 2-li-2) ]

(Gt =&)x| (w-w?)

Az‘//(l) _Azl//(z) <4

(&7 + x| =&, =1 )%[ (w?-v?)

() + (=) (e=lal-t-€)]

!

dE|< 40T ao| y -y

.

It follows from the preceding estimates that if
To = 1/40 ¢y, then for T € (0, TO) the operator A is a
contraction operator with p=T7/7, on the set S.

Therefore, the Equation (11) has a unique solution which
belongs to S according to the contraction mapping prin-

ciple. The solution is the limit of the sequence y/["],

n=0,12,., where yl=y(0), yI =yl and
the series

s 5= )

converges not slower than the series
WL+ 2o =0,

We now prove Theorem 2. Since the conditions
Theorem 1 hold, the solution belong to the set S and
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||1//i||T <2a,,i=12. Let y/(k), k=12 be vector
functions which are the solution of the Equation (11)

with the data £, (¢,5), k=1,2, respectively, i.e.,

! =4y

From the previous results in the proof of Theorem 1, it
follows that

=y O ()| <4/ (65)- £, )

+40T oy, — v, |, . k=1,2.

(k)

Therefore, one has

v =, < 4||f1 (t.5)= 1 UJ)”C%[QT] +ply v,

The last inequality gives
4
"l/ll _V/ZHT < E"f' (t,s) -/ (t’s)"C}[QT] (12)

The stability estimate (4) follows from the inequality
(12).
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