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Abstract

The bondage number 5(G)of a nonempty graph G is the cardinality of a smallest set of edges whose re-

moval from G results in a graph a domination number greater than the domination number of G. In this paper,

we prove that p»(G) <12 for a 1-planar graph G.
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1. Introduction

Throughout this paper, we consider connected graphs
without loops or multiple edges. A 1-planar graph is a
graph which can be drawn on the plane so that every
edge crosses at most one other edge. For a graph G,
V(G) and E(G) are used to denote the vertex set and
edge set of G, respectively. The degree of a vertex u in G
is denoted by d(u). For a vertex subset S < V(G),
define N(S)= {x€V(G)\ S| there is a y € S such
that xy € E(G)}. When S = {v}, we write N(v) =
N(S) for short. The minimum degree of vertices in G is
denoted by J(G) and the maximum degree by A(G) .
The distance between two vertices u# and v in G is de-
noted by d(u,v). For a subset X < V(G), G[X]
denotes the subgraph of G induced by X.

A subset D of V(G) is called a dominating set, if
DU N(D) = V(G). The domination number of G, de-
noted by y(G), is the minimum cardinality of a domi-
nating set. The bondage number b(G) of a nonempty
graph G is the cardinality of a smallest set of edges
whose removal from G results in a graph with domina-
tion number greater than y(G) .

The bondage number was first introduced by Bauer et
al. [1] in 1983. The following two main outstanding con-
jectures on bondage number were formulated by Tesch-
ner [2].

Conjecture 1.1 If G is a planar graph, then 5(G) <
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Conjecture 1.2 For any graph G, b(G) < %A(G) .

In 2000, Kang and Yuan [3] proved that A(G) < min
{8, A(G) + 2} for any planar graph. That is, conjecture
1.1 is showed for planar graph with A(G) > 7. Up to

now, conjecture 1.1 is still open for planar graph G with
A(G) £ 6. Conjecture 1.2 is still open. In this paper, we

prove that b(G) < 12 for a 1-planar graph G.

2. Preliminary Results

First of all, we recall some useful results that we will
need

Lemma 2.1 [4] If G is a graph, then for every pair of
adjacent vertices # and v in G, then b(G) < d(u) + d(v)
~1-|N@) N N)|.

Lemma 2.2 [5,6] If u and v are two vertices of G with
d(u,v) <2,then b(G)<du)+dv)-1.

Lemma 2.3 [7] Let G be a l-planar graph, then
o(G)< 7.

Lemma 2.4 [7] Let G be a 1-planar graph on n verti-
ces and m edges, then m < 4n — 8.

Lemma 2.5 Let G be a bipartite 1-planar graph on n
vertices and m edges, then m < 3n - 6.

Proof. Without loss of generality, let G be a maximal
bipartite 1-planar graph on n vertices and X, Y is a bipar-
tition of graph G. Form a 1-planar graph G’ from G as
follows: add some edges to join vertices in X, and add
some edges to join the vertices in Y, such that G' is a
maximal 1-planar graph with G < G'. By the maximal-
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ity of G', the subgraph G'[X] and G'[Y] must be
connected. Then we have

|E@GTXD| = |X| -1, [E@GTYD|=Y|-1.
By lemma 2.4, |E(G")| < 4n - 8. S0
|E(G)| = |[E(G"| - [E(G'TXD| - |EG'YD)
<4n-8—|X|+1-|Y|+1=3n-6.

This completes the prove of lemma 2.5.

3. Bondage Number of 1-Planar Graph

Theorem 3.1 If G is a 1-planar graph, then b(G) <12.

Proof. Suppose to the contrary that G is a 1-planar
graph with b(G) > 13 . Then we have

Claim 1. For two distinct vertices x,y of G, if
max{d(x),d(y)} < 7, and min{d(x),d(y)} < 6, then it
must be the case that d(x,y) > 3.

Otherwise, d(x,y) < 2. But then, by lemma 2.2,
b(G) £d(x)+ d(y) —1<12, acontradiction.
Claim 2. If there is some x € V(G)
d(x) <5 then d(y)>9 forall y e N(x).

Otherwise, H(G) <d(x)+d(y)-1<5+8-1=12,

a contradiction.
Now, we define

V= eV(G) | d(x) <5},
V, = {x e V(G) | d(x) = 6},
Vy={xeV(@)|dx) =T}

such that

Let 4 c V; be the maximum and such that 4 is in-

dependent of G. By Claim 1 and the maximality of 4, we
have also

Claim 3. N(V,)\N(4)=¢ and V; ¢ AU N(4),
Let V,U4 ={x,x,-~-x,},and H =G —V,. Define
H,=H,
H=H_+F, 1<i<k

where F cE, = {xy| %,y € N(x),x # y,xy & E(H,,)} such
that H, , + F, = H, is still a 1-planar graph and such
that H,[N(x,)] is 2-connected. It is easy to see that
H,[N(x;)] isstill 2-connected for 1 <i < k.

Claim 4. If y, = ¢, then for each vertex v € N(V,),
visof degree atleast 9in H, .

In fact, let x €V, and v € N(x). If N(v)( N(x)
=@ in G, then by lemma 2.2, d(v) +d(x)—-12>13,
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and d(v) 214 —d(x) =8, by the 2-connectivity of
H,[N(x)], v is of degree at least 10 in H, . If N(v)
(N(x) # ¢, then by lemma 2.1, d(v) + d(x) —2 > 13.
Then d(v) > 9.

Analogously, we have
Claim 5. If A4 # ¢, then for each vertex v € N(4), v

is of degree atleast 9in H, .

Now, G* = H, —V, isa l-planar graph, satisfying

(a) The minimum degree of G* is 7,

(b) 4= eV(G)|d,.(v) =1,

(c) 4 is independent of G*,

(d) For every vertex v e N_,(4) = N(4),d..(v) 29.

Let d(4) = {xy € E(G*) | x € 4, y € N(4)} . Then
(4, N(A); 0(A4)) is a bipartite 1-planar graph with 7|A|
edges. By lemma 2.5,

7|d| < 3|4 + 3N (4)| - 6
Hence

N = 2 al+ 2
3

Then we have

> %(7|A| +9N(A)| +8(V(G*)| - |4] - [N(A))
= 4y (G| + %|N(A)| - %|A|
> 4y (G| + %|A| +1
> 4y (G| -8 ‘

A contradiction.

This completes the proof of the theorem.

Theorem 3.2 If G is a 1-planar graph and there is no
degree seven vertex, then b(G) < 11.

Proof. Suppose to the contrary that b(G) > 12.
Let X = {v eV(G)|d) < 6} , and suppose that
X = {xl’ Xyt xk}
By lemma 2.2, for any two distinct vertices x,y € X,
d(x,y)=>3.
Define
H,=G

H =H,  +F, 1<i<k,

where F C E, ={w|xy e N(x).x # y,xy ¢ E(H, )} such
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that H, , + F, = H, is still a 1-planar graph and such
that H,[N(x;)] is2-connected when d(x;) = 3.

Now, by lemma 2.1 and 2.2, for any x € X,y € N(y),
if d(x) <2 then d(y) 211 and so y is of degree at
least 11 in H,; If d(x)>=3 and [N(x) N N(y)| <1,
then d(y) =8 and so y is of degree at least 9 in H, ;
If d(x)2=3 and |N(x)\ N(y)|22, then d(y)=>9
and So y is of degree atleast 9in H, .

By the construction of H,, we know that H, is a
1-planar graph. But H, — X is a l-planar graph with a
minimum degree of at least 8. It contradicts with lemma
2.3, and the proof is completed.
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