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ABSTRACT 

Seismic pounding phenomena, particularly the 
collision of neighboring buildings under long- 
period ground motion, are becoming a signifi-
cant issue in Japan. We focused on a specific 
apartment structure called the Nuevo Leon 
buildings in the Tlatelolco district of Mexico City, 
which consisted of three similar buildings built 
consecutively with narrow expansion joints be-
tween the buildings. Two out of the three build-
ings collapsed completely in the 1985 Mexican 
earthquake. Using a finite element code based 
on the adaptively shifted integration (ASI)-Gauss 
technique, a seismic pounding analysis is per-
formed on a simulated model of the Nuevo Leon 
buildings to understand the impact and collapse 
behavior of structures built near each other. The 
numerical code used in the analysis provides a 
higher computational efficiency than the con-
ventional code for this type of problem and en-
ables us to address dynamic behavior with 
strong nonlinearities, including phenomena such 
as member fracture and elemental contact. Con- 
tact release and re-contact algorithms are de-
veloped and implemented in the code to under-
stand the complex behaviors of structural mem- 
bers during seismic pounding and the collapse 
sequence. According to the numerical results, 
the collision of the buildings may be a result of 
the difference of natural periods between the 
neighboring buildings. This difference was de-
tected in similar buildings from the damages 
caused by previous earthquakes. By setting the 
natural period of the north building to be 25% 
longer than the other periods, the ground mo-
tion, which had a relatively long period of 2 s, 
first caused the collision between the north and 
the center buildings. This collision eventually 

led to the collapse of the center building, fol-
lowed by the destruction of the north building. 
 
Keywords: Seismic Pounding; Collapse Behavior; 
Neighboring Buildings; Natural Period; ASI-Gauss 
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1. INTRODUCTION 

In the 1985 Mexican earthquake, many apartment build-
ings in Mexico City, which was approximately 400 km 
away from the epicenter (see Figure 1), collapsed due to 
long-period ground motion [1,2]. Among those collapsed 
structures, there was a specific apartment structure called 
the Nuevo Leon buildings in the Tlatelolco district, 
which had three similar 14-story buildings built consecu-
tively with very narrow gaps and were connected with 
expansion joints (see Figure 2). Two buildings among 
them, the north and the center, collapsed completely as a 
result of the earthquake (see Figure 3). The damage was 
caused by the impact of the neighboring buildings,which 
resulted from the change in the natural periods of the 
buildings from the prior reduction of strength and soil 
subsidence. An additional effect of the resonance phe-
nomena was caused by long-period ground motion. In 
the case of Mexico City, extremely soft soil, such as the 
clay of Lake Texcoco, lies under most parts of the city. 
This unique subsurface condition resulting from the his-
torical lakebed has distinct resonant low frequencies of 
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Figure 1. Epicenter of the 1985 Mexican earthquake. 
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Figure 2. The Nuevo Leon buildings before the earthquake. 
 

 

Figure 3. Collapse of the Nuevo Leon buildings (south build-
ing at the far side, picture by Marco Antonio Cruz). 
 
approximately 0.5 Hz [3]. Therefore, nearly all of the 
14-story buildings in the district, which had natural pe-
riods of approximately 2 s, were destroyed during the 
earthquake, as shown in Figure 4. 

We investigated the seismic pounding phenomena due 
to the long-period ground motion by conducting analyses 
on a simulated model of Nuevo Leon buildings and two 
neighboring framed structures with different heights. We 
used a finite element code based on the adaptively shifted 
integration (ASI)-Gauss technique [4], which provides 
higher computational efficiency than the conventional 
code for this type of problem, and enables us to address 
dynamic behavior with strong nonlinearities, including 
phenomena such as member fracture and elemental con-
tact. Contact release and re-contact algorithms are de-
veloped and implemented in the code to understand the 
complex behaviors of structural members during the seis- 
mic pounding and collapse sequence. In the analysis of 
the Nuevo Leon buildings, we set the natural period of 
one building to be 25% longer than those of the other 
buildings, as a difference in natural periods was observed 
in similar buildings based on the damage caused by pre-
vious earthquakes. 

2. NUMERICAL METHODS 

The general concept of the ASI-Gauss technique com-
pared with the earlier version of the technique, the ASI 
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Figure 4. Ratio of the damaged buildings vs. story no. of build-
ings in the 1985 Mexican earthquake. 
 
technique [5], is explained in this section. In addition, the 
algorithms considering member fracture, elemental con-
tact, and incremental equation of motion for excitation at 
fixed points are described. 

2.1. ASI-Gauss Technique 

Figure 5 shows a linear Timoshenko beam element 
and its physical equivalence to the rigid bodies-spring 
model (RBSM). As shown in the figure, the relationship 
between the location of the numerical integration point 
and the stress evaluation point where a plastic hinge is 
formed is expressed as [6] 

,r s                    (1) 

where s is the location of the numerical integration point, 
and r is the location where the stresses and strains are 
actually evaluated. We refer to r as the stress evaluation 
point later in this report. The quantities for s and r are 
non-dimensional and take values between –1 and 1. 

In both the ASI and ASI-Gauss techniques, the nu-
merical integration point is shifted adaptively, when a 
fully plastic section is formed within an element, to cre-
ate a plastic hinge at exactly that section. When the plas-
tic hinge is determined to be unloaded, the corresponding 
numerical integration point is shifted back to its normal 
position. Here, the normal position is where the numeri-
cal integration point is placed when the element acts 
elastically. By doing so, the plastic behavior of the ele-
ment is simulated appropriately, and the converged solu-
tion is achieved with only a small number of elements 
per member. However, in the ASI technique, the nu-
merical integration point is placed at the midpoint of the 
linear Timoshenko beam element, which is considered to 
be optimal for one-point integration, where the entire 
region of the element behaves elastically. When the 
number of elements per member is small, solutions in the 
elastic range are not accurate enough because the one- 
point integration is only used to evaluate the low-order 
displacement function of the beam element. 

The main difference between the ASI and ASI-Gauss 
techniques lies in the normal position of the numerical 
integration point. In the ASI-Gauss technique, two con-
secutive elements forming a member are considered to  
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here, gs  and gr  are the dimensionless coordinates in 
each element that have a value of 1 2 3  and 
1 2 3 , respectively.   ,    and  u  are 
the generalized strain increment vector, generalized 
stress (sectional force) increment vector and nodal dis-
placement increment vector, respectively. [B] is the gen-
eralized strain-nodal displacement matrix, [D] is the 
stress-strain matrix, and L is the length of the element. 

The plastic potential used in this study is expressed by Figure 5. Linear Timoshenko beam element and its physical 
equivalent. 22 2
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  (4) 

be a subset, and the numerical integration points of an 
elastically deformed member are placed such that the 
stress evaluation points coincide with the Gaussian inte-
gration points of the member. This means that the 
stresses and strains are evaluated at the Gaussian integra-
tion points of elastically deformed members. The Gaus-
sian integration points are optimal for two-point integra-
tion, and the accuracy of bending deformation is mathe-
matically guaranteed [7]. This way, the ASI-Gauss tech-
nique takes advantage of two-point integration while 
using one-point integration in the actual calculations. 

where yf  is the yield function, and xM , yM  and  
are the bending moments around the x-axis, the y-axis 
and the axial force, respectively. The terms with the 
subscript 0 are values that result in a fully plastic section 
in an element if they act on the cross section independ-
ently. The effect of torsion and shear force is neglected 
in the yield function. 

N

2.2. Member Fracture and Contact Algorithm 

Figure 6 shows the locations of the numerical integra-
tions points of elastically deformed elements in the ASI 
and ASI-Gauss techniques. The elemental stiffness ma-
trix, the generalized strain and the sectional force incre-
ment vectors in the elastic range are given for the ASI 
and the ASI-Gauss techniques by Eqs.2 and 3, respec-
tively. 

A plastic hinge is likely to occur before it develops 
into a member fracture, and the plastic hinge is expressed 
by shifting the numerical integration point to the oppo-
site end of the fully-plastic section. Accordingly, the 
numerical integration point of the adjacent element form- 
ing the same member is shifted back to its midpoint, 
where it is appropriate for one-point integration. Figure 
7 shows the location of numerical integration points for 
each stage in the ASI-Gauss technique.        0 0 0

T
K L B D B            ,

,

       (2a) 

In this study, member fracture is determined by the 
curvatures, shear strains and axial tensile strain that oc-       0 0B u                   (2b) 
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Figure 6. Locations of the numerical integration and stress evaluation points in the elas-
tic range. 
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Figure 7. Locations of numerical integration points for each stage of the ASI-Gauss 
technique. 

 
curred in the elements, as shown in the following equation. 
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where x  and y , xz  and yz , z , and 0x , 0y , 

0xz , 0yz  and 0z  are the curvatures around the x- 
and y-axes, the shear strains for the x- and y-axes, the 
axial tensile strain and the critical values for these strains, 
respectively. The critical values were fixed using infor-
mation from actual experimental data [8]. Contact de-
termination is found by examining the geometrical loca-
tions of the elements, and once two elements are deter-
mined to be in contact, they are bound with four gap 
elements between the nodes [4]. The sectional forces are 
delivered through these gap elements to the connecting 
elements. To express contact release, the gap elements 
are automatically eliminated when the mean value of the 
deformation of gap elements is reduced to a specified 
ratio. 

2.3. Incremental Equation of Motion 

The dynamic equilibrium equation at time step t = t 
can be formulated as 

      t t t
M u E F  ,           (6) 

where  M , 
t
, 

t
 and  u  E  t

F  are the mass ma-
trix, acceleration vector, nodal external force vector and 
internal force vector at time step t = t, respectively. 

The following equation is substituted into Eq.6 at t = t 
+ 1 in the implicit code: 

      1
.

t t
F F K u


              (7) 

Then, the following incremental stiffness equation is 
evaluated: 

         1 1
,

t t t
M u K u E F

 
         (8) 

where  K  is a stiffness matrix at time step t = t. By 

neglecting residual forces, an implicit code is obtained by 
evaluating the following incremental equation of motion: 

      0.M u K u               (9) 

Consequently, the incremental equation of motion for 
a structure under excitation at fixed points, which are 
used in this report, yields the following: 

           1 2 1 2 0.b bM u M u K u K u          (10) 

The subscript 1 indicates the coupled terms between 
the free nodes, 2 indicates the coupled terms between the 
free nodes and the fixed nodes, and b indicates the com-
ponents at the fixed nodes. Vectors   and u  u  
are the nodal acceleration increment and the nodal dis-
placement increment, respectively. 

Under the assumption that the displacements at the 
free nodes are estimated by adding quasi-static displace- 
ment increments  su  and dynamic displacement in-
crements  du , the displacements at the free nodes are 
given as 

     s du u u     .            (11) 

 su  is evaluated, by neglecting inertia force, as 
follows:  

      1

1 2 .s bu K K u
            (12) 

Substituting Eqs.11 and 12 into Eq.10, the following 
equation is obtained: 

     
        
1 1

1

1 1 2 2 .

d d

b

M u K u

M K K M u


  

 




     (13) 

In this method, the equivalent forces are calculated by 
substituting nodal acceleration increments at the fixed 
points into the right side of the above equation. 

3. SEISMIC POUNDING ANALYSIS OF 
NEIGHBORING BUILDINGS 

A seismic pounding analysis is performed, using the 
numerical code shown above, on neighboring buildings 
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to investigate the effects of collisions between them dur-
ing a long-period ground motion. 

3.1. Seismic Pounding Analysis of 
Neighboring Framed Structures with 
Different Heights 

As shown in Figure 8, simple numerical models of 
two neighboring framed structures with different heights 
are constructed to investigate the seismic pounding be-
havior. One of the framed structures is 12-stories high, 
and the other is 7-stories high. The distance between the 
two models is 30 cm. Each story is 3.46 m high, with a 
span length of 6.3 m and a depth of 12.4 m. The sectional 
properties and the material properties of the models are 
shown in Tables 1 and 2, respectively. The floor loads 
are set to 4.5 kN/m2. The SCT seismic wave of the 1985 
Mexican earthquake, as shown in Figure 9, is used for 
the input ground motion. The time increment for the 
analysis is 1 ms, and the total number of steps is 183,501. 
The critical curvatures for fracture are set to 3.333 × 10–4, 
the critical shear strains to 2.600 × 10–3 and the critical 
axial tensile strain to 0.17. 

No impact occurred between the two structures 
throughout the analysis when the buildings were both 
12-stories high. On the other hand, the models collided 
during the ground motion when one building was 7-sto- 
ries high, and as shown in Figure 10, both eventually 
collapsed. The colors represent the distribution of the 
yield function values fy. This result shows that the 

distances between neighboring buildings are crucial and 
that the distances must be sufficiently secured, particu-
larly if the natural periods of the buildings are different. 

3.2. Seismic Pounding Analysis of Nuevo 
Leon Buildings 

As shown in Figure 11, we constructed a simulated 
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Figure 8. Numerical models of the two neigh- 
boring framed structures. 

 
Table 1. Sectional properties of the structural members. 

 Columns (1 - 5 F) Columns (6 - 10 F) Columns (11 - 12 F) Beams Floor slabs 

Section (mm) 330 × 330 × 10 280 × 280 × 9 230 × 230 × 7 H292 × 730 × 16.2 × 11.6 230 × 230 × 7 

 
Table 2. Material properties of the structural members. 

 Column Beam Floor slab Wall brace 

Yield strength (MPa) 3.25 × 102 3.25 × 102 3.25 × 102 2.35 × 102 

Young’s modulus (GPa) 2.06 × 105 2.06 × 105 2.06 × 105 2.06 × 105 

Density (kg/mm3) 7.90 × 10–6 7.90 × 10–6 7.90 × 10–6 7.90 × 10–6 

Poisson’s ratio 0.30 0.30 0.30 0.30 
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Figure 9. Input ground acceleration (SCT wave). 
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Figure 10. Collapse modes of the two neighboring framed structures. 
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Figure 11. Numerical models of the three connected buildings. 
 
model of the Nuevo Leon buildings with three similar 
14-story buildings built consecutively with narrow gaps 
of 10 cm. The model is 42.02 m high and 12.4 m wide, 
with a total length of 160 m. By referring to the design 
guideline of Mexico in 1985, the base shear coefficient is 
set to 0.06, and the axial force ratio on the first floor is 
set approximately to 0.5. The dead load for each floor is 
set to 4.0 kN/m2, and the damping ratio is set to 5%. The 
Nuevo Leon buildings were originally built with rein-
forced concrete (RC) members; however, the model con-
structed in this study is intentionally made with steel 
members to easily verify the influence of the structural 
parameters, such as member fracture strains. The critical 
curvatures for the fracture are set to 3.333 × 10–4, the 
critical shear strains to 3.380 × 10–4 and the critical axial 
tensile strain to 0.17. The critical shear strains used are 
lower than the strain values of the steel members to con-
sider the characteristics of RC beams. The sectional 
properties of the structural members are shown in Table 

3. The time increment is set to 1 ms, and the calculation 
is performed for 90,000 steps. The analysis takes ap-
proximately 4 days using a personal computer (CPU: 
2.93 GHz Xeon). 

As shown in Table 4, we set the natural period of the 
north building model to be 25% longer than the other 
periods by lowering the structural strengths of the col-
umns. The difference of natural periods was observed in 
similar buildings built near the site (see Table 5), caused 
by the damage from previous earthquakes [1]. The EW, 
NS and UD components of the SCT seismic wave shown 
in Figure 9 are subjected to the fixed points on the 
ground floor. As mentioned earlier, the intensity period 
of the seismic wave was approximately 2 s because of 
the reclaimed soft soil of Mexico Valley. According to 
the numerical results in Figure 12, the collision of the 
buildings may be a result of the difference in the natural 
periods between neighboring buildings. As shown in 
Figure 13, a collision first occurs between the north and   
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Table 3. Sectional properties of the structural members. 

 Columns (1 - 5 F) Columns (6 - 10 F) Columns (11 - 14 F) Beams Floor slabs 

Section (mm) 330 × 330 × 10 280 × 280 × 9 230 × 230 × 7 H292 × 730 × 16.2 × 11.6 230 × 230 × 7 

 
Table 4. Natural period of each building model. 

 NS EW 

North 1.5 s 1.72 s 

Center 1.2 s 1.65 s 

South 1.2 s 1.65 s 

 
Table 5. Natural period of Chihuanua, a similar building. 

 NS EW 

Building No. 1 2 3 1 2 3 

Natural period (s) 1.39 1.11 1.13 1.94 1.63 1.77

Ratio of period  
to No. 2 building 

1.25 1.0 1.02 1.19 1.0 1.09

 

 

South 
Center 

North 
59.9 s 

84.8 s 78.8 s 

73.4 s 

 

Figure 12. The collapse behaviors of the simulated model of 
the Nuevo Leon buildings under long-period ground motion. 
 
center buildings due to the difference of the natural pe-
riods, and the plastic region spreads through the beams 
and columns. Then the columns near the impact point oc- 
casionally lose their structural strengths resulting from 
the continuous pounding sequence. The collapse of the 
center building is initiated at the ceiling of the 9th floor 
because of the continuous collisions from both sides, 
which begins approximately 70 s from the start of seis-
mic activity. Although the north building collapses a few 
seconds after the center, the south building withstands 
the collisions and does not collapse as shown in Figure 
12. 

4. CONCLUSION 

The numerical results shown in this report clarify the 

 

(a) Initial state (t = 0.0 s) (b) First contact between the north and 
center buildings (t = 36.5 s) 

(c) Failure of columns near the impact 
point (t = 59.9 s) 

(d) Collapse of the ceiling of the 9th 
floor (t = 70.7 s) 
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Figure 13. The impact and collapse initiation behaviors of the 
north and center buildings. 
 
possibility that long-period ground motion may cause ex- 
tra damage in high-rise buildings due to inter-building 
collisions, if the distances between them are not suffi-
ciently secured. Extra caution may be needed if the na- 
tural periods of the neighboring buildings are different, 
which can easily occur, for example, if their heights are 
different. 
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