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ABSTRACT 

We studied the monotonicity and Convexity properties of the new functions involving the gamma function, and get the 
general conclusion that Minc-Sathre and C. P. Chen-G. Wang’s inequality are extended and refined. 
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1. Introduction 

The classical gamma function 
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is one of the most important functions in analysis and its 
applications. The logarithmic derivative of the gamma 
function can be expressed in terms of the series 
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(x > 0;   = 0.57721566490153286… is the Euler’s con-
stant), which is known in literature as psi or digamma 
function. We conclude from (1) by differentiation 
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(2) 
 k x  are called polygamma functions. 

H. Minc and L. Sathre [1] proved that the inequality 
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is valid for all natural numbers n. The Inequality (3) can 
be refined and generalized as (see [2-4]) 
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(4) 
where k is a nonnegative integer, n and m are natural 
numbers. For , the equality in (4) is valid. The 
Inequality (4) can be written as 
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In 1985, D. Kershaw and A. Laforgia [5] showed the  

function 
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 is strictly decreasing and  
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the Inequality (3) can be derived. In 2003, B.-N. Guo and 
F. Qi [2] proved that the function 
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is decreasing in 1x   for fixed , from which the 
left-hand side inequality of (5) can be obtained. In the 
2009, C. P. Chen-G. Wang had obtained the extended 
inequality of the function above. They gave the limits of 
it and other results.  

0y 

In this paper, our Theorem 1 considers the monotonic-
ity and logarithmic convexity of the new function g on 
 0, . This extends and generalizes B.-N. Guo and F. 
Qi’s [2] as well as C. P. Chen and G. Wang’s [6] results. 

Theorem 1. Let fixed  and  be real num-
ber, then the new function 
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is strictly decreasing and strictly logarithmically convex 
on  0, , Moreover, 
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Theorem 2. Let  be an positive integer,  
be real number, then the function 
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is strictly increasing on .  0,

2. Proof of the Theorems 

Proof of Theorem 1. First, we define for fixed  
and , 
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From the differentiation of  A x , we should have 
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Hence, the function  A x  is strictly decreasing and 
   0A x A , for , which yields the desired result 

that 
0x
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Using the asymptotic expansion [7, p. 257] 
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we can conclude that   1lim
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By L’Hospital rule, we conclude from (6) that 
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Then from the Differentiation of  yields  B x
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Hence, the function  B x  is strictly increasing and 

   0B x B  for , which yields the desired result 

that 
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Proof of Theorem 2. Define for  be an positive 
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Hence, the function  is strictly increasing and 
 for  which yields the desired result 

that  for . 
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Corollary 5. Let t be an positive integer, we get 
3. Use the Theorem  
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        (13) From the proof above the following corollaries are obvi-

ous. 
Corollary 1. Let fixed  and  be a real 

number, then for all real numbers , 
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The Inequality (13) is an improvement of (3). 
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