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ABSTRACT 

In this paper, He’s variational iteration method is successfully employed to solve a nonlinear boundary value problem 
arising in the study of thin film flow of a third grade fluid down an inclined plane. For comparison, the same problem is 
solved by the Adomian decomposition method. The results show that the difference between the two solutions is negli-
gible. The conclusion is that this technique may be considered an alternative and efficient method for finding approxi-
mate solutions of both linear and nonlinear boundary value problems. Furthermore, the variational iteration method has 
an advantage over the decomposition method in that it solves the nonlinear problems without using the Adomian poly-
nomials. 
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1. Introduction 

Recently, many approximate analytical and numerical 
methods have been suggested for solving linear and non- 
linear boundary value problems arising in different bran- 
ches of science and engineering. It is not difficult to 
solve a linear problem because of the availability of high 
performance digital computers, but finding solutions of 
nonlinear problems is still not easy. It is well known that 
getting an exact analytic solution of a given nonlinear 
problem is often more difficult compared to getting a 
numerical solution, despite the availability of supercom- 
puters and software packages such as Maple, Mathe 
matica, Matlab etc, which provide an easy way to per- 
form high quality symbolic computations. However, re- 
sults obtained by numerical methods may give discon 
tinuous points of a curve when plotted; besides that com- 
plete physical understanding of a nonlinear problem is 
also difficult. If a nonlinear problem contains some sort 
of singularity or has multiple solutions then this also adds 
to the numerical difficulties. Though numerical and ana- 
lytical solution methods have their limitations, at the 
same time they have their own advantages too. Therefore, 
we cannot neglect either of the two approaches but usu-  

ally it is pleasing to solve a nonlinear problem analyti- 
cally. In the recent decades, many different analytic me- 
thods have been introduced to solve the nonlinear prob- 
lems, such as the homotopy analysis method (HAM) [1], 
the homotopy perturbation method (HPM) [2,3], the 
variational iteration method (VIM) [4,5], the Adomian 
decomposition method (ADM) [6,7], optimal homotopy 
asymptotic method (OHAM) [8,9]. In this study, we have 
applied the VIM and the ADM to find the approximate 
solutions of nonlinear and inhomogeneous differential 
equation governing the thin film flow of a third grade 
fluid down an inclined plane, and have made a graphical 
comparison of the numerical results from these two 
methods. Very recently, Mustafa Inc and Ebru Cavlak 
[10] have provided a comparative study of ADM and 
VIM in solving a new coupled MKdV system of equa- 
tions. These methods generate the solution in a conver- 
gent series with components that are elegantly computed. 
Furthermore, these analytic methods avoid the complexi- 
ties provided by other pure numerical methods [11,12]. 
The results reveal that the proposed methods provide an 
effective mathematical tool to handle a large class of 
linear and nonlinear differential equations. 
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2. Governing Equation 

The thin film flow of a third grade fluid down an inclined 
plane of inclination 0   is governed by the following 
nonlinear boundary value problem [13] 
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the problem in Equations (2.1) and (2.2), after omitting 
asterisks, takes the following form 
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where   is the dynamic viscosity, g is the gravity,   
is the fluid density and β > 0 is the material constant of a 
third grade fluid. We note that Equation (2.4) is a second 
order nonlinear and inhomogeneous differential equation 
with two boundary conditions; therefore, it is a well-posed 
problem. 

Through integration of Equation (2.4) we have 
3
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where 1  is a constant of integration. Employing the 
second condition of (2.5) in Equation (2.6), we obtain 

= 1. Thus, the system (2.4)-(2.5) can be written as  
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It should be noted that for 0  , Equation (2.4) cor-
responds to that of Newtonian fluid whose exact solution 
subjected to the boundary conditions (2.5) is given by  
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In what follows, we will obtain the approximate ana-
lytic solutions of the nonlinear system (2.7)-(2.8) by us-
ing the VIM and the ADM techniques. 

3. Solution by Variational Iteration Method 

To illustrate the basic idea of He’s VIM, we consider the 

following nonlinear functional equation [4,5] 

( ) ( ) ( ),Lv x Nv x g x             (3.1) 

where  is a linear operator,  a nonlinear operator 
and 

L
( )

N
g x  an inhomogeneous term. Ji-Huan He has mo- 

dified the general Lagrange multiplier method into an 
iteration method, which is called correction functional, in 
the following way [10] 
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where   is a Lagrange multiplier that can be identified 
optimally via the variational theory [10]. The subscript 

 denotes the  approximation and  is consi- 
dered to be restricted variation, that is, 
n thn ( )nv s

( )nv s 0.   The 
solution of the linear problem can be achieved in a single 
iteration step due to the exact identification of the La- 
grange multiplier. This method requires the Lagrange 
multiplier   be first determined optimally. The succes- 
sive approximations 1   of the solution 

 can be readily obtained by using this determined 
Lagrange multiplier and any selective function 0  
Consequently, the solution is given by s. For the conver-
gence criteria and error estimates of the VIM we refer the 
reader to [12,14]. 
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According to the VIM, we can construct a correction 
functional of Equation (2.7) as follows 
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with 1.    We start with the initial guess 0 ( ) 0u y   
in the above iteration formula and obtain the following 
approximate solutions:  
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In the solution (3.7) the terms involving the powers of 
 gives the contribution of the non-Newtonian fluid. It is 
worth noting that by setting 0   in the above ap-
proximations, we recover the exact solution for the case 
of Newtonian fluid. Thus, the first approximation of the 
nonlinear system (2.7)-(2.8) obtained by the VIM is 
identical with the exact solution of the corresponding 
linear problem. This shows that the VIM can be equally 
applied to linear equations. 

The effects of the non-Newtonian parameter   on 
the velocity given in (3.7) are plotted in Figure 1. It is 
shown that as we decrease the non-Newtonian parameter 
  the solution converges to the Newtonian case. 

4. Solution by Adomian Decomposition 
Method 

A detailed description of the ADM is given in [6,7]. Here, 
we convey only the basic steps as a reminder. Writing 
Equation (2.7) in operator form, we obtain 
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Here,  is the highest order derivative which is as-
sumed to be easily invertible,  represents the 
nonlinear term and  is the source term. 
According to the ADM, the solution  can be ex-
panded into the infinite series  
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where the components  nu y  are usually determined 
recursively. The nonlinear term  can be decom-
posed into infinite polynomials given by 
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  
It is well known that these polynomials can be con-
structed for all classes of nonlinearity according to the 
algorithm set by Adomian [15]. 

 

Figure 1. Variations in velocity with y for different values of 
β. 
 

The general algorithm of this decomposition method 
for the nonlinear system (2.7)-(2.8) yields the recurrence 
relation, 
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where C2 is a constant of integration and can be found 
from the boundary condition (2.8). The first few terms of 
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From these above results, we obtain the following 
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In this manner, the rest of the terms in the decomposi-

tion series can be calculated. Summing up, we write the 
solution in the decomposition series form 
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which is the same as that obtained by the VIM. As before, 
setting 0   in (4.15) one can recover the exact solu- 
tion for the Newtonian fluid. 

5. Conclusion 

In this study, we have illustrated how the VIM and the 
ADM can be employed to obtain the approximate ana- 
lytical solution of a nonlinear boundary value problem 
arising in the study of non-Newtonian fluid mechanics. 
The comparison between the fourth iteration solution of 
the VIM and five terms of the ADM is given in Figure 2. 
In fact, for 0.05   an excellent agreement is observed.  
 

 

Figure 2. Comparison of the VIM solution and the ADM 
solution, when β = 0.05. 

Therefore, these methods are very powerful and efficient 
techniques for solving different kinds of linear and non- 
linear problems arising in various fields of science and 
engineering. However, the VIM has an advantage over 
the ADM in that it solves the nonlinear problems without 
using the Adomian polynomials. Also, the use of the La-
grange multiplier reduces the successive use of the inte-
gral operator and it may be considered as an added ad-
vantage of this technique over the decomposition meth- 
od. 
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