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ABSTRACT 

This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by us- 
ing truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that 
the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos 
of Ši’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propa- 
gation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external 
perturbation but with constrained wave velocities in a rigorously mathematical sense.  
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1. Introduction 

Chaotic solitons have been a subject of many theoretical 
papers over the last decades of years. They have been 
experimentally observed in several physical systems [1- 
4]. Despite this large amount of effort, many key issues 
remain open. The central question addressed in this paper 
is: How can one construct a partial differential equation 
(PDE) system that self-generates a chaotic solitary-wave 
pulse that exists in a rigorous sense? There are few rig- 
orous results that addresses this question. In most cases, 
rigorous results for the generation of chaotic solitons are 
obtained through perturbations to a known system, e.g., 
Schrödinger equation and Ginzburg-Landau equation [5- 
8], that can generate solitons. Unfortunately, this method 
is not regular since, in practice, it can be applied only to 
particular examples. Another rigorous approach is that of 
C. L. Zheng [9]. In this approach one must find variable 
separation solutions to a generalized (2 + 1)-dimensional 
Kotewege de-Vries equation by using Bäcklund trans- 
formations [10]. The approach can be in nature catego- 
rized to perturbation method. A third approach, by Wu et 
al. in [3] and Ricketts et al. in [4], is an experimental 
scheme. The former described a related system that de- 
liberately provokes inherently nonlinear dynamics to 
produce chaotic soliton oscillations. The latter showed 
that the cancellation does more than simply allow the 
faithful propagation of digital pulses: in fact, it can be 
used as part of electrical oscillator to produce pulses in 
the first place. Both of these systems are purely elec- 
tronic; their relative ease of manufacture gives them  

many advantages over the “photonic” devices, involving 
light waves, that currently dominate soliton research. As 
defined in [8], a chaotic soliton means that the soliton 
changes its profile chaotically in time or along propaga- 
tion direction. From the view of mathematics, a soliton of 
a PDE system corresponds to a special solution of the 
PDE, or equally, a soliton corresponds to a homoclinic 
orbit in a related ordinary differential equation (ODE). 
Furthermore, if such an orbit is of Shilnikov’s type [11], 
that is, some Shilnikov’s inequalities are satisfied, then 
the ODE system definitely has chaos of Shilnikov’s type. 
It is not difficult to imagine that the corresponding soli- 
ton in the original PDE system should be a chaotic soli- 
ton since its profile impossibly behaves regularly in time. 
Such a relation between some solutions of ODE and PDE 
systems is the basis of our constructing PDE systems that 
self-generate chaotic solitons. On the other hand, from an 
ODE system with homoclinic orbits, one may construct 
many PDE systems such that they can self-generate soli- 
tons corresponding to the homoclinic orbits in the ODE 
system. Therefore, the construction must be treated care- 
fully so that the resulting systems via the construction are 
as desired. 

In this paper, we propose a method for constructing a 
PDE system self-generating chaotic solitons. The con- 
struction is based on the truncated normal forms of an 
autonomous ODE and on the relationship between ODEs 
and PDEs when solitary waves are under consideration. 
The constructed system can self-generate a chaotic soli- 
tary-wave pulse without any external perturbation. More- 
over, the existence of the solitary-wave pulse in the PDE 
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system is ensured by that of one homoclinic orbit of an 
ODE system whereas its chaotic behavior (i.e., the soli- 
ton changes its profile chaotically along propagation di- 
rection) results from the chaos property of the ODE sys- 
tem which is guaranteed by Ši’lnikov’s homoclinic theo- 
rem [11].  

2. A Candidate Class of ODE Systems and 
Their Principle Homoclinic Orbits 

Since finding a soliton in a PDE system can be changed 
into proving the existence of a homoclinic orbit in a re- 
lated ODE system, in this section we will introduce a 
class of autonomous ODE systems as candidates for the 
construction of PDE systems that can self-generate cha- 
otic solitons. The introduction of the candidate ODE 
systems is based on amplitude equations which are de- 
rived from normal form theory. Then, we discuss the 
existence of homoclinic orbits in the ODE systems. We 
do not prove the existence of the homoclinic orbit, and 
instead obtain some so-called principle homoclinic orbits 
by applying perturbation theory. Furthermore, we show 
that such homoclinic orbits are of Ši’lnikov’s type, im- 
plying that the ODE systems have chaos of Ši’lnikov’s 
type. 

We begin by a general theory about the standard form 
of nonlinear ODE systems. In the analysis of the stability 
of static states of autonomous nonlinear ODE systems, 
linear theory produces normal modes that vary like , 
where t is time, k is an integer, and 

k stt e
s i  

0

 is a root 
of the characteristic value equation of the linear theory. 
Consider an autonomous nonlinear ODE system having a 
polycritical state in which     for l roots and 

0   with 0   for m pairs of complex conjugate 
roots. Suppose that, for this state,   is bounded away 
from zero for all the other roots of the characteristic 
equation. By using normal form theory, we can obtain 
amplitude equations of the form:  

 x J x g x                   (1) 

where  1 2, , ,
T

dx x x x   with  is the am- 
plitude vector, 

2d l m 
g  is a strictly nonlinear vector-valued 

function, and 0 1n  is a set of parameters. 
We restrict ourselves to cases where the number of pa- 
rameters in the characteristic polynomial for 

 , ,    

J  is 
equal to n (called criticality). In this case, the characteris- 
tic equation (called the critical polynomial) for matrix 
J  may be expressed as 

   
1

0

det ; 0
n

n k
k n

k

J sI s s P s  




        (2) 

We are interested here in the leading-order terms in 
g , e.g., for , they are of order 2n  2x . These leading 
terms in g  are dictated by 0J . For the critical condi- 

tion,  ,   0 

2

 in the case of , the character- 
istic equation has zero as a double root. We refer to this 
case as 

2n 

  when 0J  is an irreducible  matrix. 
Similarly, we have other 

2 2
n  (see [12]). In addition, 

when J  is in Jordan-Arnold form [12,13], we rewrite 
Equation (1) as 

l l 
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l
l m l

x x1 2
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x x 2x

1 1
1

n n

m

lm m

x

1 1

n n

kx x x g 
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   x  x 




 

 

 

 
  (3) 

where the lm  are constants which can be analytically 
calculated [14].  

Let   be a small positive number and introduce the 
scaled variables 

  1, t  , i n
i

n k
k kx it X  

1, 2, ,i

       

1n

     (4) 

where   . If we arrange matters so that the 

i  are of order unity, the values of i  are near to the 
critical condition 0i  . That is, we position the system 
in that part of parameter space where, for , 1, 2, , 1i n 

 n iO  

1 2

1

n

l

i  . Then Equation (3) becomes 
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If we keep only the leading order terms in g, we may 
reduce Equation (5) to  

1
2

1 ,
l

X
k X

0

n

n
l

X 


d d

d d

n l

l 
          (6) 

where 1 1 11,X X k    and we are ignoring terms 
 O  . Once we are within the region of parameter space 

delimited by   n i
I O  , we may use Equation (6) as 

the amplitude equation for the configuration n , for any 
n, with the error of order  . 

We are interested especially in the case of 3n  . In 
this case, we have the following truncated normal form 
as the amplitude equation for 3  (see [13,14]): 

   2  14 3t tx k x x    k x  k x x  x  k x     (7) 

where  1 4ik i   and   are constants. Equation (7) 
has two singular points * 0x   and *x 1k . We look 
for solutions of the form *x  . If   is small, 

ste  , and we obtain 

   * 1 *2s k x k x  3 2x4 *s k 3 0s          (8) 

The parameter   is a measure of the dissipation, and 
assumed to be positive. A change in the sign of   es-
sentially interchanges the rules of the two singular points, 
so we need consider only 0  . When    and 
  , we can obtain some principle homoclinic or- 

bits by applying perturbation theory [12], e.g., for fixed 

1 2k k 3 0, 4 1k k1,     , there is a principle homo- 
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clinic orbit for 3  when   is small and the Ši’lnikov 
condition 2       and 1    is satisfied with 

3    , 2     (refer Figure 1). The region for 
existence of principle homoclinic orbits constitutes a 
cusp in shape, which is given by  

   3
3    2

2 9   4 1 3 3  

and the cusp has a vertex at 1 3   , 1 27   (see 
Figure 1). Besides these principle homoclinic orbits, 
there are many other homoclinic orbits in the problem 
(see [15]). Such a homoclinic orbit will imply the exis-
tence of chaos of Ši’lnikov type for an ODE system and 
ensure the existence of a chaotic soliton for a related 
PDE (see details in the next section). 

3. Constructing a PDE System That 
Self-Generates a Chaotic Soliton 

A particular example is the asymptotic normal form for 
3  which is of the form: 

2aX X  0bX t tX X   t          (9) 

where X has been scaled to give a convenient coefficient 
to 2X . Based on such an ODE and inspired by the rela- 
tion between ODE and PDE when the travelling waves 
are considered, we construct the following model: 

3 2

3 2

u

r





2u u

b au u
t r

 


 
           (10) 

where a and b  are positive constants. Assume that  
 

 

Figure 1. The principle homoclinic conditions for the case k1 
= −1, k2 = k3 = 0, k4 = 1 of 3 . The different curves are la-
belled by the values of   to which they correspond. The 
dotted curve corresponds to the location of the principle 
homoclinic orbit of the asymptotic form for 3  (see Equa-
tion (1)). Outside the cusp-shaped region R given by 

   3
4 1 3 3 3 2      2 9 , the origin is a saddle-focus. 

To the right of the red curve marked by Sh, the Ši’lnikov 
condition   2     and  1    satisfied. 

Equation (10) has travelling waves of the standard form 
   ,u r t U  , where r ct    and c represents trav- 

elling wave speed (assume c > 0). Then, U satisfies Equ- 
ation (9) with b bc  . Similarly, we can construct the 
classical Korteweg-de Vries (KdV) equation which has 
been applied to the optical fibers communication field if 
we set 0  , 0  , 1 2 0k k   and 3 , 41k   0k  , 
based on the ODE (8). Now, we seek a solitary wave 
solution, that is, we find the solution of the following 
equation 2U 0U U bU aU  

0,U
   subjective to  

the constrain  ,U a     as 0U     ,  

where the subscript stands for derivatives of function U 
with respect to the argument  . For this, we rewrite 
Equation (9) into an ODE 

2

d

d
d

d
d

d

x
y

y
z

z
ax x by z







 

 



   

          (11) 

with the condition x a ,  and  as 0y  0z 
  , where b bc  . Note that finding a soliton solu- 
tion of Equation (10) satisfying the condition is currently 
changed into finding a homoclinic orbit of Equation (11) 
based at the equilibrium point .  ,0,0a

Fourth-order Rounge-Kutta method is used to solve 
the system (11) with time step size equal to 0.01, the ab- 
solute and relative error equal to . Numerical simu- 
lation shows that the system (11) is chaotic when 

610

3.5a   and 2b  , as shown in Figure 2. Now, let us 
fix 3.5a  . The numerical simulation also shows that 
the existence interval of chaos reaches  1.88,2.03b . 
Thus, we can determine the range of the solitary-wave 
velocity for fixed .  b

We can verify analytically that Equation (10) indeed 
has a Ši’lnikov homoclinic orbit and further chaos of 
Ši’lnikov type from a theorem of Ši’lnikov [11]. In fact, 
we have shown the existence of a homoclinic orbit (e.g., 
the principle homoclinic orbit) of Ši’lnikov type. Figure 
3 shows the numerical soliton of Equation (10) according 
to the homoclinic orbit. 

In addition, the characteristic polynomial of Jacobian 
matrix of Equation (10) evaluated at  is   ,0,0a 

3 2 0a     
1 1.3833

 which has three roots: one nega- 
tive   

2,3 0.1916 1.5791
 and a conjugate pair of complex 

i  
3.5a

 with the positive real part for 
  and 2  . A rigorously theoretical proof for 

the existence of chaos of Ši’lnikov type may be referred 
to a standard treatment in [16]. A chaotic soliton of 
Equation (10) with parameter  and 3.5 ba  5.2   is 
shown in Figure 4 (the numerical simulation is per- 
formed for  iterations with a time step of 0.001). 410
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Figure 2. Evolution of the attractor of the asymptotic form 
for 3  described by Equation (9) or (11) when the parame- 
ter b is (a) 2.5; (b) 2.1; (c) 2.05; (d) 2.0; (e) 1.88; (f) 1.419 for 
fixed a = 3.5. Here (a), (b), (c) illustrate the period-doubling 
cascade leading to the numerical strange attractor shown in 
(d) and (e). The principle homoclinic orbit is represented in 
(f): it is unstable. Transients are suppressed. 
 

 

Figure 3. The numerical soliton, where parameter a = 3.5, 
 = −3.7. b

 

 

Figure 4. A numerical chaotic soliton, where parameter a = 

3.5 and  = −5.2. b

4. Conclusion  

Based on normal form theory of ODEs, we have pro- 
posed a general method of constructing systems that self- 
generate chaotic solitons. By adjusting some system pa- 
rameters in truncated normal forms of ODEs (e.g., Equa- 
tion (8)), one can construct many systems with chaotic 
solitons. Note that the constructed system (10) is conser- 
vative. It seems the first example that self-generates cha- 
otic solitons.  
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