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ABSTRACT 

Improving the ability to assess potential stroke deficit 
may aid the selection of patients most likely to benefit 
from acute stroke therapies. Methods based only on 
‘at risk’ volumes or initial neurological condition do 
predict eventual outcome but not perfectly. Given the 
close relationship between anatomy and function in 
the brain, we propose the use of a modified version of 
partial least squares (PLS) regression to examine how 
well stroke outcome covary with infarct location. The 
modified version of PLS incorporates penalized re-
gression and can handle either binary or ordinal data. 
This version is known as partial least squares with 
penalized logistic regression (PLS-PLR) and has been 
adapted from its original use for high-dimensional 
microarray data. We have adapted this algorithm for 
use in imaging data and demonstrate the use of this 
algorithm in a set of patients with aphasia (high level 
language disorder) following stroke. 
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1. INTRODUCTION 

Correlations between brain lesions and clinical symp-
toms have yielded valuable insights into brain function 
in the past. In individual patient care, these clinico-lesion 
correlations may play a role in predicting neurological 
deficits following stroke. More recently, attempts have 
been made to utilize the information obtained from brain 
imaging studies to aid prediction of neurological out-
come. Initial approaches depended upon measurement of 
infarct volume but volumetric approaches proved to be 
inaccurate predictors of neurological outcome. The cor-
relation between infarct volume and the National Insti-
tutes of Health Stroke Scale (NIHSS) is moderate at best 
[1,2]. One factor ignored in volumetric approaches is the 

information on stroke location available in the images. 
We have recently demonstrated that the relationship be-
tween tissue damage assessed at the voxel level and 
neurological disability can be predicted using a new 
method: Ridge Penalized Logistic Partial Least Squares 
(RPL-PLS). This method allows both stroke extent and 
location to be incorporated into the predictive model for 
neurological deficit. 

Previously, voxel-based statistical techniques have 
concentrated on the relationship between involvement of 
individual voxels or clusters of voxels and neurological 
deficit [3-5]. However, strokes often involve large en-
sembles of voxels and the task involved in prediction is 
to establish the relationship between involvement of 
ensemble as a whole and neurological deficit. The func-
tional inter-correlation between different groups of vox-
els is likely to mean that their contribution to outcome is 
not independent. One method of dealing with this kind 
of issue is principal components regression (PCR), 
which uses orthogonal linear combinations of the origi-
nal predictor variables as predictors in a multiple linear 
regression [6]. In PCR orthogonal linear combinations of 
the original predictor variables are first constructed as 
principle components (PCs) to maximize the variance of 
data. These PCs are then used as predictors in a multiple 
linear regression. Thus dimension reduction in PCR is 
achieved without regard the response variable. Partial 
least squares regression (PLS), as an alternative method, 
has the advantage over PCR in that it takes into account 
the response variable when performing the dimension 
reduction step [7,8]. 

Bookstein 1994 [9], McIntosh, et al. [10] and Leibo-
vitch, et al. [11] introduced a variant of the partial least 
squares (PLS) approach to the brain imaging community. 
Here singular-value decomposition (SVD) is applied to 
the cross-correlation matrix between dependent and in-
dependent variables to yield latent variables which are 
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linear combinations of the original variables, and which 
maximise the explained covariance. This characteristic 
of PLS makes it more suited to the purpose of prediction 
on the basis of involvement of functionally related en-
sembles of voxels. The reduction in dimensionality 
achieved may reflect the functional relationships be-
tween brain regions. 

There are several challenges in using the PLS tech-
nique to build a prediction model. First, there is a high 
degree of correlation among neighbouring voxels due to 
shared function and shared vascular blood supply. This 
leads to collinearity thus preventing stable estimates of 
regression coefficients. Second, the outcome variables 
are binary or ordinal and are correctly dealt with using 
logistic regression with the dependent variable being 
transformed into a logit variable describing the odds of a 
specific outcome. Thirdly, estimates of model coeffi-
cients using generalized least squares may still fail to 
converge. The solution of the first issue is the introduc-
tion of a ridge estimator to PLS and such analysis has 
recently been shown to provide stable estimate in mi-
croarray data analysis [12-14]. The solution of the sec-
ond issue is achieved by embedding the usual PLS steps 
within the iterative re-weighted least square (IRLS) [15]. 
In this setting, the binary variables were transformed to 
the continuous-valued pseudo-response variable by logit 
conversion. Variables from logistic regression are further 
constrained to be finite by penalizing with a ridge esti-
mator for overcoming the convergence issue before 
feeding to the PLS. Finally, standard PLS method has 
been extended to weighted partial least squares (WPLS) 
to further reduce noise effects and to improve the con-
vergence of the PLS. WPLS penalizes or regularizes 
PLS model by giving samples different weights (based 
on their relevance to the study). This additional weight 
determines how much each observation in the data set 
influences the final parameter estimates and the ‘disper-
sion matrix’, from logistical regression, can be severed 
as weights for the WPLS (detailed in methods section). 

We have successful demonstrated RPL-PLS in stroke 
deficit prediction study [16]. In this study we describe 
this modification of PLS method to take into account 
binary as well as ordinal outcome variables. To illustrate 
the use of this technique we describe its use in predicting 
stroke outcome using only knowledge of the location 
and extent of infarction. In Section 2 we describe the 
theory of the algorithm and its implementation; in Sec-
tion 3 we describe an application of the method to stroke 
data, in Section 4 is result and in Section 5 is discussion. 

2. METHODS 

2.1. Partial Least Squares Regression (PLS) and 
Weighted PLS 

PLS [7] is a dimension reduction technique, which ad-

dresses the issue of multiple regression when the number 
of variables are greater than the number of observations. 
The n observations described by p dependent variables 
are stored in a n × p matrix denoted Y, and the values of 
m predictors collected on these observations are in a n × 
m matrix X. PLS regression searches k number, with k 
<= m, of principle component scores and loadings (la-
tent variables) by performing an iterative simultaneous 
decomposition of independent data X and dependent 
data Y.  

In matrix form, PLS decomposes X and Y into the 
form:  

T X TP E               (1) 
T Y UQ F               (2) 

where the T and U are (n × k) score matrices, the (m × k) 
P and the (p × k) Q are matrices of loadings. E and F are 
matrices of residuals. The regression model is then step 
up between the scores: 

U BT                 (3) 

These matrixes are column centered and normalized 
(the symbol means “to normalize the result of opera-
tion”). The PLS regression method described here is 
based in the nonlinear iterative partial least squares 
(NIPLALS) algorithm [7], Iterative decomposition starts 
with random initialization the Y-score vector u, with 
initial E = X and initial F = Y, and iteratively go though 
the following steps until a stopping criterion is met or E 
becomes a null matrix. 

Step 1. w ∝ ETu (estimate E weights) 
Step 2. t ∝ Ew (estimate E scores) 
Step 3. q ∝ FTt (estimate F weights) 
Step 4. u  ∝ Fq (estimate F scores) 
Step 5. Check covariance, if t has not converged, goes 

to Step1, else go to Step 6. 
Step 6. b ∝ tTu (compute regression coefficient) 
Step 7. E = E – tpT (residual matrix of E) 
Step 8. F = F – btqT (residual matrix of F) 
By regressing E on t and F on u, the loading vectors p 

= (tTt)-1ETt and q = (uTu)-1FTu can be computed. In this 
way it finds the weight vectors, w, q such that 

2 2

2
| | 1,| | 1

[cov( )] [cov( )]

max [cov( , )]r s r s 





t,u Ew,Fq

E F
        (4) 

where the sample covariance between two variables are 
kept maximized through maximizing the sample covari-
ance between the two scores (components) at each de-
composition step. In such a way, it minimizes the norm 
of Y while keeping the correlation between X and Y by 
the inner relation Eq.3. Once the relationship has been 
built, the dependent variables are predictable using mul-
tivariate regression formula, the outer relation, as: 
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Y = TBQT = XBPLS           (5) 

with BPLS = (PT+)BQT (where PT+ is Moore-Penrose 
pseudo-inverse of PT). 

Least squares solution of linear regression is only ap-
propriate when the variances of the predictor variable are 
uniform [17]. When there are unreliable data or errors in 
the data measurement, unequal diagonal elements in the 
variance of the error matrix will lead to instability of 
parameter estimate for the least squares formula. Weig- 
hted partial least squares (WPLS) generalize PLS with 
an empirical weighted squared error in the same way 
that weighted least square regression generalized least 
squares regression. The main idea is to penalize or regu-
larize the coefficients of WPLS model and to facilitate 
model interpretation and further reduce noise effects of 
the samples: instead of weighting all samples equally, 
they are weighted such that samples with great weight 
contribute more to fit. WPLS defines k number of V 
weighted orthogonal scores tk, linear combination of X 
such that for all k,  and performs a V weighted 
least squares regression of Y through U on T. V is a 
symmetric positive definite matrix with vii is the weight 
assigned to each sample, is induced with the belief that 
observations with small variances provide more reliable 
information about the regression function than those 
with large variances. PLS is a special case of WPLS with 
V as identical matrix. In this study we will use WPLS to 
compensate the problem of possible unequal variance in 
the error matrix. The element vii of V is a probability of 
occurrence of sample i obtained from logistic regression 
step (detailed in following). 

T
n kv t

2.2. Ridge Penalized Logistic Regression 

PLS was originally designed for normal random re-
sponse variables. In the presence of binary response va-
riable, linear regression can result in regression coeffi-
cients, which cannot guarantee that response values only 
have two possible predicted values, 0 and 1. Logistic 
regression is one of the approaches to this issue. Let va-
riable yi indicates the class of sample i for response va-
riable y and πi the probability that yi = 1. Consequently, 
the probability of sample represents a class 0 is then 1 – 
πi. Let xij indicate the jth independent variable in the ith 
sample. The logistic regression model is: 

0
1

log
1-

m
i

i
ji

π
η β j ijβ x

π 

         (6) 

where ηi is called the linear predictor in the jargon of 
generalized linear model. It is connected to πi by so-called 
link function f with 

( ) log( )
1

f






             (7) 

In vector format ηi = β[1 ]. β is unknown parame-
ter and could be estimated by the maximum likelihood 
estimator (MLE),

T
ix

β̂ . The log-likelihood of the observa-
tions for the value β of the parameters L(β) is given by 

1 1

( ) log (1 ) log(1 )
n n

i i i
i i

L y y i 
 

   β    (8) 

If T[1 ]z x  is full column-rank and the configuration 
of n samples in the observation space is overlap, the so-
lution exists and is unique. This solution could be com-
puted by the literately reweighted least squares (IRLS) 
[18]. Let VT be the n × n diagonal matrix with 

T T T[1 ]
ii i i

at iteration t and β = βT. Each iteration 
divides into two steps, 

 v π π

TT T T 1[ ] ( )  g Zβ V y π          (9) 

T+1 T T 1 T T T( )β Z V Z Z V g          (10) 

where g is the calculated new response variables (de-
tailed in Appendix). 

Multicollinearity can still exist even after dimension 
reduction in the setting of our study: many voxels will 
show nearly identical patterns across the samples and 
they may supply no additional information to the model. 
This issue can be further addressed by introducing the 
ridge estimator, the regularization on sum of the squares 
of regression coefficients [19], into the logistic regres-
sion [20]. 

The ridge estimator, ˆRβ , is defined as the (unique) 
maximum of the penalized log-likelihood  

( )* ( )
2

TL L


 β β β Rβ          (11) 

where λ > 0 is the shrinkage parameter, the stronger its 
influence and the smaller the 2

j ’s are forced to be. ˆ Rβ , 
always existing, is unique. Ridge-IRLS (RIRLS) re-
places the weighted regression (Eq.10) in IRLS by a 
weighted ridge regression  

1 ( )t T t T  β Z V Z R Z V1 t tg        (12) 

where R is a diagonal matrix with entries
1,1 0R   and 

.,T
,

1

(
n

j
i j n

i

Z
Z

n

 R Π 2) ,  j  {2,…, m + 1}  (13)  

with Z.,j = [Z1j, Z2j, …, Znj].  
gT in Eq.12 is built as in Eq.9. λ can be chosen as the 

minimum, over a given range, of the Bayesian informa-
tion criterion (BIC) which gives the best balance be-
tween model complexity and the best fit to the data [21],  

2 1

2

ˆˆ2 ( ) log( ) [ ( ( ) )
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2.3. Ridge Penalized Logistic Partial Least 
Squares Regression 

Embedding ridge penalized logistic regression into PLS 
procedure forms RPL-PLS. This method involves two 
steps. The first step, ridge penalty logistic regression 
(RIRLS), builds a continuous response variable g∞ and 
‘dispersion matrix’ [V∞]–1 for the input of the second step. 
Second step is weighted PLS (WPLS) [12].  

1) ( , ) ( , , )RIRLS   g V Y X  

2) ˆ ( , , , )PLS WPLS k β g X V  

There are two parameters, shrinkage parameter  and 
number of component k, to be determined in RPL-PLS. 
, as stated early, is determined by BIC in the first step. 
The optimal number k is empirically chosen by selecting 
the minimal number of components that give the mini-
mum leave-one-out cross-validation (LOOCV) error rate 
for the training data. RPL-PLS provides unique an esti-
mate ˆPLSβ  for given Y, X,  and k. 

Binary logistic regression can be easily extended to 
ordinal response variables by creating a sequence of bi-
nary response variables, one for each response category 
[18]: 

if ith sample response is category 1 1 1
{

0iy   
Otherwise 

if ith sample response is category 2 2 1
{

0iy   
Otherwise 

…
 

 

if ith sample response is category c 1
{

0
c
iy   

Otherwise 

The same technique can be applied to RPL-PLS to 
form more generalized multi- ordinal RPL-PLS. 

2.4. Choosing the Model 

The maximum number of components from RPL-PLS is 
equal to the number of samples in the dataset. Since 
these components are sorted in a descending order ac-
cording to the proportion of variance they explained, 
only the first of few components were needed and the 
rest were considered as noise. The number of compo-
nents could be made up to number of samples and opti-
mal number of components was determined by Leave- 
one-out cross-validation step and when the error rate 
became stable. These models were illustrated up to 6 
components which have already comprised most of va-
riance of the data. The optimal number of components 
for each model was selected by choosing the value of k 
minimizing LOOCV error rate in cross-validation of the 
training dataset. 

3. MATERIALS 

Patients were recruited if they had an ischemic stroke in 
the anterior circulation. 38 patients were used for devel-
opment of the model (training dataset) and 22 patients 
were used for the model validation (validation dataset). 
Neurological deficit from stroke was measured on an 
ordinal scale of the NIHSS and assessment was per-
formed immediately prior to MR imaging. The domain 
of interests for this demonstration was aphasia (higher 
language disorder). The NIHSS language component is 
rated 0 (normal), 1 (mild to moderate), 2 (severe) and 3 
(mute and global aphasia). In our ordinal model, a score 
of 1 correspond to NIHSS language score of 0, a score of 
1 correspond to NIHSS language score of 1-2 and a 
score of 3 correspond to NIHSS score of 3.  

MR scans were acquired within three months after 
stroke onset. Fast spin echo T2-weighted images were 
acquired on 1.5T scanner (GE, Milwaukee, WI) with 
thickness 6 mm/1.7 mm, matrix 256 × 256, and TR/TE/ 
ETL 2000 ms/102 ms/12. Images from different subjects 
were aligned to a standard brain template registration [22] 
by manual registration using 9-parameter linear trans-
formation [23]. Infarcts were manually segmented on 
standard space images using interactive mouse driven 
software. Due to memory limitations of the PC, binary 
images were resampled to 4 mm × 4 mm × 4 mm as the 
input of RPL-PLS. The computation scripts were im-
plemented in MATLAB (Mathworks, Inc., MA).  

4. RESULTS 

RPL-PLS is a robust method and has convergence for all 
three models. In LOOCV, the optimal number of the 
components, k, was 2 for aphasia (binary), and 3 for 
aphasia (ordinal). The algorithm correctly identified 37 
of 38 samples for aphasia (binary) using two compo-
nents and 37 of 38 samples for aphasia (ordinal) using 3 
components. In a model, the coefficients of each voxel 
in the components indicate the relative importance of 
that voxel (anatomical locations) to the associated neu-
rological deficit. The cross-validation results of models 
consisted different number of components were illus-
trated in Table 1. 

In external validation with new data set consist of 22 
samples. Binary aphasia model produced 4 errors (81.8% 
correct) and ordinal aphasia model produced 5 errors 
(77.3% correct).  

Figure 1 corresponds to the binary aphasia model. 
Since the optimal number of components for this model 
was 2, left column is the first component of the model 
wiliest the second column is the second component of 
the model. The brighter the voxel is, the higher the 
weighting of the voxel with respect to aphasia deficit. 

In Figure 2 we presented coefficient images of three 
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5. DISCUSSIONS Table 1. Number of errors in LOOCV of 38 training data sam-
ples. 

In this study, we developed novel approach of gener- 
alized regression method, RPL-PLS, for predicting 
neurological deficit from MRI image data. The method 
incorporates dimension reduction techniques and ridge 
penalized logistic regression for addressing the problem 
of large collinearity dataset with binary and ordinal re-
sponse variables. The PLS algorithm described in this 
paper is known as the ‘standard’ PLS algorithm and has 
been presented in detail elsewhere [7,8,24-26].  

Number of components Neuropsychological  
assessment 

1 2 3 4 5 6 

Aphasia (ordinal) 7 4 1 1 1 1 Number 
of errors Aphasia (Binary) 5 1 1 1 1 1 

 
components model of aphasia ordinal model. Images in 
the first the column of Figure 2 showed each voxel re-
late to the aphasia score = 1 when using a model com-
promise three components, the second column images 
related to aphasia score = 2, and the third column images 
relate to aphasia score = 3. 

The model built from the training dataset has pro-
duced encouraging results for predicting different neu-
rological domain following stroke for the new dataset. It 
only uses information presented in the MR image and has  

 

 
  

 

 

 

 

  

Component 1  Component 2  

Figure 1. Image representation of first 2 components of aphasia binary model (left side image 
corresponds to right side of the patient, radiological conversion). 
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Ordinal outcome =1  Ordinal outcome =2  Ordinal outcome =3  

Figure 2. Image representation of 3 components aphasia ordinal model (left side image corresponds to right side of the patient, ra-
diological conversion). 
 
no requirement from human expert observer. This novel 
approach of using infarct topography to describe neuro- 
logical deficit is an improvement of cruder volumetric 
methods. This study provides support of the concept that 
information presented in image can be used to predict 
the outcome of stroke. This concept paves way for the 
development of similar model for understanding the 
neuroanatomy of neurological deficits and determ ining 
the outcome of rehabilitation and acute stroke trial. 

For this proof-of-concept study we examined patients 
with well-defined infarcts on MRI scans acquired 3 
months after infarction to predict outcome at 3 month. In 
this aspects, the model described here does not conform 
to a typical definition of a prediction model which is to 
use early MRI scans (< 1 week) to predict long term 
outcome (at 3 months). Nevertheless, the concept dev- 
eloped here can be used to obtain the “holy grail” of 
prediction. We would anticipate that with the appropriate 

training set, the method would also perform well at other 
time points after infarction, for example in the acute 
stage (less than 1 week). To increase the homogeneity of 
the group for this proof of concept study, we restricted 
the analysis to patients with infarcts in the anterior cir-
culation. Future studies involving other infarct territories 
will be required to assess whether this method of corre-
lating infarct extent and location will perform as well for 
other brain regions.  
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APPENDIX 

Maximum likelihood (ML) estimate of logistic regression 
and Iterative reweighted least squares (IRLS) 

When response variable y1, y2, …, yn are binary, taking 
on the values 0 and 1 with probabilities and 1 – π, re-
spectively, with expect value E{y} = π, covariates xij{i = 
1, 2, …, n; j = 1, 2,…, m} are also available, the logistic 
regression model would construct by a canonical link 
function 

1

log
1

m
T

j j
j

x
   
 

    
  β x     (A.1) 

( )

(
{ }

1

T

T

a

a

e
E

e





 



β x

β x
y

)
           (A.2) 

where β = [β1, β2, …,βm], x =[x1, x2,…xm]. Thus the 
probability distribution of y is 

1( ) (1 )yf y     y             (A.3) 

Since the yi observations are independent, their joint 
probability function is 
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It is often more convenient to work with the logarithm 
of the joint probability function to find the maximum 
likelihood estimate 
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If we substitute (A.2) to (A.5) and consider equation 
a1, we have 
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where xi is shorthand of [xi1, xi2, … xip] and L(α, β) re-
places h(y1, y2,…yn) to show explicitly that we now view 
this function as the likelihood function of the parameters 

to be estimated. Denote [1 ]T
i Z xi  and [ | ]γ β , 

we have 
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( ) log ( ) [ ( ) log(1 )]i
n

i i
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L y e
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    γZγ γZ   (A.7) 

Taylor’s series tells us that an analytic function like 
(A.7) can be approximated as  

0 0 0 0 21
( ) ( ) ( ) '( ) ( ) ''( )

2
    γ γ γ γ γ γ γ γ   

where γ0 is an estimated initial value of γ0. To maximize 
( )γ  we can differentiate with respect to γ and solve for 

γ 
0 0 0'( ) '( ) ( ) ''( ) 0   γ γ γ γ γ          (A.9) 
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            (A.10) 

This suggests that we can start with an initial γ0 and 
iteratively apply (A.10) until the algorithm reaches con-

vergence, at which point 0''( ) 0γ and (A.10) does not 

change. This is what called Newton optimization and in 
the linear modeling setting is a vector. Newton’s method 
has a generalization (Newton-Raphson) using the multi-
variate Taylor’s series. 
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where 
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 is the matrix of second derivates and 
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
γ

γ


is the vector of first derivates. 

The logistic log-likelihood for linear model becomes 
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where V is a diagonal matrix with element W(i, i) equal 
to (1 )i i  . We can plug these results into (A.11) 

0 1( ) (T T )  γ γ X VX X y π  
1 0 1( ) ( (T T  X VX X V Xγ V y π))        (A.15) 

1( )T T X VX X Vg  

where 0 1( )  g Xγ V y π . This process is called 

iteratively reweighted least squares (IRLS). 

0  (A.8) 
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