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Abstract 
The existence of nonzero solutions for a class of generalized variational inequalities is studied by fixed point 
index approach for multivalued mappings in finite  dimensional spaces and reflexive Banach spaces. Some 
new existence theorems of nonzero solutions for this class of generalized variational inequalities are estab-
lished. 
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1. Introduction 
 
Variational inequality theory with applications are an 
important part of nonlinear analysis and have been ap-
plied intensively to mechanics, differential equation, 
cybernetics, quantitative economics, optimization theory 
and nonlinear programming etc. (see [1-4]). 

Variational inequalities, generalized variational in-
equalities and generalized quasivariational inequalities 
were studied intensively in the last 30 years with topo-
logical method, variational method, semi-ordering me-
thod, fixed point method, minimax theorem of Ky Fan 
and KKM technique ([1-4]). In 1998, motivated by the 
paper [5], Zhu [6] studied a system of variational inequa-
lities involving the linear operators in reflexive  Banach 
spaces by using the coincidence degree theory due to 
Mawhin [7]. Some existence results of positive solutions 
for this system of variational inequalities in reflexive 
Banach spaces were proved. 

Let X  be a real Banach space, *X  its dual and (·, ·) 
the pair between *X  and X . Suppose that K  is a 
nonempty closed convex subset of X . 

Find u K∈ , 0u =/ , and ( )w g u∈  such that 

( , ) ( , ),Au v u w v u v K− ≥ − ∀ ∈        (1) 

where mapping *:A K X→  is nonlinear and 
*

: 2Xg K →  is a multi-valued mapping. 
The existence of nonzero solutions for variational in-

equalities is an important topic of variational inequality 
theory. [8] discussed the variational inequality (1) when 
A is coercive or monotone and g is set-contractive or 

upper semi-continuous. [9] considered the variational 
inequality (1) when A  is single-valued continuous and 
g is set-contractive. 

On the other hand, recently, under some different con-
ditions, [10,11] obtained some existence theorems of 
nonzero solutions for a class of generalized variational 
inequalities by fixed point index approach for mu l-
ti-valued mappings in reflexive Banach space. 

Based on the importance of studying the existence of 
nonzero solutions for variational inequalities, and motivated 
and inspired by recent research works in this field, in this 
paper, we discuss the existence of nonzero solutions for a 
class of generalized variational inequalities as follows: 

Find , 0u K u∈ ≠  such that 

( , ) ( ) ( )
( ( ), ) ( , ),

Au v u j v j u
g u v u f v u v K

− + −
≥ − + − ∀ ∈

     (2) 

where *, :A g K X→  are two nonlinear mapping and 
*f X∈ . 

A mapping *:A X X→  is called hemicontinuous at 

0x X∈  if for each y X∈ , 0 0( )nA t y Awx x∗+


 when 

0nt → + . A multivalued mapping :T
*

( ) 2XD T X⊂ →  
is said to be locally bounded in v if there exists a neigh-
bourhood V  of x  for each x X∈  such that the set 

( ( ))T V D T∩  is bounded in *X . Suppose that K  is a 
closed convex subset of X  with 0 K∈ . For such K , 
the recession cone rcK  of K  is defined by rcK =  
{ : , }w X v w K v K∈ + ∈ ∀ ∈ . It is easily seen that the 
recession cone is indeed a cone and we have that 
rcK = ∅/ . For a proper lower semicontinuous convex 
functional : { }j X R→ ∪ ∞  with (0) 0j =  and ( )j K ⊂ 

[0, )R+ = +∞ , in the virtue of [12], the limit 1lim ( )
t

j tw
t→+∞

= 
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( )j w∞  exists in { }R∪ ∞  for every w X∈  and j∞  
is also a lower semicontinuous convex functional with 

(0) 0j∞ =  and with the property that ( )j u v+ ≤  
( ) ( ), ,j u j v u v X∞+ ∀ ∈ . 
Suppose that K  is a closed convex subset of X  

and U  is an open subset of X  with KU U K= ∩ =/  
∅ . The closure and boundary of KU  relative to K  
are denoted by KU  and ( )KU∂  respectively. Assume 

that : 2K
KT U →  is an upper semicontinuous mapping 

with nonempty compact convex values and T  is also 
condensing, i.e., ( ( )) ( )T S Sα α<  where α  is the 
Kuratowski measure of noncompactness on X . If 

( )x T x∉  for ( )Kx U∈∂ , then the fixed point index, 
( , )Ki T U , is well defined(see[13]). 
Proposition 1[13] Let K  be a nonempty closed 

convex subset of real Banach space X  and U  be an 
open subset of X . Suppose that : 2K

KT U →  is an 
upper semicontinuous mapping with nonempty compact 
convex values and ( )x T x∉  for ( )Kx U∈∂ . Then the 
index, ( , )Ki T U , has the following properties: 

1) If ( , ) 0Ki T U =/ , then T  has a fixed point; 
2) For mapping 

0X  with constant value 0{ }x , if 

0 Kx U∈ , then 

0( , ) 1Ki X U = ; 
3) Let 1 2,U U  be two open subsets of X  with 

1 2U U∩ =∅ . 
If ( )x T x∉  when 1 2(( ) ) (( ) )K Kx U U∈∂ ∪∂ , then 

1 2 1 2( , ) ( , ) ( , )K K Ki T U U i T U i T U∪ = + ; 

4) Let : [0,1] 2K
KH U× → be an upper semicontinu- 

ous mapping with nonempty compact convex values and 
( ([0,1] )) ( )H Q Qα α× < whenever ( ) 0, KQ Q Uα = ⊂/ .  
If ( , )x H t x∉  for every [0,1], ( )Kt x U∈ ∈∂ , then 

( )( 1, , ) ( (0, ), )K Ki H U i H U⋅ = ⋅ . 

For every *q X∈ , let ( )U q  be the set of solutions 
in K  of the following variational inequality 

( , ) ( ) ( )
( , ) ( , ),

Au v u j v j u
q v u f v u v K

− + −
≥ − + − ∀ ∈

       (3) 

Define a mapping *: 2K
AK X → by 
*( ) : ( ), .AK q U q q X= ∈  

Obviously, ( )AK q = ∅  if and only if the variational 
inequality (3) has no solution in K . 
 
2. Nonzero Solutions in nR  
 
Lemma 1 Let X  be a  separable reflexive Banach 

space. Suppose that *:A X X→  is a bounded mono-
tone hemicontinuous mapping (i.e., for every bounded 
subset D  of X , ( )A D  is bounded) and 

: ( , ]j K → −∞ +∞  is a proper convex lower semicon-
tinuous functional. Assume that there exists 0v K∈ sa-
tisfying 

0 0,
inf [( ,lim ) ( ) ( )] 0

u u K
Au u v j u j v

→+∞ ∈
− + − >

‖‖
    (4) 

Then for any given *f X∈ there exists u X∈ such 
that 

( , ) ( ) ( )
( , ), .

Au v u j v j u
f v u v X

− + −
≥ − ∀ ∈

         (5) 

Proof. Without loss of generality, assume that 0f = , 

otherwise, set ( ) ( ) ( , )j v j v f v= − . Let { :rK x X= ∈  
}x r≤‖‖ . Because X  is a separable reflexive Banach 

space, for given r , there exists a closed convex sets 
sequences , 1,2, ,mK m = …  satisfying the following con-
ditions: 

)a  1 , 1, 2, ;r
m mK K K m+⊂ ⊂ = …  

)b  ,m mK X⊂  mX  is m -dimensional subspace of 
X ;  

)c  
1 mm
K

∞

=
 is dense in rK . 

First, we shall verify that for each m , there exists 
m mu K∈  such that 

( , ) ( ) ( ) 0, .m m m mAu v u j v j u v K− + − ≥ ∀ ∈   (6) 

Because mX  is a finite dimensional subspace (deno- 
ted its inner product by [.,.] ), there exists a linear conti-
nuous mapping *: mX Xπ →  such that ( , )g ω =  
[ , ]gπ ω  for all mKω∈ . Thus inequality (6) can be 
written 

[( ) , )]
( ) ( ), .m

Au u u v u
j v j u v K

π− + − −
≤ − ∀ ∈

          (7) 

Define a function ( ) : ( , ]m mJ v X → −∞ +∞  by 

( ),
( )

, \ .
m

m
m m

j v v K
J v

v X K
∈

=  +∞ ∈
 

Then inequality (7) can be written 

[( ) , )]
( ) ( ),m m m

Au u u v u
J v J u v K

π− + − −
≤ − ∀ ∈

        (8) 

which is equivalent to the equality 

( )
mJu P Au uπ= − +               (9) 

by [2,3], where mJP  is an approximate mapping of mJ . 
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Obviously, ( ) :
mJ m mP A I K Kπ− + →  is continuous. 

According to Brouwer's fixed point theorem (see [2,3]), 
there exists m mu K∈  satisfying the equality (9), that is, 

mu  is a solution of the variational inequality (6). 
Second, we shall verify that for each r , there exists 

r
ru K∈  such that 

( , ) ( ) ( ) 0, .r
r r rAu v u j v j u v K− + − ≥ ∀ ∈    (10) 

In fact, r
mK K⊂  and A  is a bounded mapping, 

which implies that there constant C such that 
mAu C≤‖‖ for 1, 2,m = … . Since X  is a reflexive and 

rK  is weakly closed, there exists a subsequence 
{ } { }mu uµ ⊂  such that r

wu uµ →  and r
ru K∈ . Because 

1 mm
K

∞

=
 is dense in rK , for any  given 0ε > , there 

exists 0 1 mm
u K

∞

=
∈


such that 0 .ru u ε− ≤‖‖ It then 

follows from (6) that 

0 0( , ) ( ) ( ).Au u u j u j uµ µ µ− ≤ −        (11) 

when µ is sufficiently large. Thus we have 

0 0

0

sup( ,

sup( , ) s

l

up( , )

s

im )

lim lim

up( ( ) ( ))lim .

r

r

Au u u

Au u u Au u u

j u j u C

µ µ
µ

µ µ µ
µ µ

µ
µ

ε

−

≤ − + −

≤ − + ⋅

 

Since j  is a lower semicontinuous function and ε  
is an arbitrary positive number, we have 

sup( , ) 0.lim rAu u uµ µ
µ

− ≤           (12) 

This together with A being a monotone hemiconti-
nuous mapping implies that 

inf ( , )

( , ), .

lim
r

r r

Au u v

Au u v v K

µ µµ
−

≥ − ∀ ∈
       (13) 

If 
1 mm

v K
∞

=
∈


, it then follows from (6) that 

( , ) ( ) ( )Au u v j v j uµ µ µ− ≤ −        (14) 

when µ  is sufficiently large. It thus follows from 
(13) that 

1

lim

lim

( , ) inf ( , )

inf ( ( ) ( ))

( ) ( ), .

r r

r mm

Au u v Au u v

j v j u

j v j u v K

µ µµ

µµ

∞
=

− ≤ −

≤ −

≤ − ∀ ∈ 

     (15) 

Because 
1 mm
K

∞

=
is dense in rK , the above in-

equality holds for all rv K∈ . therefore ru  is a solution 
of the variational inequality (10). 

New we shall verify that the variational inequality (5) 
has a solution. Taking 0v v=  in (10), we have 

0 0( , ) ( ) ( ) 0r r rAu u v j u j v− + − ≤       (16) 

and so it then follows from condition (4) that there ex-
ists constant C > 0 such that ru C≤‖‖ . Taking r > C 

then ru r<‖‖  and so ru  is an inner point of rB . 
Thus for any given Xω∈ , we have (1 ) rt u− +  

rt Bω∈ by taking (0,1)t∈  small enough. Let 
(1 ) rv t u tω= − +  in (10), then we obtain 

( , ) ( ( ) ( )) 0r r rt Au u t j j uω ω− + − ≥  

by j  being a convex lower semicontinuous function. 
Thus 

( , ) ( ) ( ) 0, .r r rAu u j j u Xω ω ω− + − ≥ ∀ ∈  

Therefore ru  is a solution of the variational inequality 
(5). 

Theorem 1 Let K  be a nonempty unbounded closed 
convex set in nX R=  with 0 K∈ . Suppose that 

*X X→  is a bounded monotone hemicontinuous map-
pingwith ( , ) 0( )Au u u K≥ ∀ ∈ and :j K → ( , ]−∞ +∞  is a 
bounded proper convex lowersemicontinuous functional 
with (0) 0j =  (i.e., for every bounded subset D  of 
K , ( )j D  is bounded). Give a continuous mapping 

*:g K X→ and *f X∈ . Assume 

a) 
0

( , ) ( )lim
u

Au u j u
u→

+
= +∞

‖‖ ‖‖
;  

b) there exists constant 0α ≥  such that 

1

( , ) ( ) ( )inf suplim li ( )m
u u

Au u j u g u u K
u uα α+→+∞ →+∞

+
> ∈

‖‖ ‖‖

‖‖

‖‖‖‖
; 

c) there exists a point 0 \{0}u rcK∈  such that 

0( , ) 0f u =/  
Then (2) has a nonzero solution. 
Proof. It is easy to see from condition (b) and Lemma 

1 that the variational inequality (3) has a solution in K  
for every *q X∈ . Define a mapping : 2K

AK g K →  
by 

( )( ) : ( ( )),A AK g u K g u u K= ∈  

Then AK g  is an upper semi-continuous mapping 
with nonempty compact convex values by [10, Lemma 
1]. Let { : }RK x K x R= ∈ ≤‖‖ . We shall verify that 

( , ) 1R
K Ai K g K = for large enough R and ( , )r

K Ai K g K  
0=  for small enough r . 
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Firstly, define a mapping by :[0,1] 2 ,R KH K× →  
( , ) ( ( ))AH t u tK g u= . It is easily seen that ( , )H t u  is an 

upper semicontinuous mapping with nonempty compact 
convex values. We claim that there exists large enough 
R such that ( , )u H t u∉ for all (0,1),t∈ ( )Ru K∈∂ . 
Otherwise, there exist two sequences { },{ }, [0,1],n n nt u t ∈  

0,n nt u= → +∞/ ‖‖ such that 

nu ∈ ( , ) ( ( ))n n n A nH t u t K g u=  or ( ( ))n
A n

n

u
K g u

t
∈ .  

Thus 

( ( ), ) ( ) ( )

( ( ), ) ( , ),

n n n

n n n

n n
n

n n

u u u
A v j v j

t t t
u u

g u v f v u K
t t

− + +

≥ − + − ∀ ∈
    (17) 

Letting 0v =  and denoting n
n

n

u
z

u
=
‖‖

in (17), we 

obtain from (17) that 

1 1( ) ( ( ), ) ( ) ( )

( )
( , ) ( ) ( , )

n n n n n

n n n n n

n n
n n n

nn

t u u t u
A j

u t t u t
g u t

t z f z
uu

α α

α α
α

+ ++

≤ +

‖‖‖‖

‖‖‖‖

     (18) 

Denote n
n

n

u
y K

t
= ∈ . Then ny → +∞‖‖ .We can ob-

tain from (18) that 

1

( , ) ( ) ( )

( )
.

n n n n
n

n n n

n

n n

Ay y j y g u ft
y u y

g u f
u y

α
α α α

α α

+

+
≤ +

≤ +

‖‖

‖‖‖‖‖‖

‖‖

‖‖‖‖

‖‖

‖‖
   (19) 

Hence we have 

1

( , ) ( ) ( )inf sulim l pim
u u

Au u j u g u
u uα α+→+∞ →+∞

+
≤

‖‖ ‖‖

‖‖

‖‖‖‖
 

which contradicts to condition (b). Therefore 

( , ) ( (1, ), )

( (0, ), )
ˆ(0, ) 1

R R
K A K

R
K

R
K

i K g K i H K
i H K

i K

= ⋅

= ⋅

= =

        (20) 

by Proposition 1(4) and (2). 
Secondly, we shall verify that ( , ) 0r

K Ai K g K =  for 
small enough r ( 1r < ). In fact, there exist constants 

1 2, , 0C C M >  from the boundedness of j , locally 
boundedness of A  and condition (b) such that for all 

1u K∈ , we have 

0 1 2| ( ) ( ) | ( ) ,j u u j u C g u C+ − ≤ ≤‖‖,  

0 2 0

0 0

( ( ), ) | ,
| ( , ) |

g u u C u Au M
Au u M u

≤ ≤

≤

‖‖‖,‖

‖‖
      (21) 

Since 0( , ) 0f u =/ , let 0( , ) 0f u < . Take N  large 
enough such that 

0 1 2 0(1 )( , ) ( )N f u C C M u− > + +     (22) 

Define a mapping by [0,1] 2 ( ,, )r KH K H t u× → =  
( ( ) )AK g u tNf− . Then H  is an upper semi- continuous 

mapping with nonempty compact convex values. We 
claim that there exists a small enough r  such that 

( , )u H t u∉  for all ( ), [0,1]ru K t∈∂ ∈ . Otherwise, there 
exist sequences { },{ }, [0,1],n n nt u t ∈  

( ), 0r
n nu K u∈∂ →‖‖ such that ( , )n n nu H t u∈ =  
( ( ) )A n nK g u t Nf− . Thus 

( , ) ( ) ( )
( ( ) , ) ( , ),

n n n

n n n n

Au v u j v j u
g u Nt f v u f v u v K

− + −
≥ − − + − ∀ ∈

 

Taking 0, n
n

n

u
v z

u
= =

‖‖
, we have 

( )1 ( , )

( ( ), ) (1 )( , )

n
n n

n n

n n n n

j u
Au u

u u
g u z t N f z

+

≤ + −
‖‖‖‖  

Since 
( , ) ( )n n n

n

Au u j u
u
+

→ +∞
‖‖

 and 

2

( ( ), ) (1 )( , )
( ) (1 )

(1 ) ,

n n n n

n

g u z t N f z
g u N f

C N f

+ −

≤ + +

≤ + +

‖‖‖‖

‖‖

 

we obtain a contradiction. Therefore ( , )r
K Ai K g K =  

( (0, ), ) ( (1, ), )r r
K Ki H K i H K⋅ = ⋅ by Proposition 1 (4). If 

( (1, ), ) 0r
Ki H K⋅ =/ , then the mapping (1, ) : 2KH K⋅ →  

has a fixed point u  in rK by Proposition 1(1), i.e., 
(1, ) ( ( ) )Au H u K g u Nf∈ = − . 

Thus 
( , ) ( ) ( )

( ( ) , ) ( , ),
Au v u j v j u

g u Nf v u f v u v K
− + −

≥ − − + − ∀ ∈
 

Taking 0v u u= + , we have 

0 0

0 0

( , ) ( ) ( )
( ( ), ) (1 )( , )

Au u j u u j u
g u u N f u
+ + −

≥ + −
      (23) 

Hence 

0

0 0 0

0 1 2 0 2 0 1

(1 )( , )
( , ) ( ) ( ) ( ( ), )

( )

N f u
Au u j u u j u g u u

M u C C u C M u C

−
≤ + + − −

≤ + + = + +‖‖‖‖‖‖
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by (21) and (23). That contradicts to (22). Therefore, 
( (1, ), ) 0r

Ki H K⋅ =  and then ( , ) 0r
K AK g Ki = . 

It follows from Proposition 1(3) that ( ,K Ai K g  

\ ) 1R rK K = . Therefore there exists a fixed point 

\R ru K K∈  which is a nonzero solution of (2). 
 

3. Nonzero Solutions in Reflexive Banach  
  Spaces 

 
Theorem 2 Let X  be a reflexive Banach space and 
K X⊂ a nonempty unbounded closed convex set with 
0 K∈ . Suppose that *:A X X→  is a bounded mono-
tone hemicontinuous mapping with ( , ) 0Au u ≥  for 
u K∈  and : ( , ]j K → −∞ +∞  is a bounded convex 
lower semicontinuous functional with (0) 0j = . Assume 

that *:g K X→  is continuous from the weak topology 

on X  to the strong topology on *X . Give *f X∈ . 
The following conditions are assumed to 

be satisfied 
(a) 0( , ) 0f u =/  for some 0 \{0}u rcK∈ ; 
(b) there constant 0α ≥  such that 

1

( , ) ( ) ( )inf suplim li ( )m
u u

Au u j u g u u K
u uα α+→+∞ →+∞

+
> ∈

‖‖ ‖‖

‖‖

‖‖‖‖
; 

(c) 
0

infim ( ) 0l
w

s

s
u

j u
→

> . 

Then (2) has a nonzero solution. 

Proof. It is easily seen that
0

( , ) ( )lim
u

A u u j u
u→

+
=

‖‖ ‖‖
 

+∞  by the condition (c). Let F X⊂  be a finite di-
mensional subspace containing 0u . We shall show that 
all conditions in Theorem 1 are satisfied on space F . 

Denote FK K F= ∩  which is a nonempty un-

bounded closed convex set. Let :Fj F X→  be an in-

jective mapping and * * *:Fj X F→  its dual mapping. 

Denote * * *( | ) : , ( | ) :F F F F F FA j A F F F g j g K K= → =  
*F→ . We know that * ,F F FA j Aj= *

F F Fg j gj= . Then, 

,F FA g  are hemicontinuous and continuous respective- 
ly. 

For 1 2, Fx x K∈ , we have 
1 2 1 2

* *
1 2 1 2

1 2 1 2

1 2 1 2

( ( ) ( ), )

( ( ) ( ), )
( , ( ))
( , ) 0

F F

F F

F

A x A x x x
j A x j A x x x
Ax Ax j x x
Ax Ax x x

− −

= − −
= − −
= − − ≥

 

by the monotony of A . This means that FA  is mono-

tone. On the other hand, * *
Fj f F∈ and *

0( , )Fj f u = 

0 0( , ) ( , ) 0Ff j u f u= =/ . Similarly, we have 

1

( , ) ( ) ( )
inf sup

(

lim lim

).

F F

u u

F

A u u j u g u
u u

u K

α α+→+∞ →+∞

+
>

∈

‖‖ ‖‖

‖‖

‖‖‖‖  

Therefore all conditions in Theorem 1 are satisfied on 
space F  and so there exists , 0F F Fu K u∈ =/  such 
that 

*

( ( ), ) ( ) ( )

( ( ), ) ( , ),
F F F F

F F F F F F

A u v u j v j u
g u v u j f v u v K

− + −

≥ − + − ∀ ∈
 

It yields that 

( ( ), ) ( ) ( )
( ( ), ) ( , ),
F F F

F F F F

A u v u j v j u
g u v u f v u v K

− + −
≥ − + − ∀ ∈

 

Taking 0v = , we get 

( , ) ( ) ( ( ), ) ( , )F F F F F FAu u j u g u u f u+ ≤ + . Hence 

1

( , ) ( ) ( )
.F F F F

F F F

Au u j u g u f
u u uα α α+

+
≤ +
‖‖ ‖‖

‖‖‖‖‖‖
 

This together with condition (b) implies that there ex-
ists a constant M > 0 such that Fu M≤‖‖  for all finite 
dimensional subspace F containing 0u . Since X  is 
reflexive and K  is weakly closed, with a similar argu-
ment to that in the proof of Theorem 2 in [10] (also see 
[8]), we shall show that there exists u K′∈  such that 
for every finite dimensional subspace F containing 

0u , u′ is in the weak closure of the set 
1

1

{ }F F
F F

V u
⊂

=


 

where 1F  is a finite dimensional subspace in X . 

In fact, since FV  is bounded, we know that ( )w
FV  

(the weak closure of the set FV ) is weakly compact. 

On the other hand, let 1 2, , , mF F F be finite dimen-
sional subspaces containing 0u . Define ( ) :mF =  

1 2{ , , , }mspan F F F . Then ( )mF  containing 0u  is a 

finite dimensional subspace. Hence, 
1

i

m

F
i

V
=

=


 

1 1
( )

1 11

( { }) { }
i m

m

F F
i F F F F

u u
= ⊂ ⊂

= = ∅/
  

, then ( )w
F

F

V =/


 

∅ . That is to say, there exists u K′∈  such that for 
every finite dimensional subspace F  containing 0u , 
u′ is in the weak closure of the set 

1 1
{ }F F F FV u⊂= ∪ . 

Now let v K∈  and F ′ a finite dimensional subspace 
of X which contains 0u  and v . Since u′  belongs to 
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the weak closure of the set 
1

1

{ }F F
F F

V u′
′⊂

=


. We may 

find a sequence { }Fu
α

 in 
FV ′

 such that 
w

Fu u
α
→ ′ . 

However, Fu
α

 satisfies the following inequality 

( , ) ( ) ( )

( ( ), ) ( , )
F F F

F F F

Au v u j v j u

g u v u f v u
α α α

α α α

− + −

≥ − + −
    (24) 

The monotony of A implies that 
( , ) ( ) ( )

( ( ), ) ( , )
F F

F F F

Av v u j v j u

g u v u f v u
α α

α α α

− + −

≥ − + −
 

Letting 
w

Fu u
α

′→  yields that 

( , ) ( ) ( )
( ( ), ) ( , ),

Av v u j v j u
g u v u f v u v K
′ ′− + −
′ ′ ′≥ − + − ∀ ∈

 

Thus 
( , ) ( ) ( )

( ( ), ) ( , ),
Au v u j v j u

g u v u f v u v K
′ ′ ′− + −

′ ′ ′≥ − + − ∀ ∈
 

by Minty’s Theorem [2,3]. We claim that 0u′ =/ . 

Otherwise, 0
w

Fu
α
→ . Taking 0v =  in (24) yields that 

( ) ( , ) ( ( ), ) ( , )

( ( ), ) ( , )
F F F F F F

F F F

j u Au u g u u f u

g u u f u
α α α α α α

α α α

≤ − + +

≤ +
 

The right side of the above inequality tends to 0, 
which contradicts to the condition (c). Therefore u′  is 
a nonzero solution of (2). 
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