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Abstract

In this article, we discuss the structure of reflective function of the higher dimensional differential systems
and apply the results to study the existence of periodic solutions of these systems.
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1. Introduction

As we know, to study the property of the solutions of
differential system
x'=X(t,x) (1)

is very important not only for the theory of ordinary
differential equation but also for practical reasons. If
X(t+2w,x)=X(t,x) (@ is a positive constant), to
study the solutions’ behavior of (1), we could use, as
introduced in [1], the Poincare mapping. But it is very
difficult to find the Poincare mapping for many sys-
tems which cannot be integrated in quadratures. In the
1980’s the Russian mathematician Mironenko [2] first
established the theory of reflective functions (RF).
Since then a quite new method to study (1) has been
found.

In the present section, we introduce the concept of the
reflective function, which will be used throughout the
rest of this article.

Now consider the system (1) with a continuously
differentiable right-hand side and with a general solu-
tiony (t;t,,x,). For each such system, the reflective

function (RF) of (1) is defined as F(¢,x(¢)) = w(—t;t,x).

Then for any solution x(#) of (1), we have F(¢,x(t)) =
:x(—t) . If system (1) is 2w — periodic with respect tof,
and F(t,x) is its RF, then F(-w,x)=w(w;-o,x) is
the Poincare [1-2] mapping of (1) over the period
[~w,]. So, for any solution x(#)of (1) defined on
[~w,®], it will be 2 @ --periodic if and only if x(—®) is
a fixed point of the Poincare mapping T(x) = F(-w,x) .
A function F'(¢,x) is a reflective function of system (1)
if and only if it is a solution of the partial differential
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equation (called a basic relation, BR)
F +F.X(t,x)+X(~t,x)=0 ()

with the initial condition F'(0,x)=x . It implies that for
non-integrable periodic systems we also can find out its
Poincare mapping. If, for example,

X, x)+ X (-t,x)=0,then T(x)=x.

If F(t,x) is the RF of (1), then it is also the RF of the
system

x'=X(t,x)+ F'R(t,x) - R(~t, F(t,%)) »
where R(¢,x)1s an arbitrary vector function such that the
solutions of the above systems are uniquely determined
by their initial conditions. Therefore, all these
2 o —periodic systems have a common Poincare mapping
over the period f @, ® ], and the behavior of the peri-
odic solutions of these systems are the same.

To find out the reflective function is very important
for studying the qualitative behavior of solutions of dif-
ferential systems. The literatures [5-8] have discussed the
structure of the reflective function of some second order
quadric systems and linear systems and obtained many
good results.

Now, we consider the higher dimensional polynomial
differential system

X'=p +p,y+pz=Pt,x,y,2)
V' =4+ gy a2 +q,y" + 452 +4,2" = 0(t,x,,2) (3)
z'=p +r2y+r32+r4y2 +r5yz+réz2 =R(t,x,y,z)

where

P =p,(t,x),q, =q,(t,x), r; =r,(1,x)

(i=12,3j=12,..,6)
are continuously differentiable functions in R and
p22 + p32 #(0 (in some deleted neighborhood of #=0
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and |¢| being small enough, p;+p; #0 is different
from zero) , and there exists a unique solution for the
initial value problem of (3). And suppose that
F(t9 x’ y’ Z) = (F; (t9 x’ y’ Z)’ F2 (t9 x’ y’ Z)’ F; (t5 x’ y’ Z))T is
the RF of (3).

In this paper, we will discuss the structure of
F(t,x,y,2z) (i=2,3) whenF(t,x,y,z) = f(t,x) . At the
same time, we obtain the good results that
F(t,x,3,2) = [,(t.0) + f,(t.x)y + f(t.2)z (i=2.3)
The obtained results are used for research of problems of
existence of periodic solution of the system (3) and es-
tablish the sufficient conditions under which the first
component of the solution of (3) is even function.

In the following, we will denote

1_71' = pi(_tax); ‘?,- = qj(_t"x); 7/ = rj(t,x); F; = F;'(t5x’y’z)’
i=1,2,3,7=1,2,...,6 . The notation p,(t,x)#0 means
that, in some deleted neighborhood of# =0 and |7 | being
small enough, p (¢,x) is different from zero,

DA = a—A+a—"lP(t,x,y,ZHa—AQ(t,x,y,Z)Jra—AR(f:xsy’z)
ot ox dy 0z

2. Main Results

Without loss of generality, we suppose that

f(t,x)=x. Otherwise, we take the transformation
s=ftx), n=y.¢=z .

Now, let’s consider the system (3)

Lemma 1. For the system (3), suppose that F; =x.
Then

p(t,x)=0,i=1,2,3. “
Proof. Using the relation (2), we get
P(t,%,y,2) + P(~1,x,F,,F;) = 0
ie.
P1+171+p2y+p3z+1_?2F2+ﬁ3F3:0. %)

Puttingz =0, we get

p] (O,x)+p2(0,x)y+p3(0,x)z = 0’ VX,y,Z N
It implies that the relation (4) is valid.
In the following discussion, we always assume (4)
holds without further mention.
Casel. p,#0.
From (5), we get
F3 = /11 + /12Fz > (6)
where

ptp Py P
A =-t— -y -Tr= A+ Ay + Az,
P P P
h=-2.
P
Differentiating relation (6) respectto ¢ implies
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A0+A1F2+A2Fzzzo7 ™

where

Ay =D =G, + 7 + 4 (1 = 4q,) + A7 (7 — 4 q,)

=day tapytapz+ a04y2 +a05yZ+a06ZZ;

A =DA = A4q, +1+ 4,5 = 4,4;) + A (55— 4,45)

+2/11ﬂ*z (?6 _2256) =a, ta,y+a;z; ’

4, = 4,(t,x)=-A4q, +7, +12(75 _/12‘75)"'/122(76 _12676)’

In which

Ay = ilin +2’l‘lxp] +/112q1 +/113r1 +71_1qu +

+A'll(73_ﬂ'253)+(76 _lzq_s)ilzl;

Ay = /11'2r +ﬂ1’2xp2 +ﬂ1lzxp1 + 429, + A +

+/112(’73_ﬂ'z‘73)+2(76 _lzqs)jﬂ;{n;

oy = Aoy + Ay Py + Aoy Py + Aady + Aoy +
+ 45 (75 = 4,q3) + 2(r — ,9) Ay A
Aoy = Aoy Dy + Aoy + Aoty + (T = A0 A%
Aos = Aoy Py + Ay Do + Auadls + ATy + 27 = 20G) Ay s
Aoy = Aoz D3+ Ay + Aot + (T = G ) s
= Aoy + 2 P+ = 20y + A (B = 20 ) +
+ 24, (15 = 445) + 2(r = 4,q) A A
Ay = Ay Dy + Ay (75 = 1) + 2(7 = 20 ) A
Ay = A Dy + Ay (7 = 20G5) +2(7 = 4G ) s

Lemma 2.LetF, = x, 4, #0 and 1in01% (i=12,..,6)
2

. a,; . Qy, ta
exist. Then lim—L =0 (j=1,3,6), lim—2—1=0,
=0 4 -0 A
2 2
lim 2 T i ST
1—0 A2 e , ’

Proof. Using the relation (7), we have
2 2
Qo + Y + A2 + Ay )" + g5 Y2+ dgeZ”
AZ

lim

t—0

lim a,ta,y+a,z

t—0

F, + linol F? =0,
t—
2

As F,(0,x,y,z)=y , it follows that the results of
Lemma 2 are true.

Theorem 1. Let the conditions of Lemma 1 and

Lemma 2 satisfy and 1irrolai+ 2>(0.Then

E=fit,0)+ f(.0)y + f3(6,0)z ((=2,3).
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Proof. AS A4, # 0. From (7), it follows

F22 - _ Ao ';lez ) F; _ Aj‘go + Alz ;12’240’42 F, (8)
Differentiating relation (7) respect to ¢ implies

DA, + DAF, + DA,F} — AQ(~t,x,F,,F,)
—24,0(-t,x,F,,F,)F, =0.

Substituting (6) into the above, we get

B, +B/F, + B,F,” + B,F,” =0, )
where

B, =DA,— A, B =DA—-Au, -24,u,

B, =DA4, - A, 24,1, B,=-2A4,u,,

in which

W=+ Gh QA =T+ Ty + Gk + 2 A,
Hy =Ty + G5k + Gy

Substituting (8) into (9), we have

C,+CF, =0, (10)

where

A4
CozBO—BQiHB3 1o
4 4,

2
2

A A2 — 4,4
C,:Bl—Bz—1+B3‘—124°2.
/42

1. IfC, =0, from (10) follows C,=0. By simple
computation, we obtain

A A
Di:M_I_zﬂzi‘Hl;Aozla (11)

4, 4 4, 4,

A A A° A
DL =2p — L+ p, (—-2-2). 12
LS 2T (12)

A A
Let A=(—1)*-4=2 Using (11) (12) we get
(A) 4 g(1)(12)weg

2

A
DA=2(p, =~ 1)A. (13)

2

Since

A A, 1
A=) -4 =—((a, +a,y+a,z) -
/42 142 1422 11 12 13

2 2
44,(ay, +ay,y+anz+ay,y +ayz+az))

=d +d,y+d,z+d,y’ +d,yz+d,z’

= d4(y+iz+i)2 +W,
2d, 2d,

where
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/4 :ﬁ[(4a’4d6 -dz +2dd, -d,d,)z+4dd, —d,’],

4

1 1
d, = ?(a“z —44,a,).d, = ?(2‘1116’12 —44,ay,),

2

1 1
dy = T(zauam —44,ay),d, = ?(alzz —44,a,,),

2 2

1 1
ds = ?(261136112 —44,a5),d; = ?(alsz —44,a,5).

2 2

By Lemma 2 we get
lirr01(4d4d6 -d)=0, ling(3al3al4 —-d,d;)=0,
t— t—
lirr(]1(4d4dl -d,*)=0,
thus, ling W(t,x,z)=0. Inthe identity (13) taking
t—

d
s, . We obtain

= = — A
y=¢ 2, )

W, +W.P(t,x,4)+ W.O(t,x,4,2) =

W(Al(t,x,(é,z)

A, (t,x) w5 (8,%) = 1, (1, %, 4, 2)).

By the uniqueness of solution of initial problem of li-
near partial differential equation, we getW(¢,x,z)=0.
Therefore

d
A=d,(y+——z+ a,

)2
2d,  2d,

Using the relation (7), we obtain

a,ta,y+a,z 1
F =_2u 12 13 +—ld +
2 24, 2\/ (v

=6 x)+ [, %)y + [ (t, %)z
By the relation (6), we get

B =h+4LF, = f,6x)+ f(6x)y + f5(6,x)z.

d; _
2d,

+ i)
2d,

2" If C, #0.From (10) follows F, = —%. By the

1
express of 4,,B, (i=0,1,2,j=0,1,2,3), we know that
C, is a quadratic polynomial respect of y,z, C, isa
cubic polynomial respect to y,z. Substituting F, =
-C,/C, into relation (7), we get C,(Cy4,—C4,)=
4,C)7 . It implies that C,is divided by C, or 4,,
3
and F, = ) f,.(t,x)y'z’, substituting it into (7) and
i+j=0
equating the coefficients of like powers of y and z im-
plies f,;(#,x) =0,i+ j >1. Thus,
F; =f“(t,x)+fl-2(t,x)y+f,-3(t,x)z, i=2,3.
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Summarizing the above, the proof is completed.
Obviously, from the relation (7) implies
Theorem 2. Let

F=x,p(0,x)=0(i=12,3), 4,=0, 4, #0.
Then

2 2
F = _i _ Gy T apYtapztayy +ayyzZ+ gz
2 = - >
4, a, ta,yta;z
Fo= 2+ AF,

Case2. p,(t,x)=0,p, #0.
Applying identity (5) yields

p+tp P
F,=—"——"-2y=(+(,y,
D, P,
s
where ¢, =-27P o = P2
D> P>

Differentiating this identity respect to ¢ implies
M, +MF,+M,F’ =0,
where

M, =D+, 0)+q + 4, F, +q,F =

mm +m02y+m03z+m04y2 +m05yz+m0622,

M, =q,+qF, =m, +m,y, M, =q,,

My =&, + 80 P+t + G+ 6 + 008

Moy = 1.0y + o Py + 60 + 6o + 865 + 23,6605
My = Cou Py + 6284 + 006075

My = &,q5, Mys = G545, Myg = Eqs
my, =q; + 458, My =qsG,.
Similarly, we obtain the following conclusion:

Lemma 3. Let p,=0,p,#0,q, #0, F, =x and

lim@ (i=12,..,5 and limé exist. Then

t—>0 q6 =0 pz

omy, . +p, .

lim—L =0 (j=1,2,4), hmM =0, 11m¥ =-1
=0 g =0 p, =0 p,

lim Moy +11, 0, limw =0, lim% =-1.

t—>0 qs t—0 q t—>0 qs

Theorem 3. Let the conditions of Lemma 1 and
Lemma 3 satisfy. Then

F, =§1(Z,x)+.§2(t,x)y,
Fo= [, (6,x)+ [ (6, x)y + f1;(6,%)z.
Theorem 4. Let
p,(0,x)=0(@=12),4,(t,x) =0, ¢,(t,x)=0
) 5 , Then
m +m, #0,F =x
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P; = gl(f»x)+§z(f,x)y,

2
Mg Mg Y+ Mg Z + My, VA My Yz

F; =
my +m,y

Theorem 5. For the system (3), if the following con-
ditions satisfy

Pt D+ DS+ PS5 =0, py + Dy fo + D3 f5, =0,

D3+ DSy +P3f3 =0, £,,(0,x) =0, f5,(0,x) =0,

f;lt] [fz?} (fzzj [f23J [Q(_taxaleﬂfn)j
N el VR I~ o q, + n+

S S S S R(=t,%, 115 f31)

-0,

fziz: f2:3z]+[f2:2x fztnjpl +[f2:1xp2 fzjup3J+
S S Sow i fPy foups

S f23j[q2 %J"—[Q;, sz -0
fo S\ R, R (1,3,0,0)

j;ZXPZ ﬂsxp3j+[ﬁz fzzj(‘b %J_’_
fsyzxpz fsysxps So S )\noo

7, @Mﬁ ﬁ}{&ﬁ@ &m@}ﬂ
7 Lo 3) \Snfali fafuli)

lez)r le3xj(p3J+(f22 f23j[‘15j+
ﬂzx ‘f;}x b, S Su)\ 1
2q, [ S + A5 Sis + [ S22) + 246 12 /s j

=0,
274f‘22‘f23 + 75 (f‘22f;3 + ~f23f.:52 ) + 276ﬂ2ﬂ3

fzz f23 j(]_pzz .723 J _ (/[22 (0,x) f23 o, x)] - (1 OJ
f32 f33 J?32 J?33 f32 (0’ x) f33 (O’ x) 0 1)
X

Then F' =| f,, + f,,¥+ f»,z | is the RF of system (3).
S+ fay+ [z

Besides this, if the system (3) is 2o --periodic with re-
spect to ¢, then its solution (x(¢), y(¢),z(¢)) defined on

the interval [-w,®] with initial condition (x(-w),
y(-m),z(-w)) = y 1is 2 @ --periodic if and only if
F(-o,%) = 1.

Proof. By checkout of the BR it is proved that the
function  F =(x, f5, + fooV + fosZ fo1 + [y + fis2)| s
the RF of system (3). At this moment, the Poincare map-
ping of periodic system (3) is 7(x,y,z)= F(-w,x,y,
z). By the previous introduction the assertions of the

present theorem is hold. The proof is finished.

Under the hypotheses of Theorem 5, the first compo-
nent of solution of system (3) is even function.

Example: Differential system
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x'=(1-e™ (1-x"sint))y—xzsint,
y'=1ycost(x"sin® 1+x’ —1)-Lzx* coste™' (1+sint +x’ sin’ £)
+y*(3x*sint —x’sin® £) + yze ™ (x* sin” t - 2xsin?),

sint

z'=1Lyx* coste™ (1-sint+x’ sin* 1) + L zcos#(1-x" —x* sin’ 1)

sint

—y*(x°sin” t—4x’ sint)e™ — yz(3x* sint —x” sin’ £)

has RF

X

F(t,x,y,z)=| e™(1-x'sint)y+x’zsint

—sint

~x'ysint+e™™ (14 x" sint)z

Since this system is a 2 z --periodic system, and
F(-m,x,,z)=(x,y,z)", by Theorem 5, all the solutions
of the considered system defined [—7, 7] are2 7 --periodic.
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