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Abstract 

In this paper, a modified variation of the Limited SQP method is presented for constrained optimization. This 
method possesses not only the information of gradient but also the information of function value. Moreover, 
the proposed method requires no more function or derivative evaluations and hardly more storage or arith-
metic operations. Under suitable conditions, the global convergence is established. 
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1. Introduction 
 
Consider the constrained optimization problem  
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where RRghf n
ji :,,  are twice continuously diffe-

rentiable, },,,2,1{ mE   0},,,2,1{  llmmmI   

is an integer. Let the Lagrangian function be defined by  

)()()(),,( xhxgxfxL TT          (2) 

where  and   are multipliers. Obviously, the La-

grangian function L  is a twice continuously differenti-
able function. Let S  be the feasible point set of the 

problem (1). We define I  to be the set of all the sub-
scripts of those inequality constraints which are active 

at x , i.e., }.0)(|{  xgandIiiI i  
It is well known that the SQP methods for solving 

twice continuously differentiable nonlinear programming 
problems, are essentially Newton-type methods for find-
ing Kuhn-Tucher points of nonlinear programming 
problems. These years, the SQP methods have been in 
vogue [1-8]: Powell [5] gave the BFGS-Newton-SQP 
method for the nonlinearly constrained optimization. He 
gave some sufficient conditions, under which SQP me-
thod would yield 2-step Q-superlinear convergence rate 
(assuming convergence) but did not show that his mod-

ified BFGS method satisfied these conditions. Coleman 
and Conn [2] gave a new local convergence qua-
si-Newton-SQP method for the equality constrained non-
linear programming problems. The local 2-step 
Q-superlinear convergence was established. Sun [6] 
proposed quasi -Newton-SQP method for general 1LC  
constrained problems. He presented the locally conver-
gent sufficient conditions and superlinear convergent 
sufficient conditions. But he did not prove whether the 
modified BFGS-quasi-Newton-SQP method satisfies the 
sufficient conditions or not. We know that, the BFGS 
update exploits only the gradient information, while the 
information of function values of the Lagrangian func-
tion (2) available is neglected. 

If nRx  holds, then the problem (1) is called un-
constrained optimization problem (UNP). There are ma- 
ny methods [9-13] for the UNP, where the BFGS method 
is one of the most effective quasi-Newton method. The 
normal BFGS update exploits only the gradient informa-
tion, while the information of function values available is 
neglected for UNP too. These years, lots of modified 
BFGS methods (see [14-19]) have been proposed for 
UNP. Especially, many efficient attempts have been 
made to modify the usual quasi-Newton methods using 
both the gradient and function values information (e.g. 
[19,20]). Lately, in order to get a higher order accuracy 
in approximating the second curvature of the objective 
function, Wei, Yu, Yuan, and Lian [18] proposed a new 
BFGS-type method for UNP, and the reported numerical 
results show that the average performance is better than 
that of the standard BFGS method. The superlinear con-
vergence of this modified has been established for un-
iformly convex function. Its global convergence is estab-
lished by Wei, Li, and Qi [20]. Motivated by their ideas, 
Yuan and Wei [21] presented a modified BFGS method 
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which can ensure that the update matrix are positive de-
finite for the general convex functions. Moreover, the 
global convergence is proved for the general convex 
functions. 

The limited memory BFGS (L-BFGS) method (see 
[22]) is an adaptation of the BFGS method for 
large-scale problems. The implementation is almost 
identical to that of the standard BFGS method, the only 
difference is that the inverse Hessian approximation is 
not formed explicitly, but defined by a small number of 
BFGS updates. It is often provided a fast rate of linear 
convergence, and requires minimal storage. 

Inspired by the modified method of [21], we combine 
this technique and the limited memory technique, and 
give a limited SQP method for constrained optimization. 
The global convergence of the proposed method will be 
established for generally convex function. The major 
contribution of this paper is an extension of, based on the 
basic of the method in [21], the method for the UNP to 
constrained optimization problems. Unlike the standard 
SQP method, a distinguishing feature of our proposed 
method is that a triple },,{ 

iii Ays  being stored, where 

1i i is x x  , ,)()( 1 iiixixi sAzLzLy 
   1iz    

1 1 1( , , )i i ix     , ),,( iiii xz  , i  and i  are the 

multipliers which are according to the Lagrangian objec-
tive function at ix , while 1i  and 1i  are the mul-

tipliers which are according to the Lagrangian objective 

function at 1ix , and 
iA  is a scalar related to Lagran-

gian function value. Moreover, a limited memory SQP 
method is proposed. Compared with the standard SQP 
method, the presented method requires no more function 
or derivative evaluations, and hardly more storage or 
arithmetic operations. 

This paper is organized as follows. In the next section, 
we briefly review some modified method and the L-BFGS 
method for UNP. In Section 3, we describe the modified 
limited memory SQP algorithm for (2). The global con-
vergence will be established in Section 4. In the last sec-
tion, we give a conclusion. Throughout this paper, ||||   

denotes the Euclidean norm of vectors or matrix. 
 

2. Modified BFGS Update and the L-BFGS 
Update for UNP 
 

We will state the modified BFGS update and the 
L-BFGS update for UNP in the following subsections, 
respectively. 
 
2.1. Modified BFGS Update 
 
Quasi-Newton methods for solving UNP often need to 
update the iterate matrix kB . In tradition, }{ kB satisfies 

the following quasi -Newton equation:  

kkk SB 1                 (3) 

where kkk xxS  1 , )()( 1 kkk xfxf   .The very 

famous update kB is the BFGS formula  
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Let kH  be the inverse of kB , then the inverse up-

date formula of (4) method is represented as 
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    (5) 

which is the dual form of the DFP  update formula 
in the sense that kk BH  , 11   kk BH , and kk ys  . 

It has been shown that the BFGS method is the most ef-
fective in quasi-Newton methods from computation point 
of view. The authors have studied the convergence 
of f and its characterizations for convex minimization 

[23-27]. Our pioneers made great efforts in order to find 
a quasi-Newton method which not only possess global 
convergence but also is superior than the BFGS method 
from the computation point of view [15-17,20,28-31]. 
For general functions, it is now known that the BFGS 
method may fail for non-convex functions with inexact 
line search [32], Mascarenhas [33] showed that the non-
convergence of the standard BFGS method even with 
exact line search. In order to obtain a global convergence 
of BFGS method without convexity assumption on the 
objective function, Li and Fukushima [15,16] made a 
slight modification to the standard BFGS method. Now 
we state their work [15] simply. Li and Fukushima (see 
[15]) advised a new quasi-Newton equation with the fol-
lowing form 

  1
1 kkk SB  , where ,1

kkkkk Sgt   

0kt  is determined by }0,
||||

max{1
2

k

k
T
k

k
S

S
t


 . Un-

der appropriate conditions, these two methods [15,16] 
are globally and superlinearly convergent for nonconvex 
minimization problems. 

In order to get a better approximation of the objective 
function Hessian matrix, Wei, Yu, Yuan, and Lian (see 
[18]) also proposed a new quasi-Newton equation: 

,)3()2( 2
1 kkkkkk SASB  
  where  
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Then the new BFGS update formula is  
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Note that this quasi-Newton formula (6) contains both 
gradient and function value information at the current 
and the previous step. This modified BFGS update for-
mula differs from the standard BFGS update, and a 

higher order approximation of )(2 xf  can be obtained 

(see [18,20]). 
It is well known that the matrix kB  are very impor-

tant for convergence if they are positive definite [24,25]. 

It is not difficult to see that the condition 02 
k

T
kS   

can ensure that the update matrix )2(1kB  from (6) in-

herits the positive definiteness of )2(kB . However this 

condition can be obtained only under the objective func-
tion is uniformly convex. If f  is a general convex 

function, then 2
k

T
kS   and k

T
kS   may equal to 0. In 

this case, the positive definiteness of the update matrix 

kB  can not be sure. Then we conclude that, for the gen-

eral convex functions, the positive definiteness of the 
update matrix kB  generated by (4) and (6) can not be 

satisfied. 
In order to get the positive definiteness of )2(kB  

based on the definition of 2
k and k  for the general 

convex functions, Yuan and Wei [21] give a modified 
BFGS update, i. e., the modified update formula is de-
fined by 
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where }0),3(max{,3
kkkkkk AASA   . Then the 

corresponding quasi-Newton equation is  


  3
1 )3( kkk SB              (8) 

which can ensure that the condition 03 
k

T
kS   holds 

for the general convex function f (see [21] in detail). 

Therefore, the update matrix 1kB  from (8) inherits the 

positive definiteness of kB  for the general convex 

function. 
 
2.2. Limited Memory BFGS-Type Method 
 
The limited memory BFGS (L-BFGS) method (see [22]) 
is an adaptation of the BFGS method for large-scale 
problems. In the L-BFGS method, matrix 

kH  is ob-

tained by updating the basic matrix )0~(0 mH  times 

using BFGS formula with the previous m~  iterations. 
The standard BFGS correction (5) has the following 

form  
T
kkkkk

T
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kkkk SIV  , I is the unit ma-

trix. Thus, 1kH  in the L-BFGS method has the fol-

lowing form: 
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(10) 
 
3. Modified SQP Method 
 
In this section, we will state the normal SQP method and 
the modified limited memory SQP method, respectively. 
 
3.1. Normal SQP Method 
 
The first-order Kuhn-Tucker condition of (2) is  
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The system (11) can be represented by the following 
system: 
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where Szz  ),,(   and lmnlmn RRH  :  is 

defined by 
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Since ,, gf   and h  are continuously differentia-

ble functions, it is obviously that )(zH  is continuously 

differentiable function. Then, for all lmnRd  , the 
directional derivative ):( dzH   of the function )(zH  

exists. Denote the index sets by 

)}(|{)( xgiz ii               (14) 

and )}.(|{)( xgiz ii              (15) 
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Under the complementary condition, it is clearly that 
)(z  is an index set of strongly active inequality con-

straints, and )(z  is an index set of weakly active and 

inactive inequality constraints. In terms of these sets, the 
directional derivative along the direction ),,(  dddd x   

is given as follows  
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where G is a matrix which elements are the partial deriv-
atives of )(zLx  to ,xd ,d ,d respectively. If 
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By (33) in [6], we know than the system  
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the Kuhn-Tucker condition of problem (2), which also 
defines the Kuhn-Tucker condition of the following qua-
dratic programming :),( kk VzQP  
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kxxkk zLVxxs   

Generally, suppose that )1(kB  is an estimate of kV  

and )1(kB  can be updated by BFGS method of qua-

si-Newton formula 
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are the multipliers which are according to the Lagrangian 
objective function at kx , while 1k  and 1k  are the 

multipliers which are according to the Lagrangian objec-
tive function at 1kx . Particularly, when we use the up-

date formula (20) to (19), the above quadratic program-
ming problem can be written as :),( kk BzQP  
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Suppose that ),,( s  is a Kuhn-Tucker triple of the 

sub problem ),( kk BzQP , therefore, it is obviously 

that 0s  if ),,( kkx  is a Kuhn-Tucker triple of (2). 

 
3.2. Modified Limited Memory SQP Method  
 
The normal limited memory BFGS formula of qua-
si-Newton-SQP method with kH  for constrained opti-

mization (2) is defined by 
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matrix. To maintain the positive definiteness of the li-
mited memory BFGS matrix, some researchers suggested 

to discard correction },{ kk ys  if 0k
T
k ys  does not 

hold (e.g. [34]). Another technique was proposed by 
Powell [35] in which ky  is defined by  
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Whether there exists a limited memory SQP method 
which can ensure that the update matrix are positive de-
finite for general convex Lagrangian objective func-
tion ),,( xL . This paper gives a positive answer. Let 
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),,( xL  in the following cases to state our motivation. 
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which means that 0k
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modified limited memory SQP formula  
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    


 

 


(25)  

where ,
1


 

k
T
k

k
ys

  ,T
kkkk syIV     and 

kkkk sAyy }0,
~

max{ . It is not difficult to see that the 

modified limited memory SQP formula (25) contains 
both the gradient and function value information of La-
grangian function at the current and the previous step if 

0
~

kA  holds. 

Let 
kB  be the inverse of 

kH . More generally, sup-

pose that 
kB  is an estimate of kV . Then the above 

quadratic programming problem (19) can be written as 

:),( 
kk BzQP  

.0)()(

,0)()(

,0)()(..

,
2

1
)(min





 

sxhxh

sxgxg

sxgxgts

sBssxf

T
kk

T
kk

T
kk

k
TT

k



       (26) 

Suppose that ),,( s  is a Kuhn-Tucker triple of the 

subproblem ),( 
kk BzQP , therefore, it is obviously that 

0s  if ),,( kkx  is a Kuhn-Tucker triple of (2). 

Now we state our algorithm as follows. 

Modified limited memory SQP algorithm 1 for (2) 
(M-L-SQP-A1) 

Step 0: Star with an initial point ),,( 0000 xz   

and an estimate 
0H  of )( 0

2
0 zLV xx , 

0H  is a 

symmetric and positive definite matrix, positive con-
stants 10   , 00 m  is a positive constant. Set 

0k ; 

Step 1: For given kz  and 
kH , solve the subproblem 

,0)()(

,0)()(

,0)()(..

,
2

1
)(min 1





 

sxhxh

sxgxg

sxgxgts

sHssxf

T
kk

T
kk

T
kk

k
TT

k



        (27) 

and obtain the unique optimal solution kd ;  

Step 2: k  is chosen by the modified weak 

Wolfe-Powell (MWWP) step-size rule 

,)()()( k
T

kxkkkkk dzLzLdzL     (28) 

and  

,)()( k
T

kxk
T

kkkx dzLddzL       (29) 

then let .1 kkkk dxx   

Step 3: If 1kz  satisfies a prescribed termination cri-

terion (18), stop. Otherwise, go to step 4;  

Step 4: Let },1min{~
0mkm  . Update 

0H  for m~  

times to get 
1kH  by formula (25). 

Step 5: Set 1 kk  and go to step 1. 
Clearly, we note that the above algorithm is as simple 

as the limited memory SQP method, form storage and 
cost point of a view at each iteration. 

In the following, we assume that the algorithm updates 

kB -the inverse of 

kH . The M-L-SQP-A1 with Hessian 

approximation 
kB  can be stated as follows. 

Modified limited memory SQP algorithm 2 for (2) 
(M-L-SQP-A2) 

Step 0: Star with an initial point ),,( 0000 xz   

and an estimate 
0B  of )( 0

2
0 zLV xx , 

0B  is a sym-

metric and positive definite matrix, positive constants 
10   , 00 m  is a positive constant. Set 

0k ; 

Step 1: For given kz  and 
kB , solve the subproblem 

),( 
kk BzQP and obtain the unique optimal solution kd ; 

Step 2:  Let },1min{~
0mkm  . Update 

kB  with 

the triples k
mkiiii Ays 1~},,{ 

 , i.e., 

for kmkl ,,1~  , compute 
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,1

l
T

l

T
ll

k
l
k

T
l

l
k

T
ll

l
kl

k
l
k

sy

yy

sBs

BssB
BB 






        (30) 

where lll xxs  1 , llll sAyy    and 
 1~mk

kB  for 

all k. 
Note that M-L-SQP-A1 and M-L-SQP-A2 are mathe-

matically equivalent. In the next section, we will estab-
lish the global convergence of M-L-SQP-A2. 
 
4. Convergence analysis of M-L-SQP-A2 
 
Let x be a local optimal solution and ),,(   xz  

be the corresponding Kuhn-Tucker triple of problem (1). 
In order to get the global convergence of M-L-SQP-A2, 
the following assumptions are needed. 

Assumption A. 1) ihf ,  and ig  are twice conti-

nuously differentiable functions for all Sx  and S  
is bounded. 

2) }),({}),({   IjxgEixh ii  are positive li-

near independence. 

3) (Strict complementarity) For 0,  
jIj  . 

(iv) 0VssT for all 0s with sxh T
i )(  Ei ,0  

and   Ijsxg T
i ,0)( , where )(2  zLV xx . 

(v) }{ kz converges to z where 0)(  zLx . 

(vi) The Lagrangian function )(zL  is convex for all 

Sz . 
Assumption A(vi) implies that there exists a constant 

0H  such that 

.,|||| SzHV            (31) 

Due to the strict complementary Assumption A(3), at a 

neighborhood of z , the method (26) is equivalent to 
the following equality constrained quadratic program-
ming:  

.0)()(

,0)()(..

,
2

1
)(min




 

sxhxh

sxgxgts

sBssxf

T
kk

T
kk

k
TT

k


      (32) 

Without loss of generality for the locally convergent 
analysis, we may discuss that there are only active con-
straints in (2). Then (18) becomes the following system 

with 
kB  instead of kV :  

)(

)(

)(

)(

00)(

00)(

)()(

k

k

k

kxx

T

T zH

xh

xg

zL

d

d

d

xh

xg

xhxgB

k

k

k
































































 

(33) 
In the case of only considering active constraints, we 

can suppose that 























00)(

00)(

)()(

T

T
k

k

xh

xg

xhxgV

W 



       (34) 

And 

,

00)(

00)(

)()(

,

























T

T
k

KH

xh

xg

xhxgB

D 



      (35) 

when 
kB  is close to kV , KHD ,  is close to kW . 

Lemma 4.1 Let Assumption A hold. Then there exists 
a positive number 1M  such that  

.,2,1,0,
||||

1

2





kM
ys

y

k
T
k

k  

Proof. By Assumption A, then there exists a positive 
number 0M  such that (see [36])  

.0,
||||

0

2

 kM
ys

y

k
T
k

k            (36) 

Since the function )(xL  is convex, then we have 

k
T

kxkk szLzLzL )()()( 1  and 

,)()()( 11 k
T

kxkk szLzLzL    the above two in-

equalities together with the definition of kA
~

 imply that  

2||||

||
|

~
|

k

k
T
k

k
s

ys
A  .              (37) 

Using the definition of 
ky , we get  

k
T
kkk

T
kk

T
k ysAysys  }0,

~
max{      (38) 

and  

||,||2||||||||||}0,
~

max{|||||||||| kkkkkkk yyysAyy   

(39) 

where the second inequality of (39) follows (37). Com-
bining (38), (39), and (36), we obtain: 

.4
||||4||||

0

22

M
ys

y

ys

y

k
T
k

k

k
T
k

k 



 

Let 01 4MM  , we get the conclusion of this lemma. 

The proof is complete.  
Lemma 4.2 Let kB  is generated by (30). Then we have  

,)det()det(
1~

1~

1 







 
k

mkl ll
T
l

l
T
lmk

kk
sBs

ys
BB      (40) 

where )det( 
kB  denotes the determinant of 

kB . 

Proof. To begin with, we take the determinant in both 
sides of (20)  
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,
)1(

))1((

)])1(
)1(

))1((
)((

)))1((1)(
)1(

)1(
1))[(1((

)
)1(

)1(

)1(
())1((

))
)1(

)1(

)1(
)(1(())1((

1

1

1

1

1

kk
T
k

k
T
k

k

kk
kk

T
k

T
kk

k
T
k

kT
k

k
T
k

kT
kk

kk
T
k

kkT
kk

k
T
k

T
kkk

kk
T
k

k
T
kk

k

k
T
k

T
kkk

kk
T
k

k
T
kk

kk

sBs

sy
BDet

yB
sBs

sB

sy

y
s

sy

y
yB

sBs

sB
sBDet

ys

yyB

sBs

Bss
IDetBDet

ys

yyB

sBs

Bss
IBDetBDet





















where the third equality follows from the formula (see, 
e.g., [37] Lemma 7.6) 

).)(()1)(1()det( 324143214321 uuuuuuuuuuuuI TTTTTT 
Therefore, there is also a simple expression for the de-
terminant of (30)  

.)det()det(
1~

1~

1 







 
k

mkl ll
T
l

l
T
lmk

kk
sBs

ys
BB  

Then we complete the proof. 
Lemma 4.3 Let Assumption A hold. Then there exists a 

positive constant 1  such that  

,|||| 1 kks   where 
||||

)(

k

k
T

kx
k d

dzL
 . 

Proof. By Assumption A, we have 

).1(||||)(

))()((

21

0

1








HddtddtzVd

dzLzL

kkkkkk
T
kk

k
T

kxkx


 

On the other hand, using (29), we get  

.)()1())()(( 1 k
T

kxk
T

kxkx dzLdzLzL     

Therefore, ,
1

1
|||| kk H

s 



 let 
1

1
1 




H

 . The 

proof is complete. 
Using Assumption A, it is not difficult to get the fol-

lowing lemma. 
Lemma 4.4 Let Assumption A hold. Then the sequence 

)}({ kzL  monotonically decreases, and Szk   for all 

0k . Moreover, 

.))((
0






k

k
T

kxk dzL  

Similar to Lemma 2.6 in [38], it is not difficult to get 
the following lemma. Here we also give the proof 
process. 

Lemma 4.5 If the sequence of nonnegative numbers 

),1,0( kmk  satisfy 





k

j

k
j kccm

0
11 ,,2,1,0,         (41) 

then 0suplim kk m . 

Proof. We will get this result by contradiction. As-
sume that 0suplim kk m , then, for 110 c  , there 

exists 01 k , such that 1km  for all 1kk  . Hence, 

for all 
1kk  , 

 


 


1

0
11

1

1

k

j

k

kj
j

k mc 


















 




 1

1
1
1

1

01

1suplim k
k

j
j

k

k m
c




, 

which is a contradiction, thus, 0suplim kk m . 

Lemma 4.6 Let }{ kx  be generated by M-L-SQP-A2 and 

Assumption A hold. If 0||)(||inflim 
 kx

k
zL , then, there 

exists a constant 00   such that  

  .0,1
0

0

 


 kallfork

k

j
j   

Proof. Assume that 0||)(||inflim 
 kx

k
zL , i.e., there 

exists a constant 02 c such that 

,2,1,0,||)(|| 2  kczL kx .    (42) 

Now we prove that the update matrix 
1kB  will al-

ways be generated by the update formula (30), i.e., 
1kB  

inherits the positive definiteness of 
kB  or 0

k
T
k ys  

always holds. For 0k , this conclusion holds at hand. 

For all 1k , assume that 
kB  is positive definite. We 

will deduce that 0
k

T
k ys  always holds from the fol-

lowing three cases. 

Case 1. If 0
~

kA . By the definition of 
ky  and As-

sumption A, we have 

0}0,
~

max{ 
k

T
kkk

T
kk

T
k ysAysys . 

Case 2. If 0
~

kA . By the definition of 
ky , (24), and 

Assumption A, we get 0
k

T
kk

T
k ysys . 

Case 3. If 0
~

kA . By the definition of 
ky , (29), As-

sumption A, )(1
kxkk zLBd   , and the positive defi-

niteness of 
kB , we obtain 

0)1()()1(  
kk

T
kkkx

T
kkk

T
kk

T
k dBdzLdysys  ,

So, we have 0
k

T
k ys , and 

1kB  will be generated by the 

update formula (30). Thus, the update matrix 
1kB  will 

always be generated by the update formula (30).  
Taking the trace operation in both sides of (30), we get  

,
||||||||

)(

)(
2

1~

2

1~

1~

1

















 



l
T
l

l
k

mklll
T
l

ll
k

mkl

mk
k

k

ys

y

sBs

sB
BTr

BTr

  (43) 
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where )( 
kBTr  denotes the trace of 

kB . Repeating 

this trace operation, we have 

.
||||||||

)(

||||||||
)()(

0

2

0

2

0

2

1~

2

1~

1~

1




































k

l l
T
l

l
k

l ll
T
l

ll

l
T
l

l
k

mklll
T
l

ll
k

mkl

mk
kk

ys

y

sBs

sB
BTr

ys

y

sBs

sB
BTrBTr

  

(44) 

Combining (42), (44), )(1
kxkk zLBd   , and 

Lemma 4.1, we obtain  

.)1(
)()(

)()( 1
0

2
2

01 Mk
zLHzL

c
BTrBTr

k

l jxj
T

jx
k 


 







(45) 

Using 
1kB is positive definite, we have 0)( 1 

kBTr . 

By (45), we obtain 

2
2

10

0

2
2 )1()(

)()( c

MkBTr

zLHzL

ck

l jxj
T

jx









  (46) 

and  

.)1()()( 101 MkBTrBTr k  
       (47) 

By the geometric-arithmetic mean value formula we 
get  

.
)1()(

)1(
)()(

1

10

2
2

0




















k

k

j
jxj

T
jx

MkBTr

ck
zLHzL  (48) 

Using Lemma 4.2, (30), and (38), we have 

.
1

)det(

1
)det(

)det(

)det()det(

0
0

1~

1~

1~

1~

1~

1~

1










































k

j j

k

mkl l

mk
k

k

mkl ll
T
l

l
T
lmk

k

k

mkl ll
T
l

l
T
lmk

kk

B

B

sBs

ys
B

sBs

ys
BB









 

This implies 

.
1)det(

)det(

01

0 










k

j

j

kB

B




         (49) 

By using the geometric-arithmetic mean value formula 
again, we get 

.
)(

)det( 1
1

n

k
k n

BTr
B 













          (50) 

Using (47), (49) and (50), we obtain  

1
3

10

0

10

0

1

10

0

10

0

0

1,
])([

)det(
min

}1,
])([

)det(
min{

)exp(

1

])([

)det(

1

1

])1()([

)det(

1



















































k

n

n

n

nk

n

n

n

nk

j

j

C

MBTr

nB

MBTr

nB

n

MBTr

nB

k

MkBTr

nB


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Multiplying (48) with (51), for all 0k , we get 
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According to Lemma 4.4 and Assumption A we know 
that there exists a constant 02 M  

such that 

211 2|||||||||||||||| Mxxxxs kkkkk   .  (53) 

Combining the definition of 
k  and (53), and noting 

that jjjx zL   cos||)(|| , we get for all 0k , 
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The proof is complete. 
Now we establish the global convergence theorem for 

M-L-SQP-A2. 
Theorem 4.1 Let Assumption (i) hold and let the se-

quence }{ kz  be generated by M-L-SQP-A2. Then we 

have 

0||)(||inflim 
 kx

k
zL .         (54) 

Proof.  By Lemma 4.3 and (28), we get 

.)(

||||)()(
2

1

1

kk

kkkk

zL

szLzL







        (55) 

By (55), we have 


 0

2

k
k , this implies that 
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0lim 
 k

k
 .            (56) 

Therefore, relation (54) can be obtained from (56) and 
Lemma 4.6 directly.  
 
5. Conclusion 
 
For further research, we should study the properties of 
the modified limited memory SQP method under weak 
conditions. Moreover, numerical experiments for practi-
cally constrained problems should be done in the future. 
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