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ABSTRACT 

Background: Novel models for the assessment of non-linear data are being developed for the benefit of making better 
predictions from the data. Objective: To review traditional and modern models. Results, and Conclusions: 1) Logit 
and probit transformations are often successfully used to mimic a linear model. Logistic regression, Cox regression, 
Poisson regression, and Markow modeling are examples of logit transformation; 2) Either the x- or y-axis or both of 
them can be logarithmically transformed. Also Box Cox transformation equations and ACE (alternating conditional ex-
pectations) or AVAS (additive and variance stabilization for regression) packages are simple empirical methods often 
successful for linearly remodeling of non-linear data; 3) Data that are sinusoidal, can, generally, be successfully mod-
eled using polynomial regression or Fourier analysis; 4) For exponential patterns like plasma concentration time rela-
tionships exponential modeling with or without Laplace transformations is a possibility. Spline and Loess are computa-
tionally intensive modern methods, suitable for smoothing data patterns, if the data plot leaves you with no idea of the 
relationship between the y- and x-values. There are no statistical tests to assess the goodness of fit of these methods, but 
it is always better than that of traditional models. 
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1. Introduction 

Non-linear relationships like the smooth shapes of air- 
planes, boats, and motor cars were constructed from scale 
models using stretched thin wooden strips, otherwise 
called splines, producing smooth curves, assuming a mi- 
nimum of strain in the materials used. With the advent of 
the computer it became possible to replace it with sta- 
tistical modeling for the purpose: already in 1964 it was 
introduced by Boeing [1] and General Motors [2]. Me-
chanical spline methods were replaced with their mathe-
matical counterparts. A computer program was used to cal- 
culate the best fit line/curve, which is the line/curve with 
the shortest distance to the data. More complex models 
were required, and they were often laborious so that even 
modern computers had difficulty to process them. Soft-
ware packages make use of iterations: 5 or more regres-
sion curves are estimated (“guesstimated”), and the one 
with the best fit is chosen. With large data samples the 
calculation time can be hours or days, and modern soft-
ware will automatically proceed to use Monte Carlo cal-
culations [3] in order to reduce the calculation times. 
Nowadays, many non-linear data patterns can be developed 
mathematically, and this paper reviews some of them.  

2. Testing for Linearity 

A first step with any data analysis is to assess the data 
pattern from a scatter plot (Figure 1). 

A considerable scatter is common, and it may be dif- 
ficult to find the best fit model. Prior knowledge about 
patterns to be expected is helpful. 

Sometimes, a better fit of the data is obtained by draw- 
ing y versus x instead of the reverse. Residuals of y ver- 
sus x with or without adjustments for other x-values are 
helpful for finding a recognizable data pattern. Statisti-
cally, we test for linearity by adding a non-linear term of 
x to the model, particularly, x squared or square root x, 
etc. If the squared correlation coefficient r2 becomes lar-
ger by this action, then the pattern is, obviously, not- 
linear. Statistical software like the curvilinear regression 
option in SPSS [4] helps you identify the best fit model. 
Figure 2 and Table 1 give an example. The best fit mo- 
dels for the data given in the Figure 2 are the quadratic 
and cubic models. 

In the next few sections various commonly used ma- 
thematical models are reviewed. The mathematical equa- 
tions of these models are summarized in the appendix. 
They are helpful to make you understand the assumed 
nature of the relationships between the dependent and 
independent variables of the models used. *Corresponding author. 
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Table 1. The best fit models for the data from Figure 2 are the quadratic and cubic models. 

Model Summary and Parameter Estimates 

Dependent Variable: qual care score 

 Model Summary Parameter Estimates 

Equation R Square F df1 df2 Sig. Constant b1 b2 b3 

Linear 0.018 0.0353 1 19 0.559 25.588 −0.069   

Logarithmic 0.024 0.468 1 19 0.502 23.086 0.726   

Inverse 0.168 3.829 1 19 0.065 26.229 −11.448   

Quadratic 0.866 58.321 2 18 0.000 16.259 2.017 −0.087  

Cubic 0.977 236.005 3 17 0.000 10.679 4.195 −0.301 0.006 

Power 0.032 0.635 1 19 0.435 22.667 0.035   

Exponential 0.013 0.0249 1 19 0.624 25.281 −0.002   
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(b)                                               (c) 

Figure 1. Examples of non-linear data sets: (a) Relationship between age and systolic blood pressure; (b) Effects of mental 
stress on fore arm vascular resistance; (c) Relationship between time after polychlorobiphenyl (PCB) exposure and PCB con-
centrations in lake fish. 
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Figure 2. Standard models of regression analyses: the effect 
of quantity of care (numbers of daily interventions, like en- 
doscopies or small operations, per doctor) is assessed against 
quality of care scores. 

3. Logit and Probit Transformations 

If linear regression produces a non-significant effect, 
then other regression functions can be chosen and may 
provide a better fit for your data. Following logit (=lo- 
gistic) transformation a linear model is often produced. 
Logistic regression (odds ratio analysis), Cox regression 
(Kaplan-Meier curve analysis), Poisson regression (event 
rate analysis), Markov modeling (survival estimation) are 
examples. SPSS statistical software [4] covers most of 
these methods, e.g., in its module “Generalized linear 
methods”. There are examples of datasets where we have 
prior knowledge that they are linear after a known trans- 
formation (Figures 3 and 4). As a particular caveat we 
should add here that many examples can be given, but 
beware. Most models in biomedicine have considerable 
residual scatter around the estimated regression line. For 
example, if the model applied is the following (e = ran- 
dom variation) 

yi = α eβx + ei, 
then 

ln(yi)  ln(α) + βx + ei. 

The smaller the ei term is, the better fit is provided by 
the model. Another problem with logistic regression is 
that sometimes after iteration (=computer program for 
finding the largest log likelihood ratio for fitting the data) 
the results do not converse, i.e., a best log likelihood ra- 
tio is not established. This is due to insufficient data size, 
inadequate data, or non-quadratic data patterns. An alter- 
native for that purpose is probit modeling, which, gener- 
ally, gives less iteration problems. The dependent vari- 
able of logistic regression (the log odds of responding) is 
closely related to log probit (probit is the z-value corre- 
sponding to its area under curve value of the normal dis- 
tribution). It can be shown that log odds of responding =  
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Figure 3. Example of non-linear relationship that is linear 
after log transformation (Michaelis-Menten relationship be- 
tween sucrose concentration on x-axis and invertase reac- 
tion rate on y-axis). 
 
logit ≈ (π/ 3 )x probit. Probit analysis, although not 
available in SPSS, is in many software programs like, 
e.g., Stata [5]. 

4. “Trial and Error” Method, Box Cox 
Transformation, ACE/AVAS Packages 

If logit or probit transformations do not work, then addi- 
tional transformation techniques may be helpful. How do 
you find the best transformations? First, prior knowledge 
about the patterns to be expected is helpful. If this is not 
available, then the “trial and error” method can be recom- 
mended, particularly, logarithmically transforming either 
x- or y-axis or both of them (Figure 5). 

log(y) vs x, y vs log(x), log(y) vs log(x). 

The above methods can be performed by hand (vs = 
versus). Box Cox transformation [6], additive regression 
using ACE [7] (alternating conditional expectations) and 
AVAS [7] (additive and variance stabilization for regres- 
sion) packages are modern non-parametric methods, other- 
wise closely related to the “trial and error” method, can 
also be used for the purpose.  

They are not in SPSS statistical software, but instead a 
free Box-Cox normality plot calculator is available on 
the Internet [8]. All of the methods in this section are 
largely empirical techniques to normalize non-normal 
data, that can, subsequently, be easily modeled, and they 
are available in virtually all modern software programs. 

5. Sinusoidal Data 

Clinical research is often involved in predicting an out- 
come from a predictor variable, and linear modeling is 
the commonest and simplest method for that purpose. 
The simplest except one is the quadratic relationship pro- 
viding a symmetric curve, and the next simplest is the  
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Figure 4. Another example of a non-linear relationship that is linear after logarithmic transformation (survival of 240 small 
cell carcinoma patients). 
 

 

0.00 10.00 20.00 30.00 40.00

dose

0.00

5.00

10.00

15.00

20.00

y

0.00 10.00 20.00 30.00 40.00

dose

-5.00000

0.00000

5.00000

10.00000

15.00000

U
n

st
an

d
ar

d
iz

ed
 R

es
id

u
al

0.00 1.00 2.00 3.00 4.00

lndose

0.00

5.00

10.00

15.00

20.00

y

0.00 1.00 2.00 3.00 4.00

lndose

-5.00000

0.00000

5.00000

10.00000

15.00000

U
n

st
an

d
ar

d
iz

e
d

 R
es

id
u

al

0.00 1.00 2.00 3.00 4.00

lndose

-1.00

0.00

1.00

2.00

3.00

ln
y

0.00 1.00 2.00 3.00 4.00

lndose

-1.50000

-1.00000

-0.50000

0.00000

0.50000

1.00000

1.50000

U
n

st
an

d
ar

d
iz

ed
 R

es
id

u
al

 

Figure 5. Trial and error methods used to find recognizable data patterns: relationship between isoproterenol dosages (on the 
x-axis) and relaxation of bronchial smooth muscle (on the y-axis). 
 
cubic model providing a sinus-like curve. 

The equations are 
Linear model y = a + bx 
Quadratic model y = a + bx2 

Cubic model y = a + bx3. 
The larger the regression coefficient b, the better the 

model fits the data. Instead of the terms linear, quadratic, 
and cubic the terms first order, second order, and third 
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order polynomial are applied. 
If the data plot looks, obviously, sinusoidal, then 

higher order polynomial regression and Fourier analysis 
could be adequate [9]. The equations are given in the 
appendix. Figure 6 gives an example of a polynomial 
model of the seventh order. 

6. Exponential Modeling 

For exponential-like patterns like plasma concentration 
time relationships exponential modeling is a possibility 
[10]. Also multiple exponential modeling has become 
possible with the help of Laplace transformations. The 
non-linear mixed effect exponential model (nonmen mo- 
del) [11] for pharmacokinetic studies is an example 
(Figure 7). The data plot shows that the data spread is 
wide and, so, very accurate predictions can not be made 
in the given example. Nonetheless, the method is helpful 
to give an idea about some pharmacokinetic parameters 
like drug plasma half life and distribution volume. 

7. Spline Modeling 

If the above models do not adequately fit your data, you 
may use a method called spline modeling. It stems from 
the thin flexible wooden splines formerly used by ship- 
builders and car designers to produce smooth shapes 
[1,2]. Spline modeling will be, particularly, suitable for 
smoothing data patterns, if the data plot leaves you with 
no idea of the relationship between the y- and x-values. 

Figure 8 gives an example of non-linear dataset suit- 
able for spline modeling. Technically, the method of lo- 
cal smoothing, categorizing the x-values is used. It means 
that, if you have no idea about the shape of the relation 
between the y-values and the x-values of a two dimen- 
sional data plot, you may try and divide the x-values into 
4 or 5 categories, where θ-values are the cut-offs of cate- 
gories of x-values otherwise called the knots of the spline 
model. 
 cat. 1: min  x < θ1 
 cat. 2: θ1  x < θ2 
 ... 
 cat. k: θk−1  x < max. 

Then, estimate y as the mean of all values within each 
category. Prerequisites and primary assumptions include 
 the y-value is more or less constant within categories 

of the x-values, 
 categories should have a decent number of observa- 

tions, 
 preferably, category boundaries should have some 

meaning. 
A linear regression of the categories is possible, but 

the linear regression lines are not necessarily connected 
(Figure 9). Instead of linear regression lines a better fit 
for the data is provided by separate low-order polynomial  

 

Figure 6. Example of a polynomial regression model of the 
seventh order to describe ambulatory blood pressure mea- 
surements. 
 

 

Figure 7. Example of exponential model to describe plasma 
concentration-time relationship of zoledronic acid. 
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Figure 8. Example of a non-linear dataset suitable for spline 
modeling: effects of mental stress on fore arm vascular re- 
sistance. 
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Figure 9. Multiple linear regression lines from the data 
from Figure 8. 
 
regression lines (Figure 10). for all of the intervals be- 
tween two subsequent knots, where knots are x-values 
that connect one x-category with a subsequent one. Usu- 
ally, cubic regression, otherwise called third order poly-
nomial regression, is used. It has as simplest equation y = 
a + bx3 . Eventually, the separate lines are joined at the 
knots. Spline modeling, thus, cuts the data into 4 or 5 
intervals and uses the best fit third order polynomial 
functions for each interval (Figure 11). In order to obtain 
a smooth spline curve the junctions between two subse- 
quent functions must have  

1) The same y value, 
2) The same slope, 
3) The same curvature. 
All of these requirements are met if  
1) The two subsequent functions are equal at the junc- 

tion, 
2) Have the same first derivative at the junction, 
3) Have the same second derivative at the junction. 
There is a lot of matrix algebra involved, but a com- 

puter program can do the calculations for you, and pro- 
vide you with the best fit spline curve. 

Even with knots as few as 2, cubic spline regression 
may provide an adequate fit for the data. 

In computer graphics spline models are popular curves, 
because of their accuracy and capacity to fit complex 
data patterns. So far, they are not yet routinely used in 
clinical research for making predictions from response 
patterns, but this is a matter of time. Excel provides free 
cubic spline function software [11]. The spline model can 
be checked for its smoothness and fit using lambda-calcu-  
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Figure 10. The first graph linear regression, the second 
graph cubic regression from the data from Figure 8. 
 
lus [12], and generalized additive models [13,14]. Un-
fortunately, multidimensional smoothing using spline mo- 
deling is difficult. Instead you may perform separate 
procedures for each covariate. Two-dimensional spline 
modeling is available in SPSS: 

Command: graphs chart builder basic elements choose 
axes y-x gallery scatter/dot ok double click in outcome 
graph to start chart editor elements interpolate properties 
mark: spline click: apply best fit spline model is in the 
outcome graph. 

8. Loess Modeling 

Maybe, the best fit for many types of non-linear data is 
offered by still another novel regression method called 
Loess (locally weighted scatter plot smoothing) [15]. This  
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Figure 11. Spline regression of the data from Figure 8 with 
increasing numbers of knots. 
 
computationally very intensive program calculates the 
best fit polynomials from subsets of your data set in or-
der to eventually find out the best fit curve for the overall 
data set, and is related to Monte Carlo modeling. It does 
not work with knots, but, instead chooses the bets fit 
polynomial curve for each value, with outlier values 
given less weight. Loess modeling is available in SPSS: 

Command: graphs chart builder basic elements choose 
axes y-x gallery scatter/dot ok double click in outcome 
graph to start chart editor elements fit line at total proper- 
ties mark: Loess click: apply best fit Loess model is in 
the outcome graph. 

Figure 12 compares the best fit Loess model with the 
best fit cubic spline model for describing a plasma con- 
centration-time pattern. Both give a better fit for the data 
than does the traditional exponential modeling with 9 and 
29 values in the Loess and spline lines compared to only 
5 values in the exponential line of Figure 6. However, it 
is impossible to estimate plasma half life from Loess and 
spline. We have to admit that, with so much spread in the 
data like in the given example, the meaning of the calcu- 
lated plasma half life is, of course, limited. 

9. Discussion 

Many tools are available for developing non-linear mo- 
dels for characterizing data sets and making predictions 
from them. Sometimes it is difficult to choose the degree 
of smoothness of such models: e.g., with polynomial re- 
gression the question is which order, and with spline mo- 
deling the questions are how many knots, which loca- 
tions, which lambdas. 

Another method is kernel frequency distribution mo- 
deling which unless histograms consists of multiple simi- 
larly sized Gaussian curves rather than multiple bins of  

 

Figure 12. The data from Figure 7 modeled with loess and 
spline. 
 
different length. In order to perform kernel modeling the 
bandwidth (span) of the Gaussian curves has to be se- 
lected which may be a difficult but important factor of 
the potential fit of a particular kernel method. 

Irrespective of the smoothing method applied, there 
are some problems with smoothing: it may introduce bias, 
and, second, it may increase the variance in the data. The 
Akaike information criterion [17] (AIC) is a measure of 
the relative goodness of fit of a mathematical model for 
describing data patterns. It can be used to describe the 
tradeoff between bias and variance in model construction, 
and to assess the accuracy of the model used. However, 
the AIC, as it is a relative measure, will not be helpful to 
confirm a poor result, if all of the models fit the data 
equally poorly. 

Disadvantages of computationally intensive methods 
like spline modeling and Loess modeling must be men- 
tioned. They require fairly large, densely sampled data 
sets in order to produce good models. However, the ana- 
lysis is straightforward. Another disadvantage is the fact 
that these methods do not produce simple regression 
functions that can be easily represented by mathematical 
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equations. However, for making predictions from such 
models direct interpolations/extrapolations from the graphs 
can be made, and, given the mathematical refinement of 
these methods, these predictions should, generally, give 
excellent precision. 

10. Conclusions 

1) Logit and probit transformation can sometimes be 
used to mimic a linear model. Logistic regression, Cox 
regression, Poisson regression, and Markow modeling 
are examples of logit transformation. 

2) Either the x- or y-axis or both of them can be loga- 
rithmically transformed. Also Box Cox transformation 
equation and ace (alternating conditional expectations) or 
avas (additive and variance stabilization for regression) 
packages are simple empirical methods often successful 
for linearly remodeling non linear data. 

3) Data that are, obviously, sinusoidal, can, generally, 
be successfully modeled using polynomial regression and 
Fourier analysis. 

4) For exponential patterns like plasma concentration 
time relationships exponential modeling with or without 
Laplace transformations is a possibility. 

5) Spline and Loess modeling are modern methods, 
particularly, suitable for smoothing data patterns, if the 
data plot leaves you with no idea of the relationship be- 
tween the y- and x-values. Loess tends to skip outlier 
data, while spine modeling rather tends to include them. 
So, if you are planning to investigate the outliers, then 
spline is your tool. 

We have to add that traditional non-linear modeling 
produces p-values, and modern methods do not. However, 
given the poor fit of many traditional models, these p- 
values do not mean too much. Also, it is reassuring to ob- 
serve that both Loess and spline provide a better fit to 
non-linear data than does traditional modeling. 
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Appendix 

In this appendix the mathematical equations of the non 
linear models as reviewed are given. They are, particu-
larly, helpful for those trying to understand the assumed 
relationships between the dependent (y) and independent 
(x) variables (ln = natural logarithm).  

y = a + b1x1 + b2x2 +…b10x10          linear 

y = a + bx + cx2 + dx3 + ex4…          polynomial 

y =a + sinus x + cosinus x +…          Fourier 

Ln odds = a + b1x1 + b2x2 +…b10x10    logistic  

Instead of ln odds (=logit) also probit (≈π 3 x logit) is 
often used for transforming binomial data. 

probit 
Ln multinomial odds = a + b1x1 + b2x2 +…b10x10 mul-

tinomial logistic 

Ln hazard = a + b1x1 + b2x2 +  b10x10     Cox 

Ln rate = a + b1x1 + b2x2 +  b10x10     Poisson 

log y = a + b1x1 + b2x2 +  b10x10    logarithmic 

y = a + b1log x1 + b2x2 +  b10x10 etc. “trial and error” 

transformation function of y = (yλ – 1)/λ Box-Cox  
with λ as power parameter 

y = (above transformation function)−1  ACE modeling 
1 2x x

3y e sin x
1 1

 etc.              AVAS modeling 
2 2b xy a e e   b x               multi-exponential 

modeling 
θ = magnitude of x-value (example) 

θ1 < x < θ2  y = a1 + b1x
3          spline modeling 

θ2 < x < θ3  y = a2 + b2x
3 

θ3 < x < θ4  y = a3 + b3x
3 
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