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ABSTRACT 

The main objective of accelerated life tests in this setting is the recovery of the distribution of the random variable rep- 
resenting lifetime which is difficult to observe at a certain level of a given stress factor. A general model for accelerated 
life test is proposed that utilizes the inverse problem approach, that is, the variable is observe at different level/s and the 
transfer function is used to recover the elusive random variable (life time). The problem then is reduced to finding the 
transfer function. We derive some properties of the proposed general model. The Lognormal distribution and the Ar- 
rhenius model for lifetime are used as examples. Its relationship with the Cox proportional hazards model is also dis- 
cussed. 
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1. Introduction 

From the point of view of production and reliability en- 
gineers, accelerated life testing is an important aspect of 
product development, quality control and improvement. 
Accelerated life testing is accomplished by applying in-
creased stress on the product or product component. It is 
intended to produce data on strength and on lifetime of 
material components and systems. For an excellent but 
elementary exposition on this, the reader is referred to 
Nelson [1].  

Accelerated life testing is also very interesting from 
the point of view of theory. Most lifetime data suffer 
from the censoring problem of statistics. Lifetime obser- 
vations usually exceed the interest time of the observer or 
even his own lifetime. Accelerated life tests, however, 
are performed to destruction thereby eliminating cen- 
sored observations. The analysis of censored or incom- 
plete data requires a modification of the usual statistical 
methodology of independent and identically distributed 
observations and their uncensored generalizations. Re- 
cent developments point to the counting process approach 
with the use of martingales as introduced by Aalen [2] 
for analyzing survival or lifetime data. The audience is 
referred to Anderson, Borgen, Gill and Keiding [3] and 
Fleming and Harrington [4] for a comprehensive treat- 
ment. The first volume covers extensively both theory 
and applications of the counting process approach to sur- 
vival analysis while the second volume treats the analysis 
of clinical data via the martingale approach. Both books 
require some amount of mathematical as well as statisti- 

cal sophistication. It takes more time for this approach to 
be a practical statistical technology. An alternative to the 
counting approach is provided by the Accelerated Life 
Testing in some interesting cases. This is so because it 
reduces the number of incomplete observations and even 
eliminate them.  

Section 2 of this paper describes a generalized model 
for accelerated life testing. Its properties are stated and 
discussed in Section 3 where some examples are also 
provided. Section 4 gives some concluding remarks and 
future work.  

2. A Generalized Model for Accelerated Life 
Test 

Let X be a nonnegative random variable that represents 
lifetime in the normal condition, that is, without any 
stress applied to it, with unknown distribution F. Suppose 
stress is applied on X and the observations say,  

1 2X , , ,s s nsX X

: SS

 are made from a distribution, say Fs. 
This setting is an example of the inverse problem ap- 
proach in statistics where the stress S is a known operator. 
That is,  

X X : SS F F

, ,,

 or ,         (1) 

in some space of random variables. Here the stress s may 
have K levels, i.e. 1 2 Ks s s . 

An approach to accelerated life test model is given by 
Cox and Oakes [5] and Barlow and Sheuer [6] and also 
appears in Gnedenko, et al. [7]. This is described as fol- 
lows. Denote a failure time distribution function under a 
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normal stress condition by F0(·). The accelerated life 
time transformation is given in terms of  ,F t z

 0, ,

 and 
F0(·) by the relationship  

 F t z F t z A   

 ,z A

 ,z A

   ,

,           (2) 

where  is a positive function (or acceleration 
function) connecting “time to failure” with a stress factor 
z, and A is a vector of unknown parameters. For z = 0, 

 is assumed equal to 1. This relationship is a 
scale transformation where a change in stress does not 
result in a change in the shape of the distribution function 
but changes its scale only. This relationship can be writ- 
ten in terms of the acceleration function as  



g t z A t .              (3) 

In other words, the relationship above is linear with a 
time acceleration function  .  

We now propose a model for accelerated life test gen- 
eralizes the relationship in (3). This general model is 
expressed in terms of random variables and thus is sim- 
pler in structure. Let S be a nonempty set whose elements 
we will refer to as stress space. For example, in the Ar- 
rhenius model, S is the set of nonnegative real numbers 
representing temperature. We define the proposed model 
by  

 ,sX A s X

 ,

,              (4) 

where X is the random variable under normal use,  is a 
vector of parameters, s  S and A s   is called the 
scaling or acceleration function which is a monotone 
function continuous from the right. This model is a sto- 
chastic process S : X s S  and will be called a general 
lifetime model with stress space S. The model says the 
random lifetime SX  depends on the stress s, where stress 
is a state or configuration of stress factors belonging to 
some known stress space S. Information on the stress 
space should be available in the underlying field such as 
medicine for clinical trials, psychology for behavioral 
studies, chemistry for phenomena depending on clinical 
reactions, to name a few.  

Two situations arise from this model: first, if stress s is 
fixed or controlled, this model is interpreted as a general 
accelerated life test model. If s is random, the model is 
known as the survival model with covariates. In this pa- 
per we consider only the first case where stress s is fixed. 
We will refer to this model as the Generalized Model for 
Accelerated Life Testing (GMALT). It will be shown 
how this model relates to the well-known Arrhenius 
model in reliability engineering. The Arrhenius model is 
widely used to model product life as a function of tem-
perature. Applications include electrical insulations, solid 
state and semiconductor devices, battery cells, and in-
candescent lamp filaments.  

3. Elementary Properties of the GMALT 
and Some Examples 

As mentioned in the introduction, the main advantage of 
the proposed model which is expressed as a scaling of 
random variables is that its properties can be studied 
more conveniently. In this section we present some ana- 
lytic properties of the proposed model and state them as 
propositions.  

3.1. Mean and Covariance Function 

Proposition 1. If SX  is a gmalt with acceleration func- 
tion  ,A s   and stress space S, then the mean function 
μs and the covariance function  

2
,s t  are given by, 

       , , Xs A s E X A s     s, S

     
 and  

   
   

2
,

2

, , ,

       , , ,

X Xs t

X

E A s X A s A t

A s A t

     

  

   


2 0 

    22 2, XS A s

 

where μX and X  are the mean and variance of the 
untransformed X, respectively. In particular, the variance  

at any stress s  S is       . The proof of  

these is straightforward and follows from the properties 
of expectation. To keep things simple, we write A(s) in-
stead of  ,A s   from now on.  

The next property shows the effect of log transforma- 
tion in the GMALT model. The proof follows directly 
from applying the definition of logarithmic function and 
mathematical expectation. 

3.2. Effect of Log Transformation 

 glo S SProposition 2. If X A s X , then X  has 
constant variance  2 Var log SX   and mean 

0 log

 
given by 

    ,               (6) 

 logwhere 0 A s     log

So the log transformation results in a constant variance 
but a changing mean. In particular, since 

 and .  logE X 

  0,1A s 
 log 0A s 

, 
the mean decreases since . An interesting 
case is when  log X S  has a Normal distribution. 

Example 1. (Lognormal model) In the GMALT, SX  is 
Lognormal with mean S

2 and variance S log if sX  
is normal with mean, say  2 and variance 

S

. In this 
case the parameters of  2exp 2S b  X  are  and  

   2 2 2 2exp exp 1S b      expb     where   , and  

 2 and   are as defined in Property 2 (See Hogg and 
Craig [8] for properties of Lognormal distribution).  

This example will enable us to make inferences about 
X which is not observed in the GMALT model via the ac- 
celeration function A(s), when it is known.  

In the next example we show a situation where the 
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model in Equation (4) fails. This example is also used to 
verify the second property which states the effect of log 
transformation on the GMALT. 

Example 2. The data in Table 1 are hours to turn fail- 
ure of a new Class-H insulation system tested in Motor- 
ettes at 190, 220, 240, and 260 Temperature (˚C). The 
original purpose of the experiment was to estimate the 
median time to turn failure at the design of 180 Tem- 
perature (˚C) [1].  

To verify the second property in Section 3.2, we com- 
pare the variances of the untransformed and the log- 
transformed gmalt model. But we will see that Property 2 
is satisfied on the three temperature levels only, as the 
stress level 260 Temperature (˚C) seemed to have violated 
an assumption of accelerated life model. In Tables 2 and 
3 we see that the variances of both the untransformed and 
the log-transformed lifetime at all temperature levels are 
statistically different, but is not so for the first three lev- 
els, where the variances of the log-transformed data are 
not statistically different. Our observation, is that failure 

Table 1. Hours to failure in an accelerated life test of class H 
insulation in Motorettes. 

Temperature (˚C) Levels 

190˚C 220˚C 240˚C 260˚C 

7228 1764 1175 600 

7228 2436 1175 744 

7228 2436 1521 744 

8448 2436 1569 744 

9167 2436 1617 912 

9167 2436 1665 1128 

9167 3108 1665 1320 

9167 3108 1713 1464 

10511 3108 1761 1608 

10511 3108 1953 1896 

Table 2. Test of homogenity of variance (all temperature 
levels) of hours to failure and its log transformation Motor- 
ettes data. 

Life time of Motorette Levene Statistic Significance 
Hours to failure 9.962 0.000 

Log (Hours to failure) 8.373 0.000 

 
Table 3. Test of homogenity of variance (190, 220 and 240 
Temperature (˚C) levels only) of hours to failure and its log 
transformation in class H insulation in Motorettes data. 

Life time of Motorette Levene Statistic Significance 
Hours to failure 7.708 0.001 

Log (Hours to failure) 0.712 0.553 

modes are different at these two sets of levels (the 190, 
220 and 240 Temperature (˚C) degrees, and the 260 
Temperature (˚C)), and that the stress level 260 Tem-
perature (˚C) may have destroyed the shape of the distri-
bution, thus violating the scaling assumption of the model, 
where a change in stress does not result in a change in 
the shape of the distribution function but changes its 
scale only. So, in this example we see that for the first 
three temperature levels, the log transformation has re-
sulted in a constant variance but with still different (de-
creasing) mean, thus verifying Property 2. For this ex-
ample, therefore the proposed model is applicable on the 
first three stress levels only. The following will be useful 
in interpreting the log mean of S  and X. X

Proposition 3. If Z is a log symmetric random variable 
with log mean S  , i.e.  logE Z S  , then  

   exp median ZS  , where S  is as in Example 1. 
Proof of Proposition 3. From symmetry we have  

  log 1 2SP Z   . 

Since  

     log expS SP Z P Z      

   exp medianSF F Z  then     , where F is the 

distribution function of Z. 
The result follows for absolutely continuous distribu- 

tion functions F. We next relate the mean 
2

 and vari- 
ance   to the mean and variance of the untransformed 
or “normal use” random variable X. To do that we need 
the next result. 

Proposition 4. Let X be a any nonnegative random 
variable with distribution function F and finite mean 

 E X   2E X
2

F  and second moment . Then there 
exists positive numbers F  and F  such that,  

 logE X  and . In   F    22 2Var log F F FX     

 
1

dF x F x


   2 2

0

d
y

F and xfact, F x  
logy x

 where  

. We may now state the next property.  
Proposition 5. In the GMALT model with accelera-

tion function    0,1A s 
S

 and stress space S, the ex-
pectations and variance of the log transformation of X  
have the properties 

   log logS F FE X A s     ,       (8) 

and  

  2Var log S F FX   

2

,           (9) 

where the random variable X with distribution F satisfies 
the usual regularity conditions and F  and F , are as 
in Proposition 4.  

The next result states the equivalence of our approach 
to the classical Arrhenius model where the acceleration 
function is given by  
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   1 2expA s s  

 0,s 

           (11) 

with  is a function of temperature and 1  
and 2  are constants characteristic of the product fail- 
ure mechanism and test conditions [9]. 

3.3. Relationship to Cox Proportional Hazards 
Model and Arrhenius Model 

In the next result we show the equivalence of the 
GMALT model and the Cox regression model or the pro-
portional hazards model. The reader is referred to Flem-
ing and Harrington [4] for an exposition. This result 
shows that the dual of the GMALT model is the Cox 
proportional hazards in the counting process approach to 
survival analysis, the GMALT being the lifetime ap-
proach to survival analysis. The Arhennius life model is 
also presented as special case. 

Proposition 6. In the GMALT model with accelera-
tion function  A s

  1

 with stress space S, the hazard func-
tion at any stress s  S is given by 

 ,  0x s A s
  0,x 

 0 1

x   for all    (13) 

If   expA s X   
 xp

 where X is the covariate, 
then 0 1   0, ex s x

1

X    which is the Cox 
proportional hazards model with one covariate. In par- 
ticular, if X s  , 0 1    and 1 2    where s is 
temperature, and 1  and 2  are constants, we get the 
well-known Arhennius model [9]. 

Proof of Proposition 6. Let . Then   S SP X y F 

     
     ,

S

X

F P A s X y P X

F y A s

  

   

A s y   , 

where XF  is the distribution of X. Also  

       X

1

XF y A s A s
  f y A s  where fX is the  

density of X. By definition the hazard function (at a given 
stress level s) is  

   
 

    
  

   

1

1

0

,
1 1

           ,

S

S X

XA s f y A s

F y A s  

 

f y
x s

F y

A s x









 
    



 

by letting x y A s

 ,

.  

3.4. Equivalence to Model of Cox and Oakes 

Finally we show the equivalence of the proposed model 
(4) to the one given by Cox and Oakes [5] and described 
in Section 2. 

Let X have distribution function F. Since  

SX A s X  we have  

       
             , .    

SP X t P A s X t P X

F t A s

, ( ,t A s 



 

 



 


 

Taking    , 1 ,A s s     ; ,F t s F s t  gives      
and the two are equivalent. Thus, the approach of Cox and 
Oakes may be also taken as a special case of GMALT.  

4. Concluding Remarks 

In this paper, we considered a general model for acceler- 
ated life testing and derive some of its properties. This 
model is expressed in terms of the random variables 
which is simpler, instead of distribution functions. An 
important consideration is the choice of stress level, 
where the GMALT model may fail. A threshold level 
(stress) at which the scaling is no longer applicable must 
be sought by the scientist. Future work may consider 
where a test of hypothesis 0  applies. Rejec-
tion of this hypothesis means we can proceed to the test 
or increase stress at a certain level. For the simple null 
hypothesis 

 : 1H A s 

 0 : 1H A s  , rejection in favor of the alter-
native  : 1H A s0   indicates that we can start doing 
accelerated testing at stress level s where   1A s  . For 
products where  A s  is not known, the search for 
 A s  is the subject of many inquiries. 
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