

On P-Regularity of Acts

Akbar Golchin, Hossein Mohammadzadeh, Parisa Rezaei

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran Email: agdm@math.usb.ac.ir

Received September 27, 2011; revised December 17, 2011; accepted December 30, 2011

ABSTRACT

By a regular act we mean an act that all its cyclic subacts are projective. In this paper we introduce *P*-regularity of acts over monoids and will give a characterization of monoids by this property of their right (Rees factor) acts.

Keywords: P-Regularity; Rees Factor Act

1. Introduction

Throughout this paper S will denote a monoid. We refer the reader to ([1]) and ([2]) for basic results, definitions and terminology relating to semigroups and acts over monoids and to [3,4] for definitions and results on flatness which are used here.

A monoid S is called *left* (*right*) collapsible if for every $s, s' \in S$ there exists $z \in S$ such that zs = zs'(sz = s'z). A submonoid P of a monoid S is called weakly *left collapsible* if for all $s, s' \in P$, $z \in S$ the equality (sz = s'z) implies that there exists an element $u \in P$ such that us = us'.

A monoid *S* is called *right (left) reversible* if for every $s, s' \in S$, there exist $u, v \in S$ such that us = vs'(su = s'v). A right ideal *K* of a monoid *S* is called *left stabilizing* if for every $k \in K$, there exists $l \in K$ such that lk = k and it is called *left annihilating* if,

$$(\forall t \in S)(\forall x, y \in S \setminus K)(xt, yt \in K \Longrightarrow xt = yt).$$

If for all $s, t \in S \setminus K$ and all homomorphisms $f: (Ss \cup St) \rightarrow SS$

$$f(s), f(t) \in K \Longrightarrow f(s) = f(t)$$

then *K* is called *strongly left annihilating*.

A right S-act A satisfies Condition (P) if

as = a's' for $a, a' \in A$, $s, s' \in S$, implies the existence of $a'' \in A$, $u, v \in S$ such that a = a''u, a' = a''v and us = vs'.

A right S-act A is called *connected* if for $a, a' \in A$ there exist $s_1, t_1, \dots, s_n, t_n \in S$ and $a_1, \dots, a_{n-1} \in A$ such that

$$as_1 = a_1t_1$$
$$a_1s_2 = a_2t_2$$
$$\dots$$
$$a_{n-1}s_n = a't_n$$

We use the following abbreviations: Strong flatness = SF; Pullback flatness = PF; Weak pullback flatness = WPF; Weak kernelflatness = WKF; Principal weak kernelflatness = PWKF; Translation kernelflatness = TKF; Weak homoflatness = (WP); Principal weak homoflatness = (PWP); Weak flatness = WF; Principal weak flatness = PWF; Torsion freeness = TF.

2. Characterization by *P*-Regularity of Right Acts

Definition 2.1. Let S be a monoid. A right S-act A is called *P*-regular if all cyclic subacts of A satisfy Condition (P).

We know that a right S-act A is regular if every cyclic subact of A is projective. It is obvious that every regular right act is P-regular, but the converse is not true, for example if S is a non trivial group, then S is right reversible, and so by ([2, III, 13.7]), Θ_s is P-regular, but by ([2, III, 19.4]), Θ_s is not regular, since S has no left zero element.

Theorem 2.1. Let *S* be a monoid. Then:

1) Θ_s is *P*-regular if and only if *S* is right reversible.

2) S_s is *P*-regular if and only if all principal right ideals of *S* satisfy Condition (*P*).

3) If A is a right S-act and $A_i, i \in I$, are subacts of A, then $\bigcup_{i \in I} A_i$ is P-regular if and only if A_i is P-regular for every $i \in I$.

4) Every subact of a *P*-regular right *S*-act is *P*-regular. **Proof.** It is straightforward. q.e.d.

Here we give a criterion for a right S-act to be P-

regular.

Theorem 2.2. Let *S* be a monoid and *A* a right *S*-act. Then *A* is *P*-regular if and only if for every $a \in A$ and $x, y \in S$, ax = ay implies that there exist $u, v \in S$ such that a = au = av and ux = vy.

Proof. Suppose that A is a P-regular right S-act and let ax = ay, for $a \in A$ and $x, y \in S$. Then aS satisfies Condition (P). But $aS \cong S/\ker \lambda_a$, and so by ([2, III, 13.4]), we are done.

Conversely, we have to show that aS satisfies Condition (P) for every $a \in A$. Since $aS \cong S/\ker \lambda_a$, then it suffices to show that $S/\ker \lambda_a$ satisfies condition (P) and this is true by ([2, III, 13.4]). q.e.d.

We now give a characterization of monoids for which all right *S*-acts are *P*-regular.

Theorem 2.3. For any monoid *S* the following statements are equivalent:

1) All right S-acts are P-regular.

2) All finitely generated right S-acts are P-regular.

3) All cyclic right *S*-acts are *P*-regular.

4) All monocyclic right S-acts are P-regular.

5) All right Rees factor S-acts are P-regular.

6) S is a group or a group with a zero adjoined.

Proof. Implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) and (3) \Rightarrow (5) are obvious.

(4) \Rightarrow (6). By assumption all monocyclic right *S*-acts satisfy Condition (*P*), and so by ([2, IV, 9.9]), *S* is a group or a group with a zero adjoined.

(5) \Rightarrow (6). By assumption all right Rees factor *S*-acts satisfy Condition (*P*) and again by ([2, IV, 9.9]), *S* is a group or a group with a zero adjoined.

(6) \Rightarrow (1). By ([2, IV, 9.9]), all cyclic right *S*-acts satisfy condition (*P*), and so by definition all right *S*-acts are *P*-regular as required. q.e.d.

Notice that freeness of acts does not imply *P*-regularity, for if $S = \{0, 1, x\}$, with $x^2 = 0$, then S_s is free, but S_s is not *P*-regular, otherwise $xS = \{0, x\}$ satisfies Condition (*P*) as a cyclic subact of S_s , and so x.x = x.0, implies the existence of $u, v \in S$ such that x = xu = xv and ux = v0, and this is a contradiction.

Theorem 2.4. For any monoid *S* the following statements are equivalent:

1) All right S-acts satisfying Condition (E) are P-regular.

2) All finitely generated right S-acts satisfying Condition (E) are P-regular.

3) All cyclic right S-acts satisfying Condition (E) are P-regular.

4) All SF right S-acts are P-regular.

5) All SF finitely generated right S-acts are P-regular.

6) All SF cyclic right S-acts are P-regular.

7) All projective right S-acts are P-regular.

8) All finitely generated projective right *S*-acts are *P*-regular.

10) All projective generators in Act-S are P-regular.

11) All finitely generated projective generators in Act-S are *P*-regular.

12) All cyclic projective generators in Act-S are P-regular.

13) All free right *S*-acts are *P*-regular.

14) All finitely generated free right *S*-acts are *P*-regular.

15) All free cyclic right S-acts are P-regular.

16) All principal right ideals of S satisfy Condition (P).

17) $(\forall s, t, z \in S)$

 $(zs = zt \Longrightarrow (\exists u, v \in S)(z = zu = zv \land us = vt)).$

Proof. Implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (9) \Rightarrow (12) \Rightarrow (15), (1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6), (4) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9), (7) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12) and (10) \Rightarrow (13) \Rightarrow (14) \Rightarrow (15) are obvious.

(15) \Rightarrow (16). As a free cyclic right S-act S_s is *P*-regular, and so by (2) of Theorem 2.1, all principal right ideals of S satisfy Condition (*P*).

(16) \Leftrightarrow (17). By ([2, III, 13.10]), it is obvious.

(17) \Rightarrow (1). Suppose the right S-act A satisfies Condition (E) and let ax = ay, for $a \in A$ and

 $x, y \in S$. Then there exist $a' \in A$ and $u \in S$ such that a = a'u and ux = uy. Thus by assumption there exist $s, t \in S$ such that u = us = ut and sx = ty. Therefore a = a'u = a'us = as, a = a'u = a'ut = at, sx = ty, and so by Theorem 2.2, A is P-regular. q.e.d.

Notice that cofreeness does not imply *P*-regularity, otherwise every act is *P*-regular, since by ([2, II, 4.3]), every act can be embedded into a cofree act. But if $S = \{0, 1, x\}$, with $x^2 = 0$, then as we saw before, S_s is not *P*-regular, and so we have a contradiction.

Theorem 2.5. For any monoid *S* the following statements are equivalent:

1) All divisible right S-acts are P-regular.

2) All principally weakly injective right S-acts are P-regular.

3) All *fg*-weakly injective right *S*-acts are *P*-regular.

4) All weakly injective right S-acts are P-regular.

5) All injective right S-acts are P-regular.

6) All injective cogenerators in Act-S are P-regular.

7) All cofree right S-acts are P-regular.

8) All right S-acts are P-regular.

9) *S* is a group or a group with a zero adjoined.

Proof. Implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) and (5) \Rightarrow (7) are obvious.

(6) \Rightarrow (8). Suppose that *A* is a right *S*-act, *B* is an injective cogenerator in Act-*S* and *C* is an injective envelope of *A* (*C* exists by [2, III, 1.23]). By ([5, Theorem 2]), $D = B \coprod C$ is an injective cogenerator in Act-*S*, and so by assumption *D* is *P*-regular. Since $A \subseteq C$, we have $A \subseteq D$, and so by Theorem 2.1, *A* is *P*-regular.

(7) \Rightarrow (8). Let *A* be a right *S*-act. Then by ([2, II, 4.3]), *A* can be embedded into a cofree right *S*-act. Since *A* is a subact of a cofree right *S*-act, by assumption *A* is a subact of a *P*-regular right *S*-act, and so by Theorem 2.1, *A* is *P*-regular.

(8) \Leftrightarrow (9). By Theorem 2.3, it is obvious.

(8) \Rightarrow (1). It is obvious. q.e.d.

Theorem 2.6. Let *S* be a monoid. Then every strongly faithful right *S*-act is *P*-regular.

Proof. By Theorem 2.2, it is obvious. q.e.d.

Although strong faithfulness implies *P*-regularity, but faithfulness does not imply *P*-regularity, since every monoid as an act is faithful, $S = \{0, 1, x\}$ with $x^2 = 0$ is faithful, but as we saw before, S_s is not *P*-regular. Now see the following theorem.

Theorem 2.7. For any monoid *S* the following statements are equivalent:

1) All faithfull right S-acts are P-regular.

2) All finitely generated faithfull right S-acts are P-regular.

3) All faithfull right *S*-acts generated by at most two elements are *P*-regular.

4) S is a group or a group with a zero adjoined.

Proof. Implications (1) \Rightarrow (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (4). By Theorem 2.3, it suffices to show that every cyclic right S-act is P-regular. Thus we consider a cyclic right S-act aS and let $A_s = aS \coprod S_s$. Since S_s is faithful, A_s is faithful, also A_s is generated by at most two elements, thus by assumption A_s is P-regular. Since aS is a subact of A_s , by (4) of Theorem 2.1, aS is P-regular as required.

(4) \Rightarrow (1). By Theorem 2.3, it is obvious. q.e.d.

Since regularity does not imply flatness in general, *P*-regularity also does not imply flatness in general, but as the following theorem shows, for regular monoids *P*-regularity implies flatness.

Theorem 2.8. Let *S* be a regular monoid. Then every *P*-regular right *S*-act is flat.

Proof. Suppose that S is a regular monoid, ${}_{S}M$ is a left S-act and A_{S} is a P-regular right S-act. Let

 $a \otimes m = a' \otimes m'$ in $A \otimes_S M$ for $a, a' \in A_S$ and $m, m' \in {}_S M$. We show $a \otimes m = a' \otimes m'$ holds also in $A \otimes_S (Sm \cup Sm')$. Since $a \otimes m = a' \otimes m'$ in $A \otimes_S M$, we have a tossing

$$s_1m_1 = m$$

$$as_1 = a_1t_1 \qquad s_2m_2 = t_1m_1$$

$$a_1s_2 = a_2t_2 \qquad s_3m_3 = t_2m_2$$

$$\dots \qquad \dots$$

$$a_{k-1}s_k = a't_k \qquad m' = t_km_k$$

of length k, where $s_1, \dots, s_k, t_1, \dots, t_k \in S$, $a_1, \dots, a_{k-1} \in A_S$, $m_1, \dots, m_k \in {}_S M$. If k = 1, then we have

$$s_1 m_1 = m$$
$$as_1 = a't_1 \quad m' = t_1 m_1.$$

Since *S* is regular, the equality $as_1 = a't_1$ implies that $a't_1 = a't_1s'_1s_1$, for $s'_1 \in V(s_1)$. Since A_s is *P*-regular, there exist $a'' \in A_s$ and $u, v \in S$ such that a' = a''u = a''v and $ut_1 = vt_1s'_1s_1$. From the last equality we obtain $um' = ut_1m_1 = vt_1s'_1s_1m_1 = vt_1s'_1m$. Since $m = s_1m_1$, we get $s_1s'_1m = m$, and so we have

$$a \otimes m = a \otimes s_1 s_1' m = a s_1 \otimes s_1' m = a' t_1 \otimes s_1' m$$

= $a'' u t_1 \otimes s_1' m = a'' v t_1 \otimes s_1' m = a'' \otimes v t_1 s_1' m$
= $a'' \otimes u m' = a'' u \otimes m' = a' \otimes m'$

in $A \otimes_{S} (Sm \cup Sm')$.

We now suppose that $k \ge 2$ and that the required equality holds for every tossing of length less than k. From $as_1 = a_1t_1$ we obtain equalities $a_1t_1 = a_1t_1s_1's_1$ for $s_1' \in V(s_1)$ and $as_1 = as_1t_1't_1$ for $t_1' \in V(t_1)$. Since A_s is *P*-regular, there exist $a_1'', a_2'' \in A_s$ and u_1, u_2 , $v_1, v_2 \in S$ such that $a_1 = a_1'u_1 = a_1'v_1$, $u_1t_1 = v_1t_1s_1's_1$ and $a = a_2''u_2 = a_2''v_2, u_2s_1 = v_2s_1t_1't_1$. Thus we have the following tossing

$$u_2 s_1 m_1 = u_2 m$$

$$a_2'' u_2 s_1 = a_1'' u_1 t_1 \quad u_1 s_2 m_2 = u_1 t_1 m_1$$

of length 1 and

$$u_{1}s_{2}m_{2} = u_{1}t_{1}m_{1}$$

$$a_{1}''u_{1}s_{2} = a_{2}t_{2} \quad s_{3}m_{3} = t_{2}m_{2}$$
...
$$a_{k-1}s_{k} = a't_{k} \quad m' = t_{k}m_{k}$$

of length k-1.

From the tossing of length 1, we have $a_2'' \otimes u_2 m = a_1'' \otimes u_1 s_2 m_2$ in $A \otimes_S M$, and so we have

 $a_{2}^{"} \otimes u_{2}^{"} m = a_{1}^{"} \otimes u_{1}^{"} s_{2}^{"} m_{2}^{"}$ in $A \otimes_{s}^{s} (Su_{2}m \bigcup Su_{1}s_{2}m_{2})$. Since

$$u_1 s_2 m_2 = u_1 t_1 m_1 = v_1 t_1 s_1' s_1 m_1 = v_1 t_1 s_1' m \in Sm,$$

we have $a_2'' \otimes u_2m = a_1'' \otimes u_1s_2m_2$ in $A \otimes_s (Sm \bigcup Sm')$. Also from the tossing of length k - 1, we have

 $a_1'' \otimes u_1 t_1 m_1 = a' \otimes m' \quad \text{in} \quad A \otimes_S M \text{ . Thus we have} \\ a_1'' \otimes u_1 t_1 m_1 = a' \otimes m' \quad \text{in} \quad A \otimes_S (Su_1 t_1 m_1 \bigcup Sm') \text{ Since} \\ u_1 t_1 m_1 = v_1 t_1 s_1' m \in Sm, \end{cases}$

we have $a_1'' \otimes u_1 t_1 m_1 = a' \otimes m'$ in $A \otimes_S (Sm \bigcup Sm')$, and so

$$a \otimes m = a_2'' u_2 \otimes m = a_2'' \otimes u_2 m = a_1'' \otimes u_1 s_2 m_2$$
$$= a_1'' \otimes u_1 t_1 m_1 = a' \otimes m'$$

in $A \otimes_{S} (Sm \cup Sm')$ as required. q.e.d.

3. Characterization by *P*-Regularity of Right Rees Factor Acts

In this section we give a characterization of monoids by *P*- regularity of right Rees factor acts.

Theorem 3.1. Let S be a monoid and K_s a right ideal of S. Then S/K_s is P-regular if and only if

 $K_s = S$ and S is right reversible or $|K_s| = 1$ and all principal right ideals of S satisfy Condition (P).

Proof. Let K_s be a right ideal of S and suppose that S/K_s is P-regular. Then S/K_s satisfies Condition (P) If $K_s = S$, then by ([2, III, 13.7]), S is right reversible, otherwise by ([2, III, 13.9]), $|K_s| = 1$, and so $S/K_s \cong S$. Thus by (2) of Theorem 2.1, all principal right ideals of S satisfy Condition (P).

Conversely, suppose that K_s is a right ideal of S. If $K_s = S$ and S is right reversible, then by (1) of Theorem 2.1, $S/K_s \cong \Theta_s$ is P-regular. If $|K_s| = 1$ and all principal right ideals of S satisfy Condition (P), then by (2) of Theorem 2.1, $S/K_s \cong S$ is P-regular. q.e.d.

Although freeness of acts implies Condition (P) in general, but notice that freeness of Rees factor acts does not imply *P*-regularity, for if $S = \{0,1,x\}$, with $x^2 = 0$, and $K_s = 0S$, then $S/K_s = S/0S \cong S_s$ as a Rees factor act is free, but as we saw before, S_s is not *P*-regular.

Now let see the following theorem.

Theorem 3.2. Let S be a monoid and (U) be a property of S-acts implied by freeness. Then the following statements are equivalent:

1) All right Rees factor S-acts satisfying property (U) are *P*-regular.

2) All right Rees factor S-acts satisfying property (U) satisfy Condition (P) and either S contains no left zero or all principal right ideals of S satisfy Condition (P).

Proof. (1) \Rightarrow (2). By definition all right Rees factor *S*-acts satisfying property (*U*) satisfy Condition (*P*). Suppose now that *S* contains a left zero z_0 . Then $K_s = z_0 S = \{z_0\}$ is a right ideal of *S*, and so

 $S/K_s \cong S_s$. Since S_s is free, S_s is *P*-regular, by assumption, and so all principal right ideals of *S* satisfy Condition (*P*).

(2) \Rightarrow (1). Let S/K_s satisfies property (U) for the right ideal K_s of S. Then by assumption S/K_s satisfies Condition (P). Now there are two cases as follows:

Case 1. $K_s = S$. Then $S/K_s = \Theta_s$, and so by ([2, III, 13.7]), S is right reversible, thus by (1) of Theorem 2.1, $S/K_s = \Theta_s$ is *P*-regular.

Case 2. K_s is a proper right ideal of S. Then by ([2, III, 13.9]), $|K_s| = 1$. Thus $K_s = \{z_0\}$, for some $z_0 \in S$, and so z_0 is left zero. Thus by assumption all principal right ideals of S satisfy Condition (P), that is

 $S/K_s \cong S_s$ is *P*-regular. q.e.d.

Corollary 3.1. For any monoid *S* the following statements are equivalent:

1) All right Rees factor S-acts satisfying Condition (P) are P-regular.

2) All WPF right Rees factor S-acts are P-regular.

3) All *PF* right Rees factor *S*-acts are *P*-regular.

4) All SF right Rees factor S-acts are P-regular.

5) All projective right Rees factor S-acts are P-regular.

6) All Rees factor projective generators in Act-S are *P*-regular.

7) All free right Rees factor *S*-acts are *P*-regular.

8) S contains no left zero or all principal right ideals of S satisfy Condition (P).

Proof. By Theorem 3.2, it is obvious. q.e.d.

Corollary 3.2. For any monoid *S* the following statements are equivalent:

1) All WF right Rees factor S-acts are P-regular.

2) All flat right Rees factor *S*-acts are *P*-regular.

3) S is not right reversible or no proper right ideal K_s , $|K_s| \ge 2$ of S is left stabilizing, and if S contains a left zero, then all principal right ideals of S satisfy Condition (P).

Proof. It follows from Theorem 3.2, ([2, IV, 9.2]), and that for Rees factor acts weak flatness and flatness are coinside. q.e.d.

Corollary 3.3. For any monoid *S* the following statements are equivalent:

1) All *PWF* right Rees factor *S*-acts are *P*-regular.

2) *S* is right reversible, no proper right ideal K_s , $|K_s| \ge 2$ of *S* is left stabilizing, and if *S* contains a left zero, then all principal right ideals of *S* satisfy Condition (*P*).

Proof. It follows from Theorem 3.2, and ([2, IV, 9.7]). q.e.d.

Corollary 3.4. For any monoid *S* the following statements are equivalent:

1) All TF right Rees factor S-acts are P-regular.

2) Either S is a right reversible right cancellative monoid or a right cancellative monoid with a zero adjoined, and if S contains a left zero, then all principal right ideals of S satisfy Condition (P).

Proof. It follows from Theorem 3.2, and ([2, IV, 9.8]). q.e.d.

Corollary 3.5. For any monoid *S* the following statements are equivalent:

1) All right Rees factor S-acts satisfying Condition (WP) are P-regular.

2) *S* is not right reversible or no proper right ideal K_s , $|K_s| \ge 2$ of *S* is left stabilizing and strongly left annihilating, and if *S* contains a left zero, then all principal right ideals of *S* satisfy Condition (*P*).

Proof. It follows from Theorem 3.2, and ([3, Proposi-

tion 3.26]). q.e.d.

Corollary 3.6. For any monoid *S* the following statements are equivalent:

1) All right Rees factor S-acts satisfying Condition (*PWP*) are *P*-regular.

2) *S* is right reversible and no proper right ideal K_s , $|K_s| \ge 2$ of *S* is left stabilizing and left annihilating, and if *S* contains a left zero, then all principal right ideals of *S* satisfy Condition (*P*).

Proof. It follows from Theorem 3.2, and ([3, Corollary 3.27]). q.e.d.

Here we consider monoids over which *P*-regularity of Rees factor acts implies other properties.

Theorem 3.3. Let *S* be a monoid and (U) be a property of *S*-acts implied by freeness. Then all *P*-regular right Rees factor *S*-acts satisfy property (U) if and only if *S* is not right reversible or Θ_s satisfies property (U).

Proof. Suppose that *S* is right reversible. By (1) of Theorem 2.1, $\Theta_s \cong S/S_s$ is *P*-regular, and so by assumption Θ_s satisfies property (U).

Conversely, suppose S/K_s is *P*-regular for the right ideal K_s of *S*. Then there are two cases as follows:

Case 1. $K_s = S$. Then $S/K_s = \Theta_s$ is *P*-regular, and so by (1) of Theorem 2.1, *S* is right reversible.

Thus by assumption $S/K_s \cong \Theta_s$ satisfies property (U).

Case 2. K_s is a proper right ideal of \hat{S} . By Theorem 3.1, $|K_s| = 1$, and so $S/K_s \cong S_s$. Thus S/K_s is free, and so satisfies property (U). q.e.d

Corollary 3.7. Let *S* be a monoid. Then all *P*-regular right Rees factor *S*-acts are free if and only if *S* is not right reversible or $S = \{1\}$.

Proof. It follows from Theorem 3.3, and ([2, I, 5.23]). q.e.d.

Corollary 3.8. Let *S* be a monoid. Then all *P*-regular right Rees factor *S*-acts are projective if and only if *S* is not right reversible or *S* contains a left zero.

Proof. It follows from Theorem 3.3, and ([2, III, 17.2]). q.e.d.

Corollary 3.9. Let *S* be a monoid. Then all *P*-regular right Rees factor *S*-acts are strongly flat if and only if *S* is not right reversible or *S* is left collapsible.

Proof. It follows from Theorem 3.3, and ([2, III, 14.3]). q.e.d

Theorem 3.4. For any monoid *S* the following statements are equivalent:

1) All P-regular right Rees factor S-acts are WPF.

2) All P-regular right Rees factor S-acts are WKF.

3) All P-regular right Rees factor S-acts are PWKF

4) All *P*-regular right Rees factor *S*-acts are *TKF*.

5) *S* is not right reversible or *S* is weakly left collapsible.

6) *S* is not right reversible or for every left ideal *I* of *S*,

ker f is connected for every homomorphism

 $f:{}_{s}I \to {}_{s}S.$

7) *S* is not right reversible or for every $z \in S$, $ker \rho_z$

is connected as a left S-act.

Proof. Implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) are obvious.

(1) \Leftrightarrow (5). By Theorem 3.3, and ([4, Corollary 24]) it is obvious.

(2) \Leftrightarrow (6). By Theorem 3.3, and ([6, Proposition 8]) it is obvious.

(4) \Leftrightarrow (7). By Theorem 3.3, and ([6, Proposition 7]) it is obvious.

(4) \Rightarrow (1). By ([6, Proposition 28]),

 $WPF \Leftrightarrow (P) \land TKF$. Now if A_s is a *P*-regular right Rees factor *S*-act, then it is obvious that A_s satisfies Condition (*P*), also by assumption A_s is *TKF*, and so A_s is *WPF*. q.e.d.

Corollary 3.10. For any monoid *S* the following statements are equivalent:

1) Θ_{s} is WPF.

2) Θ_s is WKF.

3) *S* is right reversible and weakly left collapsible.

4) *S* is right reversible and for every left ideal *I* of *S*, ker *f* is connected for every homomorphism

$$f: {}_{s}I \rightarrow {}_{s}S.$$

5) S is right reversible and for every $z \in S$, ker ρ_z is connected as a left S-act.

Proof. Implication (1) \Rightarrow (2) is obvious.

(1) \Leftrightarrow (3). It is obvious by ([6, Corollary 24]).

(3) \Leftrightarrow (4) \Leftrightarrow (5). It is obvious by Theorem 3.4.

(3) \Leftrightarrow (4). It is obvious by ([6, Proposition 8]). q.e.d.

Corollary 3.11. Let S be a right reversible monoid. Then Θ_S is WPF if and only if Θ_S is TKF.

Proof. It is obvious that every WPF right S-act is *TKF*. If Θ_s is *TKF*, then by ([6, Proposition 7]), for every $z \in S$, ker ρ_z is connected as a left S-act, and so by Corollary 3.10 Θ_s is WPF. q.e.d.

REFERENCES

- J. M. Howie, "Fundamentals of Semigroup Theory," Clarendon Press, Oxford, 1995.
- [2] M. Kilp, U. Knauer and A. Mikhalev, "Monoids, Acts and Categories," W. de Gruyter, Berlin, 2000. <u>doi:10.1515/9783110812909</u>
- [3] V. Laan, "Pullbacks and Flatness Properties of Acts," Tartu University Press, Tartu, 1999.
- [4] V. Laan, "Pullbacks and Flatness Properties of Acts I," *Communications in Algebra*, Vol. 29, No. 2, 2001, pp. 829-850. doi:10.1081/AGB-100001547
- [5] P. Normak, "Analogies of QF-Ring for Monoids. I," *Tartu Ülikooli Toimetised*, Vol. 556, 1981, pp. 38-46.
- [6] S. Bulman-Fleming, M. Kilp and V. Laan, "Pullbacks and Flatness Properties of Acts II," *Communications in Algebra*, Vol. 29, No. 2, 2001, pp. 851-878. <u>doi:10.1081/AGB-100001548</u>