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ABSTRACT

Mixed orthogonal arrays of strength two and size s™" are constructed by grouping points in the finite projective geome-
try PG(mn-1,s). PG(mn—1,s) can be partitioned into [(s”’” —l)/(s" —l)} (n—1) -flats such that each (n—1)-

Jmn

flat is associated with a point in PG(m—l,s"). An orthogonal array Ls'"" ((s” )(5 71)/ 8 I)J can be constructed by

using (s'”" —1)/(s” —1) points in PG(m—l,s”) . A set of (s’ —1)/(s—l) points in PG(m—l,s”) iscalleda (r-1)-
flat over GF(s) if it is isomorphic to PG (¢—1,s). If there exists a (7—1) -flat over GF(s) in PG(m—l,s" ), then we

can replace the corresponding [(s’—l)/(s—l)} s"-level columns in L,, [(Sn)(f'””—l)/(s"_l)j by [(s"—l)/(s—l)}

s™-level columns and obtain a mixed orthogonal array. Many new mixed orthogonal arrays can be obtained by this pro-
cedure. In this paper, we study methods for finding disjoint (t - 1) -flats over GF(s) in PG(m - l,s”) in order to con-

struct more mixed orthogonal arrays of strength two. In particular, if m and n are relatively prime then we can con-
My i(x" 71) i(x'"fl) (Smn _ 1)(S _ 1)
() e
e

and 1024 are obtained by using PG(7, 2), PG(8, 2) and PG(9, 2) respectively.

struct an L forany 0<i< . New orthogonal arrays of sizes 256, 512,

mn
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Tight

1. Introduction asymmetric or mixed. Symmetric orthogonal arrays have
been constructed in [1-3]. Mixed orthogonal arrays were
introduced in [4], and they have drawn the attentions of
many researchers in recent years. Methods for construct-
ing mixed orthogonal arrays of strength two have been
developed in [5-9], and many other authors. These meth-
ods use Hadamard matrices, difference schemes, gener-

alized Kronecker sums, finite projective geometries, and

Orthogonal arrays of strength two are used as orthogonal
main-effect plans in fractional factorial experiments. In
an orthogonal main-effect plan, the main effects of each
factor can be optimally estimated assuming the interac-
tions of all factors are negligible.

Let L, (s,---s,) denote an orthogonal arrays of strength

two with N rows, k& columns, and s; levels in the ith col-
umn for i=1,---,k.Inevery N x 2 subarray of

Ly (s,-++s;), all possible combinations of levels occur
equally often as rows. It is known that N —1> (s, 1)
in an L, (slu-sk) and the orthogonal array is called
tight if the equality holds. Orthogonal array L, (s,---s, )
is called symmetric if s, =---=3s, , otherwise it is called

Copyright © 2012 SciRes.

orthogonal projection matrices. We refer to [10] for more
constructions and applications of orthogonal arrays.

The method of grouping was used in [11] to replace
three two-level columns in symmetric orthogonal arrays
by one four-level column for constructing mixed or-
thogonal arrays having two-level and four-level columns.
A systematic method [12] was developed for identifying
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disjoint sets of three two-level columns for constructing
Ly(2"4"). The method was generalized in [6] for con-

structing L, (sm (s’l )nl ---(s" )nt), where s is a prime

power. Mixed orthogonal arrays of strength ¢ were con-
structed by using mixed spreads of strength ¢ in finite
geometries in [13]. This method was also independently
discovered in [14] for constructing mixed orthogonal
arrays of strength three and four. Orthogonal arrays con-
structed by this method are called geometric. Geometric
orthogonal arrays L64(8647), L64(83414), L64(8441025) and
Les(8'4'2%) were constructed in [13]. However, the
method is restricted to constructing mixed orthogonal
arrays with the number of levels in each column a power
of 2. In this paper, we shall use finite projective geome-
tries to develop a general procedure for constructing
more mixed orthogonal arrays. Moreover, the procedure
allows us to construct mixed orthogonal arrays with the
number of levels in each column a power of any given
prime number. We start with a symmetric orthogonal

array Lsm,, ((S")(Sm_l)/ (S”_l)j, and then construct mixed

orthogonal arrays by replacing a group of columns with
another group of columns. Our grouping method uses
properties of finite projective geometries, which is dif-
ferent from the grouping method in [6]. Hence we are
able to obtain some new series of mixed orthogonal ar-
rays.

2. Geometric Orthogonal Arrays

For > 1 and s a prime power, let PG(r—1,s) denote
the (r-1)-dimensional finite projective geometry over
the Galois field GF(s). A point in PG(r-1,s) is de-
noted by an r-tuple (xl,m, xr), where x;’s are elements
of GF(s) and at least one x; is not 0. Two r-tuples repre-
sent the same point in PG (r—1,s) if one is a multiple

of the other. Hence there are (s’ —1) /(s—l) points in
PG(r-1,s). A (t—1)-flat in PG(r—1,s) is a set of
(s‘ - 1) / (s—1) points which are linear combinations of

independent points. A spread F of (z—1) -flats of
PG(r- l,s; is a set of (¢—1)-flats which partition
PG(r—1,s). It is known [15] that there exists a spread F
of (t—1)-flats of PG(r—1,s) ifand only if 7 divides r.
We call a set of flats F ={F,,--, F,} a mixed spread
of PG(r-1,s) ifitpartitions PG(r—1,s) and at least
two flats in F have different dimensions. Mixed spreads
are useful for constructing mixed orthogonal arrays of
strength two. Specifically, we give the following theorem
for constructing an orthogonal array from a (mixed)
spread. The theorem is the special case of strength two of
Theorem 2.1 [14] in finite projective geometry’s lan-

guage.

Copyright © 2012 SciRes.

Theorem 1. Let F ={F,---,F,} be a (mixed) spread
of PG(r—l,s) , where F;is a (tl. 71) -flat for
i=1,---,k. Then we can construct an orthogonal array

() ()

We now describe the procedure to construct the or-
thogonal array in Theorem 1. For i=1,---,k, let G; be an
r % t; matrix such that the #; columns are any choice of ¢
independent points of the (#,—1)-flat F;. Let G be the

rx )t matrix [G,,--,G.].The L, ((s")m(s’k )) con-

sists of s" rows which are the elements of the row space
of G, where the #; s-level columns of G; is replaced by an
s" -level column for each i=1,---,k . We call orthogonal
arrays geometric if they can be obtained by Theorem 1.
Geometric orthogonal arrays have been constructed in [1,
9,13,16]. Examples of geometric orthogonal arrays are:

b L, [S(s"l)/cij :

2) L, ( s’ j if ¢ divides r;
3) L [ ’ j if r > 2t; and
4) L ( s’ ‘ ) where,

=g (s —1)/(st—1)—sj+1,

l:st(sj—l)/(s—l), r=it+j, 0 <j<t.

3. Main Results

It is proved in Lemma 12 [13] that if V', V,, V; are three
disjoint (n—1)-flats of PG(2n—1,2) then their union
can be regrouped into 2" — 1 disjoint 1-flats. Hence three

2"-level columns in an L,, ((2" )2 +]j can be replaced

by (2" —1) 4-level columns. By applying this result to a
spread of 2-flats of PG(5, 2), Les(8°47) and Ley(8°4')
were constructed. Generalizing the idea, we would like to

find a sufficient condition that a set of [(st —1)/(s —1)}

(n—1)-flats in PG(mn—1,s) can be regrouped into a

set of [(s" —1)/(s —1)] (1-1) -flats.

Since there exists a spread of (n—1) -flats of
PG(mn—1,s), we can, by Theorem 1, construct an

mn

L, ((Sn )(s 1)/(v')) If there exist [(St—l)/(S—l)J

(n—1)-flats in the spread such that their union can be
regrouped into [(s" —1)/(3—1)} (t—l) -flats, then we

can replace the corresponding [(s’ —1) / (s —I)J s"-level
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columns in the L,, ((Sn)(smnl)/(s”l)j by

[(s" —1)/(s - 1)] s™-level columns and obtain an

s 71;?’71 s"-1
L . (Sn ) o1 s-l (Sl ) s—1
s

many orthogonal arrays can be obtained.
First we would like to establish a one-to-one corre-

spondence between the (s”"’ —1)/(s" —1) disjoint (n—1) -
flats in PG (mn—1,s) and the
(s”’” —l)/(s" —1) points in PG(mn—l,s”) .Letw be a

primitive element of GF(s") and let the minimum poly-
nomial of GF (s”) be 0" +a, @+ t+ao+ a,
where ¢, --,a, , are elements of GF(s). The compan-
ion matrix of the minimum polynomial is an # X n matrix

J . By repeating this process,

0 1 0o - 0
0 0 1 - 0
W= : : o :
0 0 0o - 1
—Q, —0 —0, @, |

If w is a primitive element of GF (s”) , then
0,1, w, -, ? are the s" elements of GF(s"). The
elements of GF (s”) can be represented by n X n ma-
trices with entries from GF(s). The element ' is repre-
sented by 7, and the elements 0 and 1 are represented by
the zero matrix and the identity matrix respectively. De-
note the matrix representation of an element x in

GF(S") by W(x). Let each point (xl,u- X, ) in

PG
PG(mn - l,s) which consists of points that are linear
combinations of row vectors of the n X mn matrix

[W(xl),m,W(xm )} over GF{(s). It can be shown that

m—1,s" ) correspond to the (n - 1) -flat in

the [(s'"” —1)/(s" —1)] (n—1) -flats corresponding to
the [(s”’” —1)/(s" —1)} points of PG(m —l,s") parti-
tion PG(mn—1,s). This establishes a one-to-one corre-
spondence between the (s’"" - 1) / (s" - 1) disjoint
(n—1)-flatsin PG(mn—1,s) and the

(s"’” —1)/(s" —1) points in PG(m—l,s”) .

Definition 1. A set of (s' —1)/(s—1) points in
PG(m —l,s") is said to be a (7 1) -flat over GF(s) if it
is possible to find coordinates for this set of
(s’ —1) / (s—1) points such that it is isomorphic to

PG(t-1,s) over GF(s).

Copyright © 2012 SciRes.

Note that whether a set of (s' - 1)/(3 - 1) points in
PG(m—l,s”) is isomorphic to PG (t—1,s) over GF{(s)
depends not only on the choice of the points but also on
the choice of the coordinates for these points. For exam-
ple, the set S, = {(l,a)),(a), @ ),((03,1)} in Example 1
(given after Theorem 2) is an 1-flat over GF(2) in
PG(1,8) since it is isomorphic to PG (1,2) over GF(2).
But if we choose different coordinates for
NE {(l,a)),(l, a)z),(l, o' )} , then it is not isomorphic to
PG(I,Z) over GF(2). Hence it is important to specify
the correct coordinates when a (7 —1) -flat over GF(s) in
PG(m—l,s”) is mentioned. Also we note that it is pos-
sible to have #>m fora (7-1)-flat over GF(s) in
PG(m - l,s”) . For example, S; and S, in Example 2
(given after Theorem 2) are 2-flats over GF(2) in
PG(1,16).

We now give a sufficient condition that a set of
(s’ —1)/(s —1) disjoint (n—1)-flats in PG(mn-1,s)
can be regrouped into a set of (s” —1)/(s—1) disjoint
(t-1) -flats.

Theorem 2. 4 set of (s’ —1)/(s —1) disjoint (n —1) -

flats in PG(mn—l,s) can be regrouped into a set of

(s” - l)/(s —1) disjoints (t—1)-flats, if the set of
(s’ - 1)/(s —1) corresponding points in PG(m -1,5" )
isa (t - 1) -flat over GF(s).

Proof. Let the coordinates of the (s’ —l)/(s —1) cor-
responding points of the (t - 1) -flat over GF(s) in
PG(m—l,s”) be (xlj,m X ) for

> mj

j= 1,--~,<s’ —1)/(s—1). Also let L be an
[(s" —1)/(s—1)}<n matrix such that the rows are the

points of PG(n—1,s). Then the (n—1)-flatin
PG(mn—1,s) corresponding to the point (xl o -,xmj)
consists of points which are the rows of the

[(s" - 1)/(s - 1)} xmn matrix
M, :L[W(xlj),---,W(xmj)] , where W(x) is the n x n
matrix representation of x. We can verify that for each
i= 1,-~~,(s” —1)/(s—1), the set of (s’ —1)/(s—1) points
which consists of the ith rows of M,,---,M (-1 /(H) isa
(t—1)-flat in PG(mn-1, s). 0

Note that in general there are more ways of regrouping
a set of (s’ —1)/(s—1) disjoint (n—1)-flats in
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PG(mn-1,s) into disjoint flats if the (st—l)/(s—l)
corresponding points in PG(m—l,s”) is a (r-1)-flat

over GF(s). Let P; be the point in PG(mn—1,s) with
the ith row of M; as its coordinates. The

[(s" —1)/(s —1)]><|:(St —1)/(s —1)} array of points

P= [PJ has the following properties:

1) Each row (column) of P is a (z—1)-flat ((n—1)-
flat).
2) If (s“ —1) /(s—l) points in a given row (column)

form a (u—l) -flat, then the (s" —1)/(s—1) points at

the same positions in any other row (column) also form a
(u - 1) -flat.

For example, if there exists a 2-flat over GF(2) in
PG(1, 16), then each of the 7 points in the 2-flat over
GF(2) corresponds to 15 points in PG(7, 2). The 105
points in PG(7, 2) corresponding to the 2-flat over GF(2)
in PG(1, 16) can be arranged into a 15 X 7 array such that
each row is a 2-flat and each column is a 3-flat. Since a
3-flat can be partitioned into five 1-flats, the 15 x 7 array
of points can be partitioned into five 3 x 7 subarrays such
that each column is a 1-flat and each row is a 2-flat. Also,
consider a 15 x 3 subarray of the 15 x 7 array such that
each row is a 1-flat. We can select a 7 x 3 subarray such
that each column is a 2-flat. Each of the remaining eight
rows is a 1-flat. Hence the 15 x 3 subarray can be parti-
tioned into three 2-flat and eight 1-flats. Therefore, these
105 points can be grouped into: 1) (7—i) 3-flats and 5i
1-flats for i=0,---,7;2) (15-3i) 2-flats and 7i 1-flats
for i=0,---,5; or 3) four 3-flats, three 2-flats, and eight
1-flats.

Example 1. Let 0,1,m,--,0° be the 8 elements of
GF(8) with @’ =w+1. Consider PG(1, 8) with nine
points (0, 1), (1, 0), (1, 1), (1, ®), (1, &%), (1, &), (1, "),
(1, ) and (1, ®°). Each point of PG(1, 8) corresponds to
a 2-flat in PG(5, 2), and the nine 2-flats partition PG(5,
2). We can construct an Le(8”) by Theorem 1. Let

S, ={(1,a)),(a),a)3),(a)3,1)},
S, = {(1, af),(af,w),(m,l)} ,and
5, ={(0.1).(10).(L)}.

We can verify that S;, S,, and S; are disjoint 1-flats over
GF(2) in PG(1, 8). The 3 x 3 matrix representation W of
o and the 7 x 3 matrix L given in the proof of Theorem 2
are

01 0 10010117
W={0 0 1];L=[0 10111 0].
110 0010011

The three points of S| correspond to the three 2-flats in
PG(5, 2) which are rows of the following three matrices
M3, Mo, and M3 respectively.

100010
010001
001110
M, =L[W(1).W(o)]=1 1 0 0 1 1|,
01 1 111
111101
101 1 0 0
01 0 1 1 0]
001011
1101 11
M, =L (@)W (e’)]=]0 1 1 1 0 1],
111100
101010
1 000 0 1]
1 1.0 1 0 0]
011010
111001
My=L|w (&)W (1)]=1 0 1 1 1 0]
1000 11
0101111
001 1 0 1

We observe that for each i=1,---,7, the ith rows of
My, M,, and M3 are three points of a 1-flat in PG(S, 2).
Hence we can replace the three 8-level columns corre-
sponding to S; in Le(8”) by seven 4-level columns to
obtain an L(8°4"). Continuing this procedure, we can
replace the three 8-level columns corresponding to S, in
Le4(8°47) by seven 4-level columns to obtain an Le(874'%).
i

Note that L64(8647) and L64(83414) were also construct
in [13] using a different method. However, Theorem 2 is
more versatile as shown in following example.

Example 2. Let 0,1,m,--,0" be the 16 elements of
GF(16) with ' =w+1. Consider PG(1, 16) with 17
points (0, 1), (1, 0), (1, 1), (1, w), ---, (1, »"*). Each
point of PG(1, 16) corresponds to a 3-flat in PG(7, 2),
and the seventeen 3-flats partition PG(7, 2). We can con-
struct an L,s¢(16'") by Theorem 1. Let

5, ={(107). (00 (070701 (0707 ) (0 07) (0" ).

S, = {(1,0)12),(a),af),(a)z,(z)),((o“,a)m),(a)s,a)"’),(a)g,a)”),(a)lo,a)8 )},

Copyright © 2012 SciRes.
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T, ={(0,1),(1,0),(L1)}, 7, :{(1,50),(@,&,4)’(0,4,1)},T3 :{(1,0,2),(0,2,608)’(@8’1)},

We can verify that S; and S, are disjoint 2-flats and
1,,---,T, are disjoint 1-flats over GF(2) in PG(1, 16).
Moreover, S, Sy, and 7 partition PG(1, 16). By the dis-
cussion following Theorem 2, we can replace the subar-
ray L256(167) corresponding to S; or S, in L256(1617) by
Lyse(16*8%4%) or Lys6(8'77'47), 0 < i < 5. Similarly, we can
replace the subarray Lyss(16°) corresponding to 7},---,7}
in Lys6(16'7) by L,s¢(8°4"). Many mixed orthogonal arrays
such as Lyss(16'°8"%), Ly56(16'8%%), L,s6(16'°8'%47),
Lose(16'98°4%), L,56(16'8°4%), L,56(1678'%4%),
Lyse(16''8°4'°), ... can be obtained by this procedure. O

4. Construction of More Orthogonal Arrays

In this section, methods for finding disjoint flats over
GF(s) in PG(m—l,s”) are developed to construct

more orthogonal arrays. Let o be a primitive element of
GF(s™), and let the m x m matrix representation of a in

GF{(s) be W. Since a(sm)/ . is an element of GF{(s)

$m-1

)/ (=1) is the matrix representation of
a(w “1}fts=n

1,, is the m x m identity matrix. Then for any fixed point
x=(x,",x,) in PG(m—l,s"),the set

and W(
a(‘ ") f(s1) , we have W(SM)/ 6 I, , where

> m

S. = {xWi Q2 O} contains at most (s'" —1)/(s—1) points
in PG(m—l,s") since xW(Sm_l)/(s_l)

(= xa(xm e I, = a(vufl)/ - ) and x represent the same
point. Moreover, if § and y are any elements of GF(s) and
xW and xW are elements of S, then

S
S

are three disjoint 1-flats over GF(2) in PG(1, 8). O

Example 4. Let w be a primitive element of GF(16)
with * = + 1, and let a be a primitive element of GF(4)
with &> = o + 1 and matrix representation ¥ given in
Example 3. The 17 points of PG(1, 16) can be partitioned
into the following flats over GF(2):

S(O,l) = {(0’1)’(1’1)’(1’0)} ’
S

= {000 (007, (01,
Sy = {1071 07) (001)

Copyright © 2012 SciRes.

T, {(1,&)4),(0)4,(0),(60,1)}, and T, = {(l,wg),(wg,a)z),(a)z,l)}.

LW +yxW/ = x(,b’Wi +yWw/ ) =xW' for some I, since

BW' + yW is the matrix representation of the element fa’

+yd of GF (s”’) . Sy has the structure of a flat over GF{(s)
in PG(m —l,s") since linear combinations of points in

S, are also points in S. In fact, S, is a (¢—1)-flat over

GF(s) in PG(m - l,s”) if and only if the number of
points in S, is (s‘ —1)/(s —1) for some integer 7. Now if
x and y are two points in PG(m -1,5" ) and

S, NS, # ¢, then there exist i and j such that xW"' = yI¥.

Wehave y=xW'"/ €S, , henceS, =S,

Theorem 3. Let x be a point in PG(m —l,s”) , and let
S, = {xW[ i 0} . Then Sy is a (t-1)flat over GF{(s)
in PG(m—l,s") if and only if the number of points in
S, is (s’ —1)/(s—1) for some integer t. Moreover, for
any two points x and y in PG(m—l,s”) either S, = S,
or S,NS,=¢. Hence PG(m—l,s”) can be parti-

tioned into disjoint sets of S,’s.

Example 3. We illustrate how we obtain the three dis-
joint 1-flats over GF(2) in PG(1, 8) in Example 1. Let @
be a primitive element of GF(8) with @’ =  + 1, and let
a be a primitive element of GF(4) with o> = a + 1 and

matrix representation
01
W= .
11

Then

o = {(0,1),(0,1)W,(0,1)W2} ={(0,1),(1,1),(1,0)} ,
) = {(l,a)),(l,a))W,(l,a))Wz} = {(l,a)),(a), 0)3),(@3,1)} ,and
i) = {(1,a)3),(1,a)3)W,(1,w3)W2}

- ) (00 0)

) = (b0 ) (o' 0) (1))
{(10"). (") (" 1)}

i) = {(1 o’ )} Jand 8 ) = {(1 ww)} .

The five disjoint 1-flats over GF(2) are TI},---,T; in
Example 2. o

Theorem 4. If s is a prime power and m and n are
relatively prime, then we can construct mixed orthogonal
arrays

S
(
S(l,w8

=
=
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mn
s

for i= 0,eo[ (s =1)(s=1) ] /[ (s" =1)(s" 1) ].

Proof. We can construct an L, ((s” )( )/ls l)j

L [(Sn )(‘?m"—l)/(sn _1)—f(sm -1)/(.;-1) (s'" )[(Sn_l)/(s_l)j

from PG(m—l,s”). From the proof of Theorem 4.3.6

[15], if m and n are relatively prime then S, is an
(m—-1) -flat over GF(s) in PG(m—l,s”) for every

point x in PG(m—l,s"). Hence PG(m—l,s") can be

partitioned into [(s'”" - 1)(s - I)J/[(s’" - 1) (s" - 1)]

(m—1) -flats over GF(s). Each S, represents
[(S'" - 1)/(s - 1)] s"-level columns in

L, ((S" )(sm_l)/ (S”_l)j, and by Theorem 2 it can be re-

placed by (s” —l)/(s —1) s"-level columns. O

The following result which follows from Theorem 4 is
a generalization of Theorem 4.

Corollary 1. If's is a prime power and d is the greatest
common divisor of integers m and n, then we can con-
struct mixed orthogonal arrays

L ((s Yl e ) gy /(m)j

O [ ey [

Proof. If d is the greatest common divisor of m and n,
then m/d and n/d are relatively prime. By substitut-
ing m, n, and s with m/d, n/d, and s* respectively in
Theorem 4, we obtain the mixed orthogonal arrays. O

By using Theorem 4 and Corollary 1, we obtain the
following new series of tight orthogonal arrays for any
prime power s.

6 i(sz—l) i(s3—l)

1 LS6 (53)53—1 o] (SZ) s

OSiSsz—s+l;

S0 i(szfl) ,'(X5,1)

2) Ly (ss)ss—l 51 (SZ) 1

OSiﬁ(s5+l)/(s+1);

g2 i(.v3—1) i(.y‘tl)
3) Lo|(s*) T (8) T,

0Si£(s4—s2+l)(s2—s+l);

Copyright © 2012 SciRes.

0<i<s'—s+1;
M i(sz—l) i(s7 —1)

5 L (37)s7—1 s-1 (SZ) s,

0Si£(s7 +1)/(s+l) ; and
RERY i(.v3—1) i(.ss—l)

6) L (SS)SS—I s-1 (s3) =

OSiS(slo +5° +1)/(s2 +s+1).
The following theorem gives a set of s — 1 disjoint
(n—1) -flats over GF(s) in PG(1, 5").
Theorem 5. For i=0,---,5s-2, let

T, ={(}/,a)i}/5'):}/e GF(S”)\{O}}, where o is a primi-
tive element of GF(S"). Then T,,---,T, ,,ares—1 dis-

Jjoint (n - 1) -flats over GF(s) in PG(1, s").
Proof. T; is a set of (s" —1)/(s—1) points in PG(1,

s"), since (ay, o' (a}/)x) (= a(y, o' ys)) represents the

same point for each nonzero element o of GF(s). To
show that T; is an (n—1)-flat over GF{(s), we prove that
any linear combination of elements in 7; is again in 7. If

(;/l,a)iyls),(yz,a)iyzs)eﬂ and al,azeGF(s"),then

@ (yl’wiylx)"'az (7270)[7;)
=(6¥17/1 +a,7,,0' (e +az7z)s)€7;~

For0<i<j<s-2,if (yl,a)iylx)eﬂ and

(yz,a)j ;/2") €T, represent the same points in PG(1, s"),

i, s—1

7 =@y Hence o' =(y,/y,)" . But
(n/7) " =" forsome 0<k< (s” —1)/(s—1)—1 ,

which contradicts 0 < i <j <s - 2. Hence 7; and T; are
disjoint forall 0 <i<j<s-2.0

Coradllary 2. szn ((S” )Sn +1—i(sn—l,1)/(s4) (S"-l )i(snl)/(sl)j

then o

can be constructed for any integer n, prime power s, and
i=1-,s—1.

Proof. We can construct an L.;z” ((s”)s +1j from PG(1,

s"). For each i=0,---,s—2,let T'cT, bean (n—2)-
flat over GF(s) in PG(1, s"). {T:i=0,---,s -2} is a set
of s — 1 disjoint (n-2)-flats over GF(s) in PG(1, s"). Then
for each T we replace the corresponding
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[(s"’l—l)/(s—l)] s"-level columns in L,, ((s”)smj

by [(s”—l)/(s—l)] s"!-level columns to obtain the
orthogonal array. O

Example 5. Let o be the primitive element of GF(16) with 0* = o + 1.

1, ={(r.7"): 7 € GF (16)\{0}} ={(1,1), (@,

2 4 36 4 8 510 6 12 714
J (@) (@.0°).(0.0) (0, 0"). (o 0"). (@ 0").

(a)s,a)),<a)9,w3),(a)w,a)s),(a)”,a)7),(a)12,a)9),(a)”,a)”),(a)”,a)”)}

is a 3-flat over GF(2) in PG(1, 16) and
- {(1,1),((0,(02

is a 2-flat over GF(2) in PG(1, 16). O

Note that we are able to find two disjoint 2-flats over
GF(2) in PG(1, 16) in Example 2 by trial and error.
However, we do not have a method to find more than s-1
disjoint (n-2)-flats over GF(s) in PG(1, s"). Withn =4, 5,
6 and 7 in Corollary 2, we obtain the following new se-
ries of tight orthogonal arrays for any prime power s and
i=L--,s—1.

b L, (( i )S“l-f(s’-l)/(f-l) (s ),-(54_1) j :

Theorem 6. For any integer n>2 and f3 GF(S" )\{0} s
,aﬂ) ye GF(S"),a e GF (s),(a

Tﬂ:{<7’7/

is an n-flat over GF(s) in PG(2, s").
However, for f # p, the n-flats over GF(s) T, and

T, are not disjoint in PG(2, s"). But if s = 2, we can

y22)

{
{(72,

T=
U
V=

Then we have

1) S and T are disjoint n-flats over GF(2) in PG(2, 2")
forn=>2.

2) T, U and V are three disjoint n-flats over GF(2) in
PG(2,2") if nis even.

Proof. By Theorem 6, S, T, U and V are n-flats over
GF(2) in PG(2, 2"). We now prove that S and T are dis-

joint. Assume that (71,0(160, ;/lz)eS and

(;/2,;/22,0:2)6 T represent the same point in PG(2, 2"),
where o, a, € GF(2) and y,,7, € GF(2") . Clearly,
aji, 0, y1, 72 # 0, hence a; = a, = 1 and (yl,a),yf) and

(7/2 o 1) represent the same point. We have

w/y, =y, and y, =1/y, , which imply w = 1, a contra-
diction. Hence S and T are disjoint. Now we show that T
and U are disjoint if n is even. If n is even then 3 divides

Copyright © 2012 SciRes.

{( y,am,y ) ;/eGF(Z"),aeGF(Z),(a
(7.7 ;/eGF(2”) a eGF(2),(a

{( @,y )/eGF(Z”),aeGF(Z),(a

(07,0 (0075, (o ) )] <

L, (( E )SS“-I'(S“*)/ (s-1) (s* )"(55-1)) :
3 L, [( §6 )Sé*‘*"(ssfl)/(sfl) (s )i(S"l)J and
L) e,

The following theorem gives an n-flat over GF(s) in

PG(2, s"). The proof is omitted since it is similar to that
of Theorem 5.

7)# (o,o)}

find more disjoint n-flats over GF(2) in PG(2, 2").
Theorem 7. Let @ be a primitive element of GF(2"),
and let

7)# (0,0)} ,
7)#(0,0)},

1y e GF(Z") ae GF(2),(a,7/)¢(0,0)} , and

7)#(0,0)}.

2"—1.Forany ye GF(Z" )\{O} ,7° = > for some
0<k< (2” —1)/3—1 . Assume that (}/2,)/22,0(2)6 T and
( ;/32,0530), 7/3) eU represent the same point in PG(2, 2"),
where a,,a; € GF(2) and 7,7, € GF(Z"). Clearly, ay,
as, 72, 73 # 0, hence a, = a3 = 1 and ()/2,7/22,1) and

(}/32,(0, }/3) represent the same point. We have y, = y3
and y; =/y,, which imply w=y, =@’ for some
0<k< (2” —1)/3—1 , a contradiction. Hence T and U are
disjoint. We can similarly prove that 7 and V are disjoint
and that U and V are disjoint if # is even. O

2n, .n

An L, (( )5 - +1j can be constructed from PG(2,

s"). By applying Theorems 2, 6, and 7, we obtain the fol-
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lowing orthogonal arrays.
Corollary 3. For any prime power s, we can construct

L, ((S,m )(S”*l)/(S*U( § )SZ”(S"S)/(“)} n>2:

2) Ly, ((2"” )ZHLZ (2" )22”342%3), n>2;and
3) L, [(22“1 y (22")24"'5'2"*4} n>1

Example 6. Let o be the primitive element of GF(8) with @’ = + 1. Let

(a) ®* 0) (0)2 * O) (a)3,a)6,0),(a)4,a),0),<a)5,0)3,0),(a)6,a)5,0),(0,0,1),

and

T:{ 1,0,1 ,(a),O,a)z),(a) ,0,0* ),(a)3,0,a)6),(a)4,0,a)),(a)5,0,a)3),(a)G,O,a)S),(O,a),O),

be two disjoint 3-flats over GF(2) in PG(2,8). An Ls;»(87)
can be constructed from PG(2,8). We can replace the
subarray Ls;»(8") corresponding to S or T'by an Ls;»(167)
to obtain Ls;»(168°%) and Ls;»(16'*8%). o

The following two examples are obtained by applying
Theorems 3 and 5 and by trial and error.

Example 7. Let w be the primitive element of GF(8)
with ® = + 1. Let

0),

(1,1,1),((1),0)2 1) (a) " 1) (af,0)6,1),(0)4,0),1),(0)5,a)3,1),(a)6,a)5,1)}
)
1

A4 = {(l,a),a)z),(o,l,a)z),(1,0)3,0)} ,
B ={(10*,0"),(0.10"),(1.&",0)},
G, ={(Lo",0),(0,10),(Lo",0)},

and W be the 3 x 3 matrix defined in Example 1. For
i=2,---,7,let 4; (or B;, C)) be the set obtained by multi-
plying each element in 4; (or B, C;) by W. For Example,

4, = {(l,w,a)z)W,(O,l,wz)W,(l,a)3,0)W} = {(a)z,a)",w),(a)z,wz,l),(o,l,w3 )} )

It can be verified that 4,,---,4,, B,,---,B,, C,---,C,,
and {(1,0,0),(0,1,0),(1,1,0)} are 22 disjoint I-flats over
GF(2) in PG(2, 8). An Ls»(8") can be constructed from
PG(2, 8). We can replace the subarray Ls;»(8°) corre-
sponding to each 1-flat over GF(2) in PG(2, 8) by an
Ls15(4") to obtain Ls;»(8* 4™ for i=1,---,22.0

Example 8. Let w be the primitive element of GF(32)
with @’ = w? + 1. An L1024(3233) can be constructed from
PG(1, 32).

1y

2)

{Cr
5 - o
{

o )(@0") (" 1), (0", 0™).(
o').(@0).(o",0"). (" 0”)],
1,0)2),(0),0) ),(a) ,1),((1) L0 ),(a),a) ),(a) s ),(a)”,a)g)},and

4y = {<1w)( )( }

are eleven disjoint 1-flats over GF(2) in PG(1, 32). We
can replace the subarray L4(32°) corresponding to each
1-flat over GF(2) in the L;0p4(32%) by an L;op4(16°4'%)
to obtain L;¢4(32**2'16*4'%) for i=1,---,11.

11 12
w ,0 )},

B, ={(l,af),(a),a)zs),(a)lg,a)”),(a)z,a)lg),(a)s,a)zo),<a)lg,w15),(a)”,a)zz)}

are four disjoint 2-flats over GF(2) in PG(1,32). We can
replace the subarray L;4,4(327) corresponding to each 2-

Copyright © 2012 SciRes.

flat over GF(2) in the L;024(32”) by an L;424(16'8'%) or an
Lio4(8%") to obtain L;04(32** 777167843V for 1 <i+j < 4.
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3)

C1 =B1 U{(a)})wm)’(ww’wn)’(we,a)z)’(a)n’wlz)’(wzo’wm)’(ws,we)’(wlz’w14)’(wz3’w5)} and

C2 :B2 U{(a)3,a)18),(a)zg,a)g),(a)s,a)lz),(a)27,a)26),(a)20,a)24),(a)g,a)ll),(0)12,0)17),(0)23,@6)}

are two disjoint 3-flats over GF(2) in PG(1,32), where B,
and B, are 2-flats over GF(2) in 2). Moreover, Cy, C,,
and 4; in 1) partition PG(1, 32). We can replace the su-
barray L;g4(32'%) corresponding to C; or C, in the
L1024(32%%) by an L;004(16**8") or an L;004(16°") to obtain
Lyooa(32°1678"), L1004(32°16%°8™), L;004(32'°16™),
L1024(32°16%%), and L,0,4(32°168"). o

5. Discussion
We use ¢-flats over GF(s) in PG(m—l,s”) to find dif-

ferent ways to regroup a set of (n—1) -flats in
PG(m—l,s") into disjoint flats. However, many prob-

lems remain unsolved. For example, we do not know
how many disjoint (n-2) -flats over GF(s) exist in
PG(1, s"). Since there are 5" + 1

(:(sz—s)(s"*l—1)/(s—1)+s+1) points in PG(1, s"),

the upper bound for the number of disjoint (n - 2) -flats
over GF(s) equals s°-s if n >4 and equals s* —s + 1 if n =
3. An obvious conjecture is that PG(1, s") can be parti-
tioned into (s2 —s) (n—2)-flats and one 1-flat over
GF(s). This conjecture is true for n = 3, since PG(1, s°)
can be partitioned into (sz —s+1) 1-flats over GF(s) by
Theorem 4. It is also true for s =2 and n =4, 5, which are
shown in Example 2 for n = 4 and shown in Example 8(3)
for n = 5. If the conjecture is true, we can construct an

Lo, ((Sn )S"”"’(S"*l‘l)/(s-l) (5”71 )i(sn_l)/(s_l)j for n > 3 and

i=1,--,s* —s, which would be a significant improve-
ment of Corollary 2.

Also we do not know how many disjoint n-flats over
GF(s) exist in PG(2, s"). The number of points in PG(2,
s") is

s" s 1= (s” —s"! )(s"+l - 1)/(s —1)+s"+5"" +1.

Hence an upper bound for the number of disjoint n-flats
over GF(s) in PG(2, s") is s" —s" " if n >3 and is s* — 5 +
1 if n = 2. The upper bound is attained for n = 2, since
PG(2, s") can be partitioned into (s°—s+1) 2-flats
over GF(s) by Theorem 4. In general, the difference be-
tween the upper bound and what can be obtained in
Theorems 6 and 7 is considerably large for n > 3. There
may be better ways to find disjoint n-flats over GF{(s) in
PG(2, s") than the approach used in Theorems 6 and 7.
So far, we do not know any example having s” — s ' dis-
joint n-flats over GF(s) in PG(2, s") for n > 3.

Another problem which cannot be solved by the ap-

Copyright © 2012 SciRes.

proach of this paper is the construction of orthogonal
arrays having s" rows, where n is a prime number. For
example, it is known that L128(161816) can be constructed
by a mixed spread of PG(6, 2), which consists of a 3-flat
and 16 2-flats . But it is not known that if it is possible to
find, among those 16 2-flats, disjoint sets of three 2-flats
such that each set can be regrouped into seven 1-flats.
We could construct an L128(161816'3i47i) if there exist i
such disjoint sets of three 2-flats.
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