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ABSTRACT 

Crew pairing is a sequence of flights beginning and ending at the same crewbase. Crew pairing planning is one of the 
primary processes in airline crew scheduling; it is also the primary cost-determining phase in airline crew scheduling. 
Optimizing crew pairings in an airline timetable helps minimize operational crew costs and maximize crew utilization. 
There are numerous restrictions that must be considered and just as many regulations that must be satisfied in crew 
pairing generation. The most important regulations—and the ones that make crew pairing planning a highly constrained 
optimization problem—are the the limits of the flight and the duty periods. Keeping these restrictions and regulations in 
mind, the main goal of the optimization is the generation of low cost sets of valid crew pairings which cover all flights 
in the airline’s timetable. For this research study, We examined studies about crew pairing optimization and used these 
previously existing methods of crew pairing to develop a new solution of the crew pairing problem using genetic algo- 
rithms. As part of the study we created a new genetic operator—called perturbation operator. Unlike traditional genetic 
algorithm implementations, this new perturbation operator provides much more stable results, an obvious increase in the 
convergence rate, and takes into account the existence of multiple crewbases. 
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1. Introduction 

Airline crew scheduling is defined as process of assign- 
ing crew members with a variety of flight qualifications 
to flight duties to ensure all flights in an airline’s timeta- 
ble are properly covered by the crew. The importance of 
optimum crew scheduling cannot be overstated as all 
airlines operate in a very complex environment. In addi- 
tion, with increasing competitiveness in the marketplace, 
airline companies are in a position to better manage their 
expenses using effective flight scheduling techniques. 
Additionally, crew costs are second only to fuel costs in 
terms of operational costs. 

Airline crew scheduling problems include different NP- 
Complete (non-deterministic polynominal) and combi- 
natorial subproblems. For instance, crew pairing can con- 
sist of millions of different combinations since a medium 
sized airline company might have hundreds of different 
connections at an airport. 

There are two different strategies used to solve crew 
scheduling problems. First, one solves the problem in 
just one phase (Crew pairing and crew rostering together) 
like in references [1] and [2]. However, the requirement  

of high calculation capabilities and an overlarge search 
space, reduces the probability of generating a feasible 
solution using an optimization algorithm. 

The second strategy is based on solving the problem in 
two phases. These phases are crew pairing and crew ros- 
tering. In this approach, the crew pairing problem is 
solved first. Crew pairing sets are generated that cover all 
flight legs in the airline’s timetable. Next the crew ros- 
tering problem is solved. In this second phase, the crew 
assignment is carried out for each crew pairing in the 
crew pairing sets. There are many constraints inherent in 
both of these phases, all implemented by Directorate 
General of Civil Aviation [3] or the airline company it- 
self. This situation turns the problems into highly con- 
strained optimization problems. 

Genetic algorithms can be understood as an intelligent- 
probabilistic search algorithm which can be applied to a 
variety of combinatorial optimization problems [4]. Theo- 
retical foundations of genetic algorithms were developed 
by Holland J. [5] with the inspiration of the evolutionary 
process seen in nature. During the evolutionary progress, 
the population of solutions evolves according to princi- 
ples of natural selection. In the population, better adapted 
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individuals have a higher probablity of survival than 
others, and less fit individuals are eliminated. In this way, 
during the evolutionary process, the genes (genetic in- 
formation) of individuals of good quality are transfered 
to new generations. Gene combinations of individuals of 
good quality may yield more fit individuals than them-
selves thus individuals of better quality can be produced 
during the evolution process. 

Genetic algorithms simulate this evolutionary optimi- 
zation process by applying genetic operators in the first 
generation which is produced randomly in following ge- 
nerations. Every individual in the population expresses a 
possible solution that is specific to the problem and is 
represented through chromosomes. Fitness value of every 
chromosome is calculated by the fitness (objective) func- 
tion which is used. Individuals of good quality transfer 
their genetic information to new generations with a re- 
production process which is implemented by crossover 
operator with other individuals of good quality. In this 
way, genetic information from the parents is transferred 
to child generations and new solutions are generated 
permanently. Mutation operator is applied with a small 
probablity on child chromosomes of every generation by 
changing some genes on them to avoid premature con- 
vergence. Finally, either child generation is replaced with 
old generation (generational approach) or individuals of 
good quality in the child generation are replaced with 
individuals of low quality in the old generation (steady- 
state approach). The whole process is repeated until a 
satisfactory solution was found. 

2. Related Works 

The crew pairing optimization problem constitutes the 
main focus of this study. The main goal of crew pairing 
optimization is the minimization of crew costs of an air- 
line company via searching optimized crew duty sched- 
ules. All crew member data resides at a crewbase and the 
crew pairings have to begin and end at these crewbases. 

Generally the crew pairing problem is solved in two 
phases. First, an enormous number of legal crew pairings 
are generated for each crewbase. To generate crew pair- 
ings, airlines use either column generation based methods 
(as seen in reference [6]) or iterative tree search algo- 
rithms (as seen in reference [7]). Column generation based 
methods generate crew pairings during optimization in 
progress. In this method, they mainly divide the whole 
problem into two separable (master and sub problem) pro- 
blems designed to produce high-quality solutions. This 
becomes a problem is the data base is too big which gen- 
erates huge columns and constraint matrices and become 
computationally much more expensive compared to pro- 
bablistic intelligent methods like genetic algorithms. 

The issue of these exact methods makes implementation 

of genetic algorithms more interesting. Nevertheless, im- 
plementing a column generation approach to huge integer 
programming problems (as seen in reference [8]) should 
be considered in an attempt to evaluate the quality of 
genetic algorithm solutions. A method which was devel- 
oped in reference [9] for abnormally large problems 
based on random pair generation with dept-first search 
algorithm can be applied. 

In this study, dept-first search method is used to gen- 
erate crew pairings (like those in reference [7]). In the 
second phase, the optimization process is completed. In 
this phase the best subset of generated crew pairings are 
searched and selected. The goal of this phase is to mini- 
mize crew costs and to cover all flights in the timetable 
of the airline. The crew pairing optimization problem is 
mostly modeled as a set-covering problem. Set-covering 
problems can be solved by using branch and bound or 
genetic algorithms based methods. Branch and bound 
based methods use highly complex and time consuming 
calculations. This makes it difficult in very large set-cover- 
ing problems. But genetic algorithms use an intelligent 
probabilistic search mechanism. This feature allows them 
to search a much larger search space in less time. 

Different genetic algorithm implementations were de- 
veloped to solve set-covering problems. As noted in ref- 
erence [4], Beasley and Chu used column based chro- 
mosomes, variable mutation rate, and a heuristic mecha- 
nism to repair chromosomes to solve the problem. In 
reference [7], Kornilakis and Stamatopoulos developed a 
crew pairing algorithm based on reference [4] and re- 
ported good results. And in reference [10], a row-based 
representation is used to solve a set-covering problem but 
the representation technique and operators used in this 
study make it difficult to cope with unfeasible chromo- 
somes. In study [11], another a row based model is pro- 
posed to solve the problem. This approach has given 
good results but it is based on a strong heuristic mecha-
nism using select appropriate colums according to the 
order of rows in a chromosome. There are also similar 
applications (as shown in study [12]) which use a special 
chromosome design. The idea they use is to keep the 
diversity of genes in chromosomes as high as possible by 
adding an unex- pressed part to them. In this study this 
method was also applied to the crew pairing problem 
with small modifica- tions and results can be seen in the 
experimental results section. 

Because of the probabilistic nature of the genetic algo- 
rithms it is not possible to guarantee finding global opti- 
mum. Mutation operator becomes too important to avoid 
getting stuck in local minima. In reference [4] a variable 
mutation rate is proposed. In the presented study variable 
mutation rate is also implemented in a similar way. Ad- 
ditionally, adaptation and application of perturbation ope- 
rator to crew scheduling problem and multibase ap- 
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proach can be considered the main improvement of this 
study. 

Perturbation operator technique is a local search me- 
thod used after the repair of a chromosome. This op- 
erator should not be used in every genetic iteration be- 
cause of the issue of premature convergence. As can be 
seen in the experimental results section, the perturbation 
operator increases the convergence rate; it is approxi- 
mately three times faster. Though the total calculations 
take more time compared to the cases without perturba- 
tion operator run, by using this approach the best cost 
values of genetic algorithm runs without perturbation 
operator is obtained in very early iterations. Another im- 
portant point that must be mentioned is the multibase crew 
pairing solution. The crew pairing generation phase, op- 
timization phase, and more importantly, fitness function is 
modified to implement a multibase crew pairing solution. 

Genetic Algorithms is also widely used in other airline 
scheduling and optimization problems. A good study on 
flight scheduling can be seen in reference study [13]. 

3. Fundamental Definitions and Concepts in  
Airline Crew Scheduling 

In this section some of the main definitions and con- 
straints about crew pairings are outlined. These are either 
identified by government regulations or airline company 
agreements. 

3.1. Flight Duty 

A flight duty is the time period consisting of one or more 
flight(s). There is always a specific preparation period 
before the first flight’s departure and an end period after 
the last flight’s arrival. These preparation and end peri- 
ods are also determined by regulations. After the end of a 
flight duty, the crew must have a predefined rest period. 
A sample flight duty with four flights is depicted in Ta- 
ble 1. 

Duration of flight duties constitutes one of the funda- 
mental constraints in the airline crew scheduling process 
and is limited by regulations. All flight duties generated 
in the flight duty generation phase must fit the Crew and 
Duty Regulations of Directorate General of Civil Avia- 
tion [3]. The maximum duration time of a flight duty 
depends on the range of flights it contains, implemented 
crew model (time period might be increased with crew 
augmentation), and number of landings. The time periods 
of normal and extended range flight duties can be seen in 
Tables 2 and 3 [3]. According to the regulations, for a 
flight duty to be accepted as an extended range flight 
duty, 4 hours of time slice or 8 hours of flight time must 
be passed. 

Table 1. Sample flight duty. 

Duty  
Start 

Duty  
End 

Departure 
Time 

Arrival 
Time 

Dep. 
Airport

Arr. 
Airport

25.03.07 
06:20  

25.03.07 
07:35 

25.03.07 
10:45 

IST GVA 

   
25.03.07 

11:45 
25.03.07 

14:45 
GVA IST 

   
25.03.071

6:00 
25.03.07 

17:00 
IST ESB 

 
25.03.07 

19:30 
25.03.07 

18:00 
25.03.07 

19:00 
ESB IST 

 
Table 2. Maximum duration of normal flight duty. 

Flight Duty Start Time 1 - 4 Landings 5 Landings 

05.00 - 14.00 14 hours 13 hours 

14.01 - 17.00 13 hours 12 hours 

17.01 - 04.59 12 hours 11 hours 

 
Table 3. Maximum duration of extended range flight duties. 

  Duration of Flight Duty 

With Normal Crew 14 hours 

With Crew Augmentation 16 hours 

With Crew Full Augmentation 18 hours 

3.2. Rest Period 

Rest period is the time period that starts after a flight 
duty and crew would be free for all kind of duty when 
they were in. The minimum duration of rest periods are 
showed in Table 4 [3]. 

3.3. Crew Pairing 

A crew pairing is a sequence of flights which begins and 
ends at a particular crewbase and consists of one or more 
flight duty(s). Unlike flight duties, crew pairings include 
rest periods. According to the regulations, a crew mem- 
ber cannot be away more than 10 days [3]. Therefore a 
crew pairing cannot last more than 10 days. A sample 
crew pairing which consists of two flight duties and four 
flights can be seen in Table 5. 

3.4. Dead-Head Flight 

If a crew member flies as a passenger instead of as a 
cockpit or as a cabin attendant, this flight is called as 
dead-head flight for that crew member. Dead-head flight 
is a factor that reduces passenger transport capacity and 
efficiency of crew utilization. Therefore minimization of 
the number of dead-head flights is always desirable in the 
scheduling process. Dead-h ad flights are encountered  e   
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Table 4. Minimum duration of rest periods. 

Duration of previous flight duty Min rest duration 

Until 6 hours 8 hours 

Until 11 hours (included) 10 hours 

Over 11 hours 12 hours 

Between 12 - 14 hours or more than 3 hours of Time Zone Variation 14 hours 

For Extended Rage FlightDuties 2 local night/36 hours 

 
Table 5. Sample crew pairing. 

Flight Duty Nr Flight Duty Start Flight Duty End Dep. Time Arr. Time Dep. Airp. Arr. Airp.

1 25.03.07  10:00   25.03.07  11:15 25.03.07  13:20 IST TLV 

      25.03.07  14:20 25.03.07  16:25 TLV IST 

    25.03.07  23:05 25.03.07  17:25 25.03.07  22:35 IST ALA 

Rest Period - - - - - - 

2 26.03.07  19:45 27.03.070  3:25 26.03.07 20:45 27.03.07 02:55 ALA IST 

Rest Period - - - - - - 

 
when there is a crew member who has to fly to another 
airport to complete a flight which starts from that airport. 

4. Solution of Crew Pairing Problem 

Generally, the crew pairing problem is solved in two 
phases because of the large size of search space (as can 
be seen in references [6] and [7]), and the constraints 
which convert the problem to a highly constrained non- 
linear optimization problem and objective function are 
satisfied. 

1) Crew pairing generation: In this phase, many legal 
crew pairings are generated using the airline’s timetable; 
for each crew pairing necessary values are carried out 
that will be used in calculating the objective function. 
There are some constraints that must be taken into ac- 
count for crew pairings to be considered legal crew pair- 
ings. While some of these constraints are spatial and 
temporal constraints, the rest of them are originated from 
Crew and Duty Regulations of Directorate General of 
Civil Aviation [3] or special implementations of the air- 
line company itself. 

2) Optimization: Among crew pairings generated in 
the previous phase, subsets of crew pairings are searched 
which minimize crew costs and cover all flights in the 
schedule at least once (over-covering indicates dead-head 
flights). 

The advantage of this approach is that the constraints 
are taken into account only during the first phase. There- 
fore the optimization becomes independent of constraints. 
In fact, once a large-size set of legal pairings has been 

generated, the second phase can be modelled as a set 
covering problem, a widely known combinatorial opti- 
mization problem [7]. 

4.1. Crew Pairing Generation 

Input data of the crew pairing generation process is the 
set of flightsFwhich is taken from airline flight schedule. 
System constraints are defined as a function  

 : 2 0,1FC  . Here crew pairing p is a legal crew pair- 
ing if   1C p   and is not legal if . The pur- 
pose of this phase is to obtain a set of all feasible crew 
pairings 

  0C p 

  2 1F C pP p    [7]. 
Considering the size of the problem however, it is not 

efficient nor is it possible to enumerate all feasible crew 
pairings. For instance if  then it requires 21000 
crew pairings be evaluated. At the same time, generation 
of too many crew pairings naturally increases the diffi- 
culty of the optimization phase. Therefore, in this phase 
as few crew pairings as possible are generated which 
allows preservation of the robustness and the quality of 
the solution. 

1000F 

In this study, crew pairing sets were generated using a 
dept-first search algorithm (like in reference [7]) in the 
genetic optimization phase. The dept-first search algo- 
rithm is used in phase two of crew pairing generation in a 
similar manner. First, flight duties are generated from all 
available flights. Then crew pairings are generated from 
flight duties with a similar method after duty generation. 
There is one important difference in the presented ap- 
proach; in the second crew pairing, the generation phase 
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is repeated for every crewbase for a multibase solution. 

4.2. Optimization 

In the optimization phase, subsets of crew pairings which 
satisfy all crew needs and minimize the objective func- 
tion are searched among generated crew pairings created 
in the previous phase. This process should be modelledas 
a set-covering problem and solved with genetic algo- 
rithms. 

If one considers that F is the set of flights which ap- 
pears in the flight schedule and P is the set of crew pair- 
ings, then the set-covering model for crew pairing prob- 
lem can be formulated as follows [14]. 

min p p
p P

c x

                 (1a) 

:

1p
p i p

x i F


                 (1b) 

 0,1px p P                 (1c) 

In the Equation 1(a), pc  indicates cost value for each 
crew pairing in P and px  is the decision variable which 
indicates whether the crew pairing is in the solution set. 
Hence, Equation 1(a) gives the total cost of the solution. 
Equation 1(b) is an inequality constraint which guaran- 
tees the full covering of all flights in F. If Equation 1(b) 
gives a value greater than 1 for a flight in F in other 
words if the solution set has more than one crew pairing 
which covers a flight, that flight is a dead-head flight. 
Additional cost will be added for dead-head flights as 
described in fitness function section. And Equation 1(c) 
represents standart constraints for the problem. 

Widely used methods for solution of set-covering 
problem are branch and bound based methods and ge- 
netic algorithms. Although branch and bound based me- 
thods could converge to more exact values, set-covering 
problems of a medium sized airline company may have 
approximately 5000 of rows and 100,000 of columns. 
Because of the nature of the problem, approximate me- 
thods (like in reference [15]) are developped. With this 
kind of method a much higher convergence rate is ob- 
tained for the solution of very large problems like 10000 
of rows and 1,000,000 of columns. Genetic algorithms 
are comparatively powerful candidate in approximate opti- 
mization methods. 

Unlike other genetic implementations, a new genetic 
operator—called perturbation operator—is implemented. 
As can be seen in the experimental results section, by 
using this operator, the convergence rate has been greatly 
increased. 

4.3. Chromosome Representations for the  
Set-Covering Problem 

Two kind of representations are suggested for using ge- 

netic algorithms to solve the set-covering problem. These 
are column-based representation and row-based repre- 
sentation. 

In column-based representation, chromosomes are rep- 
resented through a binary coded string that is composed 
of one or zero values. In this representation, each crew 
pairing is represented by a gene and each gene that could 
take values of one or zero that indicates whether the par- 
ticular crew pairing would be in the solution. The only 
disadvantage of this representation scheme is the infeasi- 
ble chromosomes that would be formed as a result of 
genetic operations. Hence, a heuristic feasibility operator 
has been implemented (in [4]) to cope with this problem. 

In row-based representation, the number of genes that 
chromosomes include is equal to the number of flights. 
The index of each gene represents the flight and the 
value of each gene represents the crew pairing which 
covers the flight. However, in this method it is possible 
to represent the same solution in different forms because 
the same crew pairing would be represented by more 
than one gene. This situation makes the calculation of 
fitness function ambigious and enables different forms of 
chro- mosomes to generate the same solution and fitness 
va- lue. 

Another disadvantage of this method is that the uni- 
form crossover operator, which gives good results in col- 
umn-based representation, results in too many dead-head 
flights. This situation might be solved with usage of one 
or multipoint crossover operators, nevertheless these me- 
thods do not give satisfactory results compared to the 
other method. Likewise, the mutation operator which is 
applied by changing some genes on the chromosome, 
increases the number of dead-heads. (See reference [10] 
in which an implementation of row based representation 
was studied.) 

In this study, column based representation is used and 
results are improved by using additional genetic opera- 
tors. 

4.4. Generation of First Population 

The first phase of the genetic optimization is the popula- 
tion generation process. In order to carry out this process, 
a random crew pairing assignment should be done for 
each flight. Unlike study [4], in this study, if there were a 
flight that had been covered by a crew pairing which had 
been previously added to the solution, no crew pairing 
search would be done for this flight. In this way, low 
numbers of dead-head flights can be obtained. This 
process can be outlined as follows: 

If 
 Set of all flights rowsF 

Set of all crew pairings P 
 
 columns

 Set of crew pairings which covers
 
 flight ,f f f F    
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 Set of flights which are covered by ,p p p P 
 Set of pairings which constitutes a solution,S 


S P
f f F

 
 

 Number of pairings in S which cover flight ,w f  
Then 

1)  Set initial values  0 and 0fS w 
For each  in :2) f F  
a) ; If 0 then goto 2 for next step 0fw 

Select a pairing  from randomlyp
fw 

b) f ; 
c) ; Add crew pairing  to p S
d) 1,  f f pw w f     . 

During the generation of the first population and the 
next, the iteration phases algorithm always checks to 
avoid existence of identical chromosomes in the same 
population. The population size for the crew pairing so- 
lution was determined as 20. The augmentation of the 
number of chromosomes may decrease the number of 
iterations but it does not provide a decrease in total solu- 
tion time because it raises the calculation times. After the 
generation of each chromosome of the initial population 
using the methods previously mentioned, the genetic 
algorithm becomes ready to run. 

4.5. Genetic Iteration 

After the generation of the first population, the main loop 
of the genetic algorithms is entered and selection, cross- 
over, mutation, and feasibility operators are applied re- 
spectively. During these processes, the similar operators 
which are presented in study [4] are implemented with 
some modifications. 

First, the chromosomes which are used in the cross- 
over operator for reproduction are determined with the 
selection operator. In the presented work, binary tourna- 
ment selection is used for the selection operator because 
it does not need much in terms of extra calculation and 
runs fast. In this method, two sets which include two 
chromosomes are composed randomly and one in each 
two chromosome which has better fitness is chosen for 
the crossover phase. 

Crossover operator can be considered as the transition 
phase by which the genetic information is passed to new 
generations, namely child chromosomes are generated in 
the phase. One or two child chromosomes (depending on 
the crossover operator implemented) are generated through 
the crossover operator which is applied to chromosomes 
of good quality which are taken from the previous popu- 
lation. The fusion crossover operator (which uses fit- 
nesses of chromosomes in a probabilistic way to select 
genes during crossover operation) is implemented. (The 
detail of the method can be found in study [4].) 

The mutation operator is applied to child chromo- 
somes which are generated in the crossover process to 
avoid premature convergence; this provides a random 
search mechanism on a small scale. Usually, it is applied 

as changing a certain number of genes with a small 
probablity. In reference [4], it is stated that the use of a 
variable mutation rate, which is increased with the con- 
vergence, gives much better results compared to using a 
fixed mutation rate. The convergence rate always de- 
creases while the algorithm approach to the optimum 
solution. Then progress provided by the mutation rate 
becomes more important than the progress provided by 
the crossover operator. The number of genes, which will 
be mutated, nm, is calculated by the Equation (2), 

  1 exp 4

f
m

g c f

m
n

m t m m

 
 
    

       (2) 

 fm : Maximum value of variable that mutation rate 
can be. 

 cm : Iteration step when the variable mutation rate 
reached to the half of its maximum value. 

 t : Iteration step (Number of children which are gen- 
erated from the beginning). 

 gm : Gradient of the function at ct m . 
In this study, ChromosomeLength 90mf  ,  

200cm  , 0.4gm  were chosen. 
After deciding the number of genes that would be mu- 

tated, another parameter which has to be decided is the 
mutation rate m . If a gene were selected to be mutated, 
the mutation operator would be applied with the probab- 
lity m . The value of m  is determined by the ratio of 
the number of genes which are equal to 1 in the fittest 
individual of the population and the total length of chro- 
mosome (as stated in the study [7]). For instance, if a 
chromosome had 10 crew pairings in the solution over 
100 crew pairings then m  would be 

o

o o

o 10 100 0.1mo   . 
If K  is the chromosome which would be mutated and 

 is the length of the chromosome then the mutation 
operator works like this: 
n

1) 1i  ; 
2) ; Choose an integer value from 1 to  randomly for n x

If  then 1 and goto 2x n i i  3) ; m

Choose a random real number betw4) een 0 and 1 for y ; 
5)  If [ ] 0 and  then =1mK i y o K i  ; 
6)  If [ ] 1 and  then 0K i y o K im   ; 
7) 1 and goto 2i i  . 
As stated in previous sections, until now there has 

been no guarantee about feasibility of chromosomes 
which are generated or modified by the genetic operators. 
Therefore a heuristic-based repair operator, called feasi- 
bility operator, is used to repair this kind of chromo- 
somes. (For details reader can consult studies [4] and 
[7]). 

4.6. Perturbation Operator Implementation 

Unlike other implementations of genetic algorithms, in 
this study, a perturbation operator is implemented after 

Copyright © 2012 SciRes.                                                                                JILSA 



An Improved Genetic Algorithm for Crew Pairing Optimization 76 

the feasibility operator in order to enhance the efficiency 
of the current solution. In this operator, first, the chro- 
mosome is made infeasible through the removal of one or 
more crew pairings which are in the solution. Next alter- 
nate lower costs of crew pairings are searched on the 
chromosome to substitute removed ones to make chro- 
mosome feasible like feasiblity operator. This method is 
called the perturbation operator because chromosomes 
are made infeasible deliberately. If the search is success- 
ful then alternative crew pairings are taken into the solu- 
tion; if not the chromosome is reverted. The iteration 
process can be summarized as follows: 

If 
Set of all flightsF 
Set of crew pairi

 
ngs which cover flight ,  f f f F 

Set of flights which are covered by pairing ,p p P
  

p    
 Set of pairings which constitute a solution,S 

Set of uncovered flights,  U U F 
S P

 
Cost of chromosome before perturC  bation
Cost of chromosome after perturbationC 

 
 

Set of pairings which makes chromosomL  e feasible  
Then 
1)  Calculate C
2)  For each  in :p S

– ;a) pS S p U U   
For each  in :f U

; 
b)  

i) Find the first crew pairing ' , 'fp p p   
which minimizesratio p pc U    

;  ;  ii) pS S p L L p U U        



 
c) ; Calculate C
d) ; If  then ;  C C S S L S S p   

If  then C C C C  e) ; 
f) . Empty the sets  and L U

This operator is applied with a probability of approxi- 
mately 0.2 to one randomly selected child after the feasi- 
bility operator. The effect of this operation can be seen in 
the experimental results section. It can also be observed 
that the genetic algorithm could reach much better solu- 
tions in much less iteration and obtain much more robust 
and stable results in spite of the randomized nature of 
genetic algorithms. 

Furthermore, in step 2, the perturbation operator is ap- 
plied with dual or trine combinations of crew pairings 
instead of singular implementation. However, search for 
the dual or above combinations substantially increases 
the iteration time compared to singular implementation. 
Nevertheless, dual or trine implementation of the pertur- 
bation operator can be used with a small probablity in the 
main loop of genetic algorithm or can be applied at the 
end for the best solution. Even better results can be ob- 
tained in this way. 

4.7. Fitness Function 

Another important issue that has to be determined is the 

fitness function and the quantities which will be used 
instead of cost values in this function. Generally, total 
monetary cost is calculated (like in studies [6] and [1]). 
First, the cost of each crew pairing in the solution is cal- 
culated using the sum of crew salaries for the trip, hotel 
costs, etc. Then the total cost of of the solution can be 
calculated by adding these crew pairing costs. 

But, as is stated by the crew scheduling department of 
Turkish Airlines (THY), the minimization of total dura- 
tion of crew pairings (flight duties + rest periods) was 
more important than the minimization of total monetary 
cost. Based on this requirement, in this study the total 
duration of crew pairings is used instead of monetary 
cost in fitness function. Regarding this requirement, all 
terms in fitness function are designed to produce dura- 
tion-based values. 

Another point that must be taken into account is dead- 
head flights. The proportion of dead-head flights in the 
fitness function is mutiplied by a coefficient to minimize 
the numbers of flights because of their attenuator effect 
on the transportation capacity as stated in previous sec- 
tions.  

Like dead-head flights there is another factor that must 
be considered and that is the crewbase distribution of 
crew members. Duty distribution of crewbases has to be 
proportionate to the number of crew who could be util- 
ized for each crewbase hence crew pairings have to be 
chosen in order to provide a regular work balance be- 
tween crewbases. This cost factor is very important for 
efficient duty assignment for crewbases. The fitness 
function which is used in this study (Equation (3)) and its 
paremeters are as follows: 

: Cost value of i th crew pairingpic
: If 1 then i th pairing is in thg g

; 
e solution 

     otherwise not;
i i   

: Cost of j th flightfjc
:Number of deadhed

; 
ad status of j th flightf j

: Total cost of pairings which belong to k thc
; 

 crewbasek

: Total cost of crew pairingsc
; 

t

: Number of available crew we
; 
ho resides in k th basek

: Number of total crewe
; 

t

: Deadhead penalty cop
; 
efficientd ; 

then 

   

Fitness Value . .

                       . .

pi i f j f j d
i j

k k t k t
k

c g c d p

c c c e e

 

 

 


       (3) 

The cost terms in the fitness function express total du- 
ration (duty + rest). The goal of the optimization process 
is to minimize the total utilization duration of a crew 
while adjusting workload balance between crewbases. 
There are three terms in fitness function and all of them 
give values of same kind. 
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The first expression in the equation gives the total cost 
of the crew pairings in the solution—called plain cost. 

The second term in the expression is a penalty factor 
for the flights which are covered by more than one crew 
pairing (dead-head flights). In this term, the penalty co- 
efficient b  has been applied for dead-head flights. (It 
might be thought that dead head flights are already cov- 
ered by more than one crew pairing and the cost of the 
flight itself would already appear in these crew pairings 
more than one time). But there are additional cost factors 
inherent in deadhead flights including transport capacity 
and crew utilization reduction. So there is a requirement 
of additional cost calculation for other cost factors we 
could not calculate in the first term. In this presented 
work for experimental results,  were chosen. 

p

3dp 
The last term in the expression of fitness function is 

the crewbase distribution cost which means work balance 
irregularity. Making proportional duty distribution is 
very important for efficient crew utilization and for mi-
nimizing overtime crew costs. This is done by apply- ing 
a penalty factor that resides in the ratio difference be-
tween total crew pairing duration and the total number of 
available crews. The number of the total available crew 
must be proportionate to the total crew pairing du- ration 
for a selected crewbase. For example if  = 3500 hours, 

 hours,  and t  then the pen-
alty coefficient for the crew distribution cost will be 

kc
8010000tc  20ke  e 

   3500 10000 20 80 0.1  . This means crew dis- 
tribution cost of the crew pairings which belong to a se- 
lected crewbase will be plain cost * 0.1. This increases 
the plain cost of the solution by 10 percent. 

Fitness function integrates three different but depend- 
ent objectives. These include minimization of total crew 
pairing cost, minimization of dead-head flights, and mi-
nimization of crewbase distribution cost. 

4.8. Population Replacement 

The last step of the genetic algorithm is the population 
replacement phase. In this phase, we decide how to use 
the chromosomes that are generated and enhanced and 
how to apply genetic operators. For the solution proce- 
dure developed here, the elitist strategy has been used 
and the order of sequences is as follows: 

1) Parents and children are composed in one popula- 
tion; 

2) New population is ordered according to fitness; 
3) First 20 chromosome are kept for next round. 
Furthermore, except for the elitist strategy two more 

approaches were tested. The first one is the generational 
approach which is based on all parents were replaced by 
children and the second one is the steady-state approach 
which is based on each child chromosome was replaced 
with a parent which has been selected according to fit- 

ness randomly. But elitist strategy gives better results. 
The test results can be seen in Figure 1. Figure 1 was 
obtained for the first 200 iterations for just viewing pur- 
poses. However, for 10,000 iterations results are similar. 

The general schema of genetic iteration is as in Figure 
2. 

5. Experimental Results 

The presented test results were generated under Java 
NetBeans platform via java codes which were developed 
for this study. Test hardware was an AMD Athlon 1.8 
MHZ single processor machine. 

The test data used were taken from the flight schedule 
of THY (Turkish Airlines) which starts at 25th of March 
2007 and ends at 11th of May 2007 (can be found in ref- 
erence [16]). Flight timetable of Airbus 315 fleet which 
includes 710 flights was selected as test data. After pair- 
ing generation 3308 pairings were generated before op- 
timization phase. It is also assumed that there were two 
crew bases. One sixth of all crews were considered as 
located in the first crew base and the rest were consid- 
ered as located in the second one. 

There were four approaches tested. The first is genetic 
algorithm developed by Beasley and Chu (this approach 
will be called GA). The second is the genetic algorithm 
with perturbation operator (called GAPO). The third is 
the genetic algorithm approach suggested in study [12] 
(called GA-UnEx). The fourth approach is an exact me-
thod based on branch and bound technique with dual 
simplex algorithm. This last approach gives us exact glo- 
bal optimum for the problem. By using this exact result 
we are able to evaluate solution qualities of genetic ap-
proaches. The exact cost value of the studied dataset was 
found as 679,005 in 6 mins and 7 secs by using B&B 
with dual simplex method. While six minutes might look 
acceptable, the calculation time for the exact methods 
dramatically increases with the problem size increase. 

There are some abbreviations used in the result tables  
 

 

Figure 1. Population replacement strategy. 
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Figure 2. General schema of the system. 

 
to increase readibility. These are given in Table 6. 

Table 7 includes values of important optimization pa- 
rameters at particular iteration steps. Each of three ge- 
netic approaches were run for 10,000 iterations. As can 
be seen in Table 7, GAPO is capable of reaching much  

Table 6. Abbreviations. 

Term Abbreviation 

Genetic Algorithm with Perturbation Operator GAPO 

Genetic Algorithm approach of study [12] GA-UnEx 

Branch&Bound with Dual Simplex B&B 

Iteration Itr 

Number of Crewpairings NoCP 

Number of Deadheads NoDH 

 
better results in much less time. 

Graphical representations of the results can be seen on 
Figures 3 and 4. As was mentioned in previous sections 
because of additional perturbation operators, GAPO 
needs more calculation time for just one iteration than 
GA. However, it can converge much faster and total 
necessary runtime will be much less than GA. GA-UnEx 
is especially useful for decreasing deadheads, but be- 
cause of the greedy approach, it is computationally more 
expensive than either GAPO and GA. Please note that 
the line represents B&B algorithm shows the final cost 
value (679,005) we got by using it. It is put for us be able 
to compare solution quality of other GA implementa- 
tions. 

6. Conclusions and Future Work 

In the presented work, airline crew pairing problem is 
revisited. In terms of crew scheduling problems, crew 
pairing optimization is the main cost-determining phase. 
Since crew pairing costs are the second largest opera- 
tional cost, after fuel costs, well-arranged crew distribu- 
tion flights might surely increase utilization of the crew 
and benefit for the airline. 

During the development of the presented solution pro- 
cedure, existing methods were examined, adapted, and 
improved. Scenarios with multiple crewbases were also 
simulated using genetic algorithms. From the results ob- 
tained one can deduce an incremental increase in con- 
vergence rate as well as an incremental increase in ro- 
bustness applying this new procedure. The perturbation 
operator implementation has great effect on having this 
fast and robust convergence. Additionally, the number of 
dead-head flights is reduced through the application of 
the strategy developed during the population generation 
phase. This reduction has a direct effect on the total cost. 

Monetary benefit of the results of the new imple- 
mented perturbation operator can be calculated with the 
multiplication by a monetary coefficient because the terms 
used in fitness function were duration related terms. 

This study is also an initial study for the crew rostering 
phase which is the second phase of the crew scheduling;   
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Figure 3. Convergence comparison of applied algorithms. 
 

Table 7. Solution comparison. 

    GA   GAPO GA-UnEx 

Itr   Time NoCP NoDH Cost   Time NoCP NoDH Cost Time NoCP NoDH Cost 

0   00:00 215 286 2,290,540   00:00 210 294 2,288,545 00:00 265 246 1,774,265

1   00:00 231 218 1,979,580   00:00 345 14 762,760 00:00 278 212 1,419,165

100   00:01 326 34 903,945   00:02 304 6 686,045 00:03 321 82 896,225 

200   00:01 333 12 848,120   00:04 303 4 682,210 00:06 327 8 731,185 

300   00:02 330 10 834,445   00:07 299 4 680,650 00:09 330 4 721,605 

400   00:03 328 8 815,680   00:09 298 4 680,220 00:12 321 6 717,320 

500   00:04 320 6 809,515   00:11 298 4 680,205 00:15 322 2 715,335 

1000   00:07 306 6 769,460   00:22 296 4 679,650 00:29 322 2 715,335 

1500   00:10 302 6 740,845   00:32 296 4 679,650 00:44 323 2 713,900 

2000   00:14 304 6 721,925   00:43 295 4 679,365 01:00 325 2 711,370 

2500   00:17 301 6 710,720   00:54 295 4 679,365 01:15 325 2 711,370 

3000   00:21 298 6 709,180   01:05 295 4 679,365 01:31 325 2 711,370 

3500   00:24 300 6 701,855   01:15 295 4 679,350 01:47 322 2 711,345 

4000   00:28 300 6 701,815   01:26 295 4 679,350 02:02 322 2 711,345 

4500   00:31 299 6 701,395   01:37 295 4 679,315 02:18 322 2 711,270 

5000   00:35 298 6 698,995   01:48 295 4 679,300 02:33 319 2 711,130 

6000   00:42 297 6 698,565   02:09 295 4 679,250 03:04 324 2 710,965 

7000   00:49 298 6 697,485   02:30 295 4 679,250 03:35 320 2 710,050 

8000   00:56 297 6 696,995   02:52 295 4 679,250 04:06 320 2 710,050 

9000   01:03 297 6 696,945   03:13 295 4 679,250 04:35 321 2 709,165 

10,000   01:09 297 6 696,945   03:34 295 4 679,250 05:03 316 2 708,045 
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Figure 4. Comparisons in various aspects. 
 
the success of the crew rostering phase is completely de- 
pendent on the quality of the results of the crew pairing 
phase. 

The usage of larger populations and perturbation op- 
erator with higher probablity ratio can make the algo- 
rithm more effective. But in this situation, the run time 
increases because of the required increase in calculation 
time. Distributed genetic algorithms can be proposed as a 
direction for future work to be able to use much larger 
populations without increasing calculation time. 
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