
Journal of Software Engineering and Applications, 2012, 5, 89-95
http://dx.doi.org/10.4236/jsea.2012.52014 Published Online February 2012 (http://www.SciRP.org/journal/jsea)

89

A Workflow-Based Failure Recovery in Web Services
Composition

Omid Bushehrian1, Salman Zare2, Navid Keihani Rad1

1Department of Computer Engineering and IT, Shiraz University of Technology, Shiraz, Iran; 2Department of Computer Engineering
and IT, Tehran University, Kish, Iran.
Email: {bushehrian, navid.keihanirad}@sutech.ac.ir, salman.zare@ut.ac.ir

Received November 20th, 2011; revised December 25th, 2011; accepted January 9th, 2012

ABSTRACT

In previous researches in the field of supporting reliability and fault tolerance in web service composition, only low le-
vel programming constructs such as exception handling (for example in WSBPEL) were considered. However we be-
lieve that the reliability and fault tolerance for composite services must be handled at a higher level of abstraction, i.e. at
the workflow level. Therefore a language and technology independent method for fault-tolerant composition of web ser-
vices is needed. To do this, a fault tolerant workflow is built in which the execution order of the services is determined
such that upon a service failure a recovery process with the lowest cost is started. The cost of a service failure includes
the cost of failed service and the total costs of roll-baking the previously executed services which are dependent on the
failed service. In this article a FSP language is applied to formally specify the workflow.

Keywords: Fault Tolerance; Service Oriented Architecture; Service Composition; Finite State Process

1. Introduction

Nowadays SOA architecture is used as a platform for
accessing to data and services in distributed form. Ser-
vice Composition in this architecture is a way to obtain
more complicated services by combining the functional-
ity of individual services [1,2]. The main problem here is
the fault tolerance and recovery of failures while execut-
ing a composite service [3,4]. In the situation of using a
composite service, different faults may occur that mainly
causes a service to fail [5]. However a fault-tolerant ser-
vice composition is the one that ends up the whole trans-
action in a safe state upon a service failure where the
related services are also rolled-back appropriately. Con-
sider a service composition in arranging an itinerary. If
the “Flight Reservation” service is failed all other com-
mitted services such as “Hotel Reservation” should be
roll-backed. Therefore in a fault-tolerant service compo-
sition each set of related services may form a transaction
for which the atomicity property is a must and by failing
one of them, others have to be rolled-back. However for
some services the roll-back operation may not be avail-
able or only available partially. Therefore failing a ser-
vice may cause the whole composition ended up in an
inconsistent execution due to the violation of atomicity
property. To model this limitation, each service within
the composition is associated with a “roll-back cost”
which its value is an indicator of the amount of impact on

the whole composition resulted from requesting the “roll-
back” operation for that service. If a service supports the
roll-back operation, its associated roll-back cost is zero
otherwise some value is considered for this cost. For
example if the “Flight Reservation” is not a roll-back
supporting service, its rollback cost will be equal to the
whole ticket price. In addition to the roll-back costs, for
each service within the composition it should be deter-
mined on which services this service is dependent. The
dependency here is the roll-back dependency and is de-
fined as follows: Service Sj is dependent on service Si
when failure of Si must start roll-backing of Sj (if already
executed).

The main question of our research is how to automati-
cally build a workflow, considering the roll-back depen-
dencies among services, that sequences the execution of
the services in a way that upon a service failure, the mean
roll-back cost of the service composition becomes mini-
mal. In this context, we call such a workflow a “fault-to-
lerant” workflow. In brief, we are trying to provide some
degree of atomicity property in the execution of services
within a service composition. Our solution to this prob-
lem should answer the following questions: 1) To what
extent the workflow generation can be automated, 2) To
what extent the solution can be language independent and 3)
Is the solution founded on a rigorous theory (and hence it
is easily verifiable)? In the previous works in this field

Copyright © 2012 SciRes. JSEA

A Workflow-Based Failure Recovery in Web Services Composition 90

these important questions are not addressed. There are
many previous works that apply fault tolerance techni-
ques at different levels of abstractions to create a fault-
tolerant web service composition [6-8]. For example in
some languages such as WS-BPEL [1] low level pro-
gramming constructs like exception handling is provided
to support fault tolerance for service composition. How-
ever, we believe that the support for reliability and fault
tolerance should be considered at the higher level of ab-
straction: the workflow level. In addition to this short-
coming, the previous studies poorly addressed the robust
recovery management once a failure happens.

In this paper these shortcomings are addressed by pro-
posing a method to automatically build a workflow con-
sidering the services transactional properties that not only
is specified at the high degree of abstraction (and hence
language independent) but also supports robust failure re-
covery.

2. Related Work

In the field of web services reliability and fault tolerance,
the previous researches are divided into four main groups
[6]:

1) Improvement of the web service reliability in the
architectural definition level;

2) Assessment of the system fault tolerance with error
injection;

3) Analysis of properties of the second generation web
services;

4) Definition of the reliability assessing models of the
web service-based systems.

Articles related to the first category generally have
used the old reliability techniques for web services which
increase the fault tolerance by using redundant services
in the architecture; moreover none of them presented a
formal method. In the second category error injections
for the fault tolerance support have been used [9,10]. Stu-
dies in the third category basically include reliability e-
valuation of the second generation web services, i.e. WS-
Reliable Messaging [11], WS Security and WS-Atomic
Transaction [11]. In the fourth category, web service ba-
sed systems generally are created by composing the simp-
ler services according to a work-flow. The reliability of
the workflow is evaluated considering the individual ser-
vices reliability in the workflow. In some researches, the
“Markov chain” has been used to model the system be-
haviour. The probability that the Markov chain comes to
a final state from a start state with some limited state de-
pends on the other movements, which means it depends
on the reliability of the other states [12]. In [13] to auto-
matically compute the overall QoS of a workflow, a ma-
thematical model and an algorithm (SWR algorithm) are
proposed. To support the composition of Web services,

they also have presented an ontology-based solution in
which a discovery mechanism is applied to find Web ser-
vices with desired interfaces and operational metrics, and
to assist designers in resolving heterogeneity issues among
Web services. In [14] to achieve a higher reliability in a
composite web service system, it is proposed to decrease
the failure rate and increase the repair rate. In this paper a
method for calculating the MTTF (Mean Time to Failure)
of composite web based on the workflow composition
pattern is presented. In [14] a formal verifycation ap-
proach of the workflow-based composite web services is
presented. And it has been translated to the BPEL4WS
primitives. In [8] they have used EXTRA (Exception han-
dling + TRAnsaction), a hybrid fault-tolerant mechanism
which combines exception handling and transaction tech-
niques to improve the reliability of composite services.
The first one (exception handling) tries to repair fault and let
composite services to continue. The second one (transaction)
ensures composite services to terminate in a consistent state
when faults are not repairable. They have also presented
FACTS framework, which present an integrated environ-
ment for specification, verification, and execution of fault
tolerant composite services. However, in their work the
termination cost of non-cancellable service in a service
composition is not taken into account.

3. The Methodology

Our proposed methodology for creating a fault-tolerant
workflow for web service composition is illustrated in
Figure 1. The first step is to create a Rollback graph
considering the service dependencies. Service Sj is de-
pendent on service Si when failure of Si must start roll-
backing of Sj (if already executed). The set of all depen-
dent services on Si is depicted by Rollback [i]. In the Ro-
llback graph each vertex Si represents a service and each
edge (Si, Sj) represents the existence of a rollback rela-
tionship between Si and Sj. The second step is to remove

Figure 1. Transformation algorithm.

Copyright © 2012 SciRes. JSEA

A Workflow-Based Failure Recovery in Web Services Composition 91

the useless edges from the Rollback graph to avoid de-
fining unnecessary dependencies in the subsequent steps.
If there is a path from A to C via other services in the Ro-
llback graph and there is also a direct edge (A, C), this
direct edge should be deleted (Figure 2). The third step
is to remove the cycles within the rollback graph, first the
cycles are located, and then for each cycle, the order of
the services for which the average rollback cost is the
lowest, is determined considering the failure probability and
the rollback cost corresponding to each service. At the
end of the third step a Rollback DAG (RBDAG) is ob-
tained. The final step is to use the prerequisite dependen-
cies in the RBDAG to create the fault-tolerant workflow
which is specified in FSP language [15,16].

4. Cycle Elimination

Each cycle within the Rollback graph represents a set of
services with the atomicity property, i.e. once one of them
fails; the previously executed ones should be roll-backed.
To minimize this rollback cost the order of services in
the cycle with the minimum cost is selected and then the
cycle is eliminated to form a DAG. For each permutation
r of the services, the probability of the failure at position
k is denoted by P (r, k) and is computed as follows:

   
   1

1 1 * , k
i kiP r k P P

   (1)

where Pi is the failure probability of service Si. The av-
erage rollback cost for permutation r then is calculated as
follows:

    1
1 1, *Avg _ Cost n m

k kP r k Cr 
     m (2)

where Cm denotes the rollback cost corresponding to ser-
vice Sm.

Now it is possible to determine the permutation ropt for
which the value of Avg_Cost (ropt) is minimum. After the
best order is specified we can remove that cycle from
Rollback graph.

5. Workflow Creation RULES

In order to translate services to an FSP model, the fol-
lowing rules are used:

R1: Corresponding to each service in RBDAG create a
FSP process.

 A

B

C

A

B

C

Figure 2. Removing extra edges.

R2: If service wj is prerequisite for service wi in the
RBDAG, create another process called lock. The lock pro-
cess prevents process i from starting until j is finished.

For each service wk in RBDAG, If the immediate
predecessor of k, denoted by Pred (wk) is a member of
Rollback [wk], it must be roll-backed once k is failed:

R3: To start roll-backing of Pred (wk) only after wk
enters its failed state, a lock process named Rlockk is created
and added to the FSP model. This process prevents Pred
(wk) from entering to its roll-back state unless wk enters
its failed state.

If there are more than one successor for a given ser-
vice wi, (Figure 3(a)) the corresponding lock process
(step 2) should be created such that all the successors
start theirs executions just after wi is finished success-
fully. If there is more than one predecessor for wi (Figure
3(b)), the lock process should be created to allow the
execution of wi only when all its predecessors are fin-
ished successfully. In some cases, the rollback of wi is
dependent on the failure of two or more services together.
This concept is shown in RBDAG like Figure 3(c).

For each service (wk) an FSP process with four actions
is defined as shown in Figure 4.

First the service is in state 0 and moves to state 1 by
start_k action, and then if it fails, it will move to the final
state 3 and if it succeeds, it goes to state 2. If after the
successful termination of wk, another service wi which
belongs to the same cycle as wk, fails, then wk should be
roll-backed and goes from state 2 to state 3.

However if wk is not a member of any cycle in the
Rollback graph or it is, but after removing the cycle it
was placed at the last position in the optimal order, the
rollback never happens after successful termination of wk
because according to rule R2, it starts only after all its
dependent services in the cycle are terminated successfully.

wk

and

(a) (b) (c)

wj

wi

wi

wj wk wz

wj wk

wi

Figure 3. Prerequisites states.

Figure 4. Process actions.

Copyright © 2012 SciRes. JSEA

A Workflow-Based Failure Recovery in Web Services Composition 92

This kind of service has actions as shown in Figure 5.
The lock process mentioned in rule R2 is a FSP pro-

cess with two states as shown in Figure 6.
The Rlockk process mentioned in rule R3 is a FSP

process with three states as shown in Figure 7. The Rlockk
goes to state 1 once wk is failed or roll-backed. At state 1,
the rollbacki action is ready to fire assuming that wi is the
service which is dependent on wk (i.e. wi has to be
roll-backed upon wk unsuccessful termination).

6. Translation Algorithm

Figure 8 shows the Translation Algorithm in which G is
a Rollback Directed Acyclic Graph (RBDAG). This al-
gorithm creates a process for each service. If service wi is
prerequisite for service wj a lock process is created and
added to the FSP model. For each service wk in RBDAG,
a subset of Rollback [k] which is predecessors of wk in
RBDAG, must be rollback. To do this, a Rlock process is
also added to the set of FSP processes.

Figure 5. Process for last service in a cycle.

Figure 6. Lock process actions.

Figure 7. Rollback process.

Figure 8. Transformation Algorithm.

6.1. AddService() Function

The procedure AddService(), adds a service to the FSP
model according to the rule R1, which described in Sec-
tion 5. It gets a service like wk and checks whether wk is
the last service in the order of services in its cycle. If so,
then it creates a process without a rollback action:

wk = (startk →(failk →STOP|succeedk→STOP)).

when wk is not a member of any cycle the created process
is also as above.

If wk is not the last service in the order of services in
its cycle, it should be roll-backed once its successor ser-
vices in RBDAG (belonging to a same cycle) fail:

wk = (startk →(failk →STOP|succeedk→rollbackk→STOP)).

6.2. AddLock() Function

The function AddLock(), adds a Lock process to the FSP
model according to the rule R2, which described in Sec-
tion 5. The getAllpre (wk) function, gets all the prerequi-
site services of wk in RBDAG. If the result is only one
process wi, the following code is added to the FSP model:

Lockk = (unlocki → permitk → STOP)/{succeedi/unlocki,
startk/permitk}).

If there is more than one prerequisite service, the start
of the wk depends on the successful termination of all its
prerequisite services:(w1wn):

Lockk = (unlock1→…→unlockn→permitk→STOP)

/{succeed1/unlock1,…, succeedn/unlockn, startk/permitk}.

6.3. AddRLock() Function

The AddRLock() function, adds the Rlockk processes to
the FSP model according to the rule R3, described in
Section 5. This lock controls the execution of the roll-
back action of wk. If wk, is the last service in the order of
services of a cycle or it is not a member of any cycle, no
Rlock process is needed because there is no rollback ac-
tion in the definition of wk process. Otherwise the roll-
back action of wk should be executed once the service on
which wk depends, fails or rollbacks:

RLockk = (r_unlockk→permit_rollbackk→STOP)
/{faili/r_unlockk, rollbacki/r_unlockk,
rollbackk/permit_rollbackk}.

There are situations where the rollback of wk only is
required when a set of services (w1wn) fail together
(Figure 3(c)). At these situations, the following Rlock
process is added to the FSP model:

RLockk = (r_unlock1→r_unlock2→…→r_unlockn→

permit_rollbackk→STOP)
/{fail1/r_unlock1, fail2/r_unlock2,…, failn/r_unlockn,
rollbackk/permit_rollbackk}.

Copyright © 2012 SciRes. JSEA

A Workflow-Based Failure Recovery in Web Services Composition 93

7. Case Study: Travel Agency

A travel agency uses the following services to arrange an
itinerary:

w1: Granting Visa Service
w2: Flight Reservation Service
w3: Hotel Reservation Service
In order to create a fault-tolerant workflow correspon-

ding to the composition of these services, the methodo-
logy described in Section 3 is used. For each service the
rollback set is defined as follows:

Rollback[w1] = {w2,w3}
Rollback[w2] = {w1,w3}
Rollback[w3] = {w1,w2}
Using the above Rollback sets the Rollback graph is

created (Figure 9):
The next step is to remove the useless edges from the

Rollback graph. After removing these edges the graph
shown in Figure 10 is resulted.

In the next step, first the cycles in the above graph are
located, and then the average rollback cost corresponding
to each order of services in a cycle is calculated. The
following failure probabilities and rollback costs for ser-
vices are assumed:

P1 = 40%, P2 = 50%, P3 = 10%
C1 = 100, C2 = 80, C3 = 30
There are three services in this example therefore 3!

different orders of services are possible. Corresponding
to each order a rollback cost is calculated using formula
(2) as listed in Table 1.

According to the above table the best order for com-
position of w1, w2 and w3 is: w2, w1, w3. The resulted
RBDAG is shown in Figure 11.

By using the prerequisite dependencies in the resulted
RBDAG, the workflow specified in FSP language is created
as follows:

Figure 9. Prerequisites states.

Figure 10. Edges deleted graph.

Table 1. Calculated costs.

 Services execution order Cost

1 w1 w2 w3 35.4

2 w1 w3 w2 76.2

3 w2 w1 w3 21.4

4 w2 w3 w1 53.5

5 w3 w1 w2 45.9

6 w3 w2 w1 33.3

Figure 11. Resulted RBDAG.

7.1. Creating Processes

w1 = (start1 → (fail1 → STOP |succeed1 → rollback1
→ STOP)).

w3 = (start3 → (fail3 → STOP |succeed3 → STOP)).
w2 = (start2 → (fail2 → STOP |succeed2 → rollback2

→ STOP)).

7.2. Creating Locks

Lock1 = (unlock2→permit1→STOP)
/{succeed2/unlock2, start1/permit1}.

Lock3 = (unlock1 → permit3 → STOP)
/{succeed1/unlock1,start3/permit3}.

7.3. Create RLocks

RLock1 = (r_unlock1→permit_rollback1→STOP)
/{fail2/r_unlock1, rollback2/r_unlock1, rollback1/

permit_rollback1}.
RLock3 = (r_unlock3→permit_rollback3→STOP)
/{fail1/r_unlock3, rollback1/r_unlock3,
rollback3/permit_rollback3}.
Figure 12 shows the final workflow in LTSA, which

is achieved from composition of processes in our case
study.

8. Discussion

In Table 2, three different methods in the field of suppo-
rting reliability and fault tolerance in web service com-
position are compared with our work using six factors.

Copyright © 2012 SciRes. JSEA

A Workflow-Based Failure Recovery in Web Services Composition

Copyright © 2012 SciRes. JSEA

94

Figure 12. Services composition workflow in LTSA.

Table 2. Comparing different methods for fault-tolerant web service composition.

 Paper [6] Paper [8] Paper [2] Our Work

Language (Technology) Dependency Independent Independent Independent
Workflow-based:
Independent

Automated No
Automatically Generates
fault-handling logic in
WS-BPEL

Yes
Yes: Generates Reliable
Workflow in FSP
language

Recovery Support
No Uses Redundant
service without any
recovery support

Partial: Terminates in a
consistent state

No
Yes: Terminates in a
consistent state with
minimum cost

Fault Tolerance Technique Redundancy Exception Handling
Pattern based
design

Recovery Process with the
Lowest Rollback Cost

Theoretical Foundation FSP Language No No FSP Language

Transactional Support No Yes No Yes

an algorithm for automatically creating a fault tolerant
workflow from the service dependencies, due to its rigo-
rous theoretical foundation. The last factor is the transa-
ctional support which indicates whether a method con-
siders the concept of atomic transactions in a composi-
tion or not. We have presented a method to automatically
build a fault-tolerant workflow considering the service
transactional properties (Each cycle in the Rollback
graph is composed of a set of services with the atomicity
requirement).

The first factor is the language or technology depen-
dency. All four methods including ours are language in-
dependent. The second factor is the support for an auto-
mated method to generate the fault-tolerance mechanisms
from the high level specifications. Our proposed method
supports automatic generation of reliable workflow from
rollback dependencies. The third factor is the recovery
support, which means if a service fails how the composi-
tion continues in order to terminate in a consistent state.
The first method uses redundant services without any
recovery support. The second method tries to terminate
the composition in a consistent state. In contrast, in our
work a rollback method for failed services with mini-
mum cost is supported. The forth factor is the fault tol-
erance technique applied by each method. The fifth fac-
tor is the existence of a theoretical foundation to sup-
port the fault tolerance or recovery. The first method uses
the FSP language to be able to evaluate the correctness of
its model. We also have used the FSP language as a for-
mal language as a workflow specification language for
assessing the correctness of the resulted workflow. The
FSP language chosen in this paper, allowed us to present

9. Verification Approach

The presented algorithm in the previous section for trans-
lating RBDAG to FSP verifies that it is possible to fully
automate the workflow generation task (our first research
question stated in the introduction part). Since FSP is a
technology independent workflow specification method
and also it is based fully on a rigorous theoretical back-
ground, the second and third research questions (men-
tioned in the introduction section) are also answered.

To prove the correctness of our translation algorithm
formally, it should be verified that the generated work-

A Workflow-Based Failure Recovery in Web Services Composition 95

flow always terminates in a consistent state, i.e. that upon
the failure of service Si all its rollback-dependent services
like Sj in the RBDAG are terminated in their roll-back
state (state 3 in Figure 4). To show this, from step III of
the translation algorithm, the following process is created
for Sj:

RLockj = (r_unlockj → permit_rollbackj → STOP)
/{faili/r_unlockj, rollbacki/r_unlockj,
rollbackj/permit_rollbackj}.
The synchronization part specifies that upon a failure

(faili action) or roll-back (rollbacki action) of Si, the per-
mit_rollbackj action is fired which is synchronized with
the rollbackj action of Sj and it means that eventually
after Sj entered to state 2 (succeeded state), it cannot stay
in this state due to that fact that rollbackj action is ready
to fire.

10. Conclusions and Future Works

The fault tolerance in the web service composition usua-
lly is supported by the exception handling constructs at
the language level. However using the workflow tech-
nology for composing web services with fault tolerance
consideration provides a language independent solution.
The FSP language chosen in this paper, allowed us to pre-
sent an algorithm for automatically creating a fault to-
lerant workflow from the service dependencies, due to its
rigorous theoretical foundation. The resulted workflow
executes or rollbacks the services in the composition in
an order such that the minimum rollback cost is incurred
upon the service failures in the composition.

REFERENCES
[1] D. Jordan and J. Evdemon, “Web Services Business

Process Execution Language Version 2.0, OASIS Stan-
dard,” 2009.
http://docs.oasis-open.org/wsbpel/2.0/serviceref

[2] Gartner, “Emerging SOA Patterns in the Enterprise,”
2009.
http://www.infoq.com/news/2008/08/gartner-emerging-so
a-patterns

[3] Q. Yu, X. Liu, A. Bouguetta and B. Medjahed, “Deploy-
ing and Managing Web Services: Issues, Solutions, and
Directions,” The VLDB Journal, Vol. 17, No. 3, 2008, pp.
537-572. doi:10.1007/s00778-006-0020-3

[4] V. Issarny, F. Tartanoglu, A. Romanovsky and N. Levy,
“Coordinated forward Error Recovery for Composite
Web Services,” Proceedings of 22nd International Sym-
posium on Reliable Distributed Systems, 6-18 October
2003, pp. 167-176. doi:10.1109/RELDIS.2003.1238066

[5] H. P. Chen and Z. Y. Wang, “A Fault Detection Mecha-
nism for Fault-Tolerant SOA-Based Applications,” Ma-
chine Learning and Cybernetics, 2007 International Con-
ference, Hong Kong, 19-22 August 2007, pp. 3777-3781.

[6] C. Luigi, R. Luigi, M. Nicola and S. Sergio, “Web Ser-
vices Workflow Reliability Estimation Through Reliabil-
ity Patterns,” Security and Privacy in Communications
Networks and the Workshops, 2007, SecureComm 2007,
3rd International Conference, Hong Kong, 17-21 Sep-
tember 2007, pp. 107-110.

[7] T. Hu, M. Guo, S. Guo, H. Ozaki, L. Zheng, K. Ota and
M. Dong, “TTF of Composite Web Services,” Parallel
and Distributed Processing with Applications (ISPA),
2010 International Symposium, Taipei, 6-9 September
2010, pp. 130-137.

[8] A. Liu, Q. Li, L. Huang and M. Xiao, “FACTS: A
Framework for Fault-Tolerant Composition of Transac-
tional Web Services,” Services Computing, IEEE Trans-
actions, Vol. 3, No. 1, 2010, pp. 46-59.
doi:10.1109/TSC.2009.28

[9] N. Looker and J. Xu, “Assessing the Dependability of
OGSA Middleware by Fault-Injection,” Proceedings of
the 22nd International Symposium of Reliable Distributed
Systems, 6-18 October 2003, pp. 293-302.
doi:10.1109/RELDIS.2003.1238079

[10] N. Looker, M. Munro and J. Xu, “A Tool for Depend-
ability Analysis of Web Services,” Proceedings of the
28th Annual International Conference of Computer Soft-
ware and Applications, Hong Kong, 28-30 September
2004, pp. 120-123.

[11] A. L. Goel, “Software Reliability Models: Assumptions,
Limitations, and Applicability,” IEEE Transactions on
Software Engineering, Vol. SE-11, No. 12, 1985, 1411-
1423. doi:10.1109/TSE.1985.232177

[12] V. Grassi, “Architecture-Based Dependability Prediction
for Service-Oriented Computing,” Proceedings of WADS,
Edinburgh, 25 May 2004, pp. 279-299.

[13] J. Antonio and S. Cardoso, “Quality of Service and Se-
mantic Composition of Web Services,” Ph.D. Dissertation,
Department of Computer Science, University of Georgia,
Athens, 2002.

[14] D. Bianculli, C. Ghezzi and P. Spoletini, “A Model
Checking Approach to Verify BPEL4WS Workflows,”
IEEE International Conference on Service-Oriented Com-
puting and Applications, Newport Beach, 19-20 June
2007, pp. 13-20.

[15] H. Foster, S. Uchitel, J. Magee and J. Kramer, “Model-
Based Verification of Web Service Compositions,” Pro-
ceedings of the 18th IEEE International Conference of the
Automated Software Engineering, Montreal, 6-10 October
2003, pp. 152-161.

[16] J. Magee and J. Kramer, “Concurrency: State Models and
Java Programs,” John Wiley and Sons, Chichester, 1999.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/s00778-006-0020-3
http://dx.doi.org/10.1109/RELDIS.2003.1238066
http://dx.doi.org/10.1109/TSC.2009.28
http://dx.doi.org/10.1109/RELDIS.2003.1238079
http://dx.doi.org/10.1109/TSE.1985.232177

