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ABSTRACT 

Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) 
with noise applied to tax evasion on simple square lattices (LS), Honisch-Stauffer (SH), directed and undirected Bara-
basi-Albert (BAD, BAU) networks. In to control the fluctuations for tax evasion in the economics model proposed by 
Zaklan, MVM is applied in the neighborhood of the noise critical qc to evolve the Zaklan model. The Zaklan model had 
been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can 
be studied using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies 
cited above giving the same behavior regardless of dynamic or topology used here. 
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1. Introduction 

The Ising model [1,2] has become a excellent tool for to 
study other models of social application. The Ising model 
was already applied decades ago to explain how a school 
of fish aligns into one direction for swimming [3] or how 
workers decide whether or not to go on strike [4]. In the 
Latané model of Social Impact [5] the Ising model has 
been used to give a consensus, a fragmentation into many 
different opinions, or a leadership effect when a few 
people change the opinion of lots of others. To some 
extent the voter model of Liggett [6] is an Ising-type 
model: opinions follow the majority of the neighbour-
hood, similar to Schelling [7], all these cited models and 
others can be found out in [8]. Already Föllmer (1974) [9] 
applied the Ising model to economics. Realistic models 
of tax evasion appear to be necessary because tax evasion 
remain to be a major predicament facing governments 
[10-13]. Experimental evidence provided by Gächter [14] 
indeed suggests that tax payers tend to condition their 
decision regarding whether to pay taxes or not on the tax 
evasion decision of the members of their group. Frey and 
Torgler [15] also provide empirical evidence on the rele-
vance of conditional cooperation for tax morale. Follow-
ing the same context, recently, Zaklan et al. [16] devel-
oped an economics model to study the problem of tax 
evasion dynamics using the Ising model through Monte- 
Carlo simulations with the Glauber and heatbath algo-
rithms (that obey detailed-balance equilibrium) to study 

the proposed model. I have introduced for the first time 
the use of local majority rules in social systems. I also 
include a review paper on all my contributions to the 
field of sociophysics. Another one shows that a unifying 
paper on all discrete opinion models. I hope you will find 
these papers of interest. 

Grinstein et al. [17] have argued that nonequilibrium 
stochastic spin systems on regular square lattices with 
up-down symmetry fall into the universality class of the 
equilibrium Ising model [18]. This conjecture was con-
firmed for various Archimedean lattices and in several 
models that do not obey detailed balance [19-22]. The 
majority-vote model (MVM) is a nonequilibrium model 
proposed by M. J. Oliveira in 1992 [20] and defined by 
stochastic dynamics with local rules and with up-down 
symmetry on a regular lattice shows a second-order 
phase transition with critical exponents β, γ, and ν which 
characterize the system in the vicinity of the phase tran-
sition identical with those of the equilibrim Ising model 
[1] for regular lattices. Lima et al. [23] studied MVM on 
VD random lattices with periodic boundary conditions. 
These lattices posses natural quenched disorder in their 
connections. They showed that presence of quenched 
connectivity disorder is enough to alter the exponents 
and from the pure model and therefore that is a relevant 
term to such non-equilibrium phase-transition with dis-
agree with the arguments of Grinstein et al. [17]. 

Recently, simulations on both undirected and directed 
scale-free networks [24-30], random graphs [31] and 
social networks [32-35], have attracted interest of re-*This paper is dedicated to Dietrich Stauffer. 
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searchers from various areas. These complex networks 
have been studied extensively by Lima et al. in the con-
text of magnetism (MVM, Ising, and Potts model) [35- 
39], econophysics models [16,40] and sociophysics 
model [41]. In the present work, we study the behavior of 
the tax evasion on two-dimensional LS, BAD and BAU 
networks, and SH networks using the dynamics of MVM, 
furthermore add a policy makers’s tax enforcement 
mechanism consisting of two components: a probability 
of an audit each person is subject to in everyperiod and a 
length of time detected tax evaders remain honest. We 
aim here is to extend the study of Zaklan et al. [16], 
which illustrates how different levels of enforcement 
affect the tax evasion over time, to dynamics of MVM as 
an alternative model of nonequilibrium to the Ising 
model that is capable of reproduce the same results for 
analysis and control of the tax evasion fluctuations. Then, 
we show that the Zaklan model is very robust for equili-
bruim and nonequilibrium models and also for various 
topologies used here. We show that the choice of using 
the Ising (equilibrium dynamics) or MVM (nonequilib-
rium dynamics) used to evolve the Zaklan model is ir-
relevant, because the results obtained in this work are 
about the same for both Ising and MVM. The Zaklan 
model also is robust, because it works on LS, SH net-
work, BAD and BAU networks. We show that for dif-
ferent topologies the Zaklan model reaches our objective, 
that is, to control the tax evasion of a country (Germany 
and others). This does not occur with other models as 
Axelrod-Ross model for evolution of ethnocentrism [41], 
because the results are different depending of the topol-
ogy of the network. The Ising model also is not robust, 
because on directed BA network occur with other models 
as Axelrod-this no phase transition present as also on 
directed LS, 3D, 4D and directed hypercubics lattices 
[42]. As described above, the MVM was proposed by 
M.J. Oliveira in 1992 [22] in order to improve the crite-
rion of Grinstein et al. [17], initially described above. In 
the order to achieve his goal he used 44 (LS) Archi-
medean lattice. However, also with the aim of improve 
this criterion other researchers studied MVM on several 
other topologies that are not Archimedeans [39,43-48]. 
To their surprise all results obtained for the critical ex-
ponents are different from results obtained by M. J. 
Oliveira, and are also different for each topology used. 
Pereira et al. [49] then concluded that MVM has differ-
ent universality classes which depend only on the topol-
ogy used, and that all have one thing in common that is 
their effective dimension, obtained by critical exponents 
for each topology used, equals Deff = 1. Here, we show 
that the Zaklan model behavior is identical for all to-
pologies or dynamics studied here. Therefore, we believe 
that this model is very robust, different the other models 
cited above. Galam [50-53] introduced for the first time 

local majority rules in social systems to the field of so-
ciophysics using discrete opinion models. Here, we also 
hope to introduce for the first time the use of MVM to 
the field of sociophysics or econophysics using discrete 
opinions as in the Zaklan. Therefore, we do not live in a 
social equilibrium, any rumor or gossip can lead to a 
government or market chaos and we believe that nothing 
is better than a nonequilibrium model (MVM) to explain 
events of nonequilibrium. Stock market generalized to 
market, in order to include currency exchange. The re-
mainder of our paper is organised as follows. In Section 
2, we present the Zaklan model evolving with dynamics 
of MVM. In Section 3 we make an analysis of tax eva-
sion dynamics with the Zaklan model on two-dimen- 
sional square lattices using MVM for their temporal 
evolution under different enforcement regimes; we dis-
cuss the results obtained. In Section 4 we show that 
MVM also is capable to control the different levels of the 
tax evasion analysed in Section 3, as it was made by 
Zaklan et al. [16] using Ising models. We use the en-
forcement mechanism cited above on various structures: 
SL, SH network, BAD and BAU network; we discuss the 
resulting tax evasion dynamics. Finally in Section 5 we 
present our conclusions about the study of the Zaklan 
model using MVM. 

2. Zaklan Model 

On a square lattice each site of the lattice is inhabited, at 
each time step, by an agent with “voters” or spin vari-
ables σ taking the values +1 representing an honest tax 
payer, or −1 trying to at least partially escape her tax 
duty. Here is assumed that initially everybody is honest. 
Each period individuals can rethink their behavior and 
have the opportunity to become the opposite type of 
agent they were in previous period. In each time period 
the system evolves by a single spin-flip dynamics with a 
probability given by  
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where  S x  is the sign 1  of x if . 0x    0S x   
if 0x  , and the summation runs over all i  nearest- 
neighbour sites 

k

i    of i . In this model an agent as-
sumes the value 1  depending on the opinion of the 
majority of its neighbors. The control noise parameter q 
plays the role of the temperature in equilibrium systems 
and measures the probability of aligning antiparallel to 
the majority of neighbors. Then various degrees of ho-
mogeneity regarding either position are possible. An ex-
tremely homogenous group is entirely made of honest 
people or tax evaders, depending the sign  S x  of the 
majority of neighbhors. If  of the neighbors is 
zero the agent 

 S x

i  will be honest or evader in the next 

Copyright © 2012 SciRes.                                                                                  TEL 



F. W. S. LIMA 

Copyright © 2012 SciRes.                                                                                  TEL 

89

time period with probability 1 2 . We further introduce a 
probability of an efficient audit . Therefore, if tax 
evasion is detected, the agent must remain honest for a 
number k of time steps. Here, one time step is one sweep 
through the entire lattice. 

 p

q

k are triggered in order of to control the tax evasion 
level. The individual remain honests for a certain number 
of periods, as explained before in Sections 2 and 3. We 
also extend our study to other networks as the SH net-
work, BAD and and BAU networks with N = 400 sites. 
As before the initial configurations is with all honest 
agents ( i ) at fixed “Social Temperature”  q . Here, 
we have been performed simulations of 25,000 time 
steps. 

3. Controlling the Tax Evasion Dynamics 

Here, we first will present the baseline case, i.e., no use 
of enforcement, for different network structure. We use 
for LS, BAD and BAU network, and SH network. All 
simulation are performed over 25,000 time steps, as 
shown in Figure 1. For very low noises the part of 
autonomous decisions almost completely disappears. The 
individuals then base their decision solely on what most 
of their neighbours do. A rising noise has the opposite 
effect. Individuals then decide more autonomously. For 
MVM it is known that for c , half of the people are 
honest and other half cheat, while for c  states 
dominated by cheating or by correlated changed into 
dominated; you always have correlations compliance 
prevail for most of the time. Because this behavior we set 
some values close to qc, where the case that agents dis- 
tribute in equal proportions onto the two alternatives is 
excluded. Then having set the noise parameter, , close 
to (qc = 0.075) on the square lattice, as suggested in Sec- 
tion 3, we vary the degrees of punishment (k = 1, 10 and 
50) and audit probability rate (p = 0.5%, 10% and 90%). 
Therefore, if tax evasion is detected, the enforcement 
mechanism  and the period time of punishment 

q 
q q

q

 p

In Figure 1 we plot the baseline case k = 0, i.e., no use 
of enforcement, for the LS (a), SH (b), BAU (c), and 
BAD (d) for dynamics of the tax evasion over 25,000 
time steps. Although everybody is honest initially, it is 
impossible to predict which level of tax compliance will 
be reached at some time step in the future. 

Figure 2 illustrates different simulation settings for 
square lattice, for each considered combination of degree 
of punishment (k = 1, 10 and 50) and audit probability 
rate (p = 0.5%, 10% and 90%), where the tax evasion is 
plotted over 20,000 time steps. Here we show that even a 
very small level the enforcement (p = 0.5% and k = 1) 
suffices to reduce fluctuations in tax evasion and to es- 
tablish mainly compliance. Both a rise in audit probabil- 
ity (greater p) and higher penalty (greater k) work to flat-
ten the time series of tax evasion and to shift the band of 
possible non-compliance values towards more comp li-
ance. However, the simulations show that even extreme 
enforcement measures (p = 90% and k = 50) cannot fully 
solve the problem of tax evasion. 

 

 

Figure 1. Baseline case for different network structure. Where we use q = 0.95qc on different networks. All simulation are 
performed over 25,000 time steps. 
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In Figure 3 we display tax evasion for BAD and BAU 

networks, SH networks for different enforcement for k = 
1, 10, and 50 with the same audit probability p = 1%. We 

observe for BAD ou BAU network that the tax evasion 
level decreases with increasing time periods k of punish-
ment, similar behavior also occurs for SH network. 

 

 

Figure 2. The square lattice model of tax evasion with various degrees of enforcement q = 0.95qc and 20,000 time steps. 
 

 

Figure 3. Display tax evasion for different enforcement regimes for BA and SH Network and for degrees of punishment k = 1, 
10, 50 and audit probability rate pa = 4.5%. 
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Figure 4. Display of the tax evasion for different enforcement regimes for BA and SH network. Again, we use 25,000 time 
steps. 
 

In Figure 4 we plot tax evasion for BAD and BAU 
networks, and SH network, again for different enforce- 
ment k = 1, 10, and 50, but now with audit probability 

. For BAD and BAU, and SH networks the tax 
evasion level decreases with increasing audit probability 

 showing that an increase of the audit probability fa- 
vors the control of tax evasion. In all case studied here, 
we observed that the time period  of punishment is 
important to control tax evasion. 

4.5%p 

p

k

4. Conclusion 

In summary, tax evasion can vary widely across nations, 
reaching extremely high values in some developing 
countries. Wintrobe and Gёrxhani [54] explains the ob- 
served higher level of tax evasion in generally less de- 
veloped countries with a lower amount of trust that peo- 
ple have in governmen tal institutions. To study this 
problem Zaklan et al. [16] proposed a model, called here 
call the Zaklan model, using Monte Carlo simula- tions 
and a equilibrium dynamics (Ising model) on square lat-
tices. Their results are good agreement with analytical 
and experimental results obtained by [9-15,54]. In this 
work we show that the Zaklan model is very robust for 
analysis and control of tax evasion, because we use a 
nonequilibrium dynamics (MVM) to simulate the Zaklan 
model, that is the opposite of the study done by [16] 
equilibrium dynamics (Ising model), and also on various 

topologies used here. Our results are qualitatively and 
quantitatively identical the results obtained by Zaklan et 
al. [16] giving the same behavior regardless of dynamic 
or topology. Here, we also hope to have introduced for 
the first time the use of MVM to the field of sociophysics 
and econophysics using discrete opinion model as Zaklan 
model. As we do not live in a social equilibrium and any 
rumor or gossip can lead to a government or market 
chaos, we believe that nothing is better than a nonequi-
librium model (MVM) to explain events of nonequilib-
rium. Therefore, as the Zaklan model is a sociophysics 
and econophysics model, we also believe that the best 
topology used for simulations of this model are social 
networks of BAD and SH type. 
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